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ML for Policy and Scientific Understanding

Causal inference for policy and scientific understanding
» Predict hotel prices versus estimate impact of price change
» Identify units at risk versus those with high treatment effect
» See Athey (Science, 2017)

Machine learning helps us build more granular statistical models.

» Improves performance of traditional causal inference
estimation methods

> Better use of observables to control for confounders
» More granual counterfactual predictions about what would
have happened to individuals in the absence of the treatment

» Better understanding of how and why a policy works, for
continued improvement

» Personalized evaluation of how a policy works

» Personalized policy assignment rules



Correlation v. Causality in Advertising Measurement

Did the advertisement cause the sale, or would the sale have
happened anyway?

> e.g. Blake, Nosko, &Tadelis, 2016: eBay's search campaigns
had —63% return rather than a +1500% return

» Best solution: A/B tests or bandits

» But what if you don't have enough data to do A/B tests, or
have difficulty implementing them properly?

» What is the best we can do with observational data?
A Practical Solution:

» Use best-available observational methods

v

Validate observational methods by comparing to experiments

v

Use supplementary analysis to validate approaches

v

Two examples today: techniques based on unconfoundedness,
and instrumental variables



Improving Existing Approaches

Approaches to drawing causal inference in observational studies are
well-established, but suffer from non-robustness

» Results sensitive to functional form
» Argue about validity based on reasonableness

Recent developments

> Use ML techniques to have data-driven approach to select
functional form, modifying techniques to optimize for causal
inference v. prediction

» Avoid “regularization-induced bias”
» Personalized estimates
» Centered confidence intervals, asymptotic normality, efficiency
» Validate using many small natural experiments, comparison to
A/B tests, evaluation of policy implementation
» Supplementary Analysis: Systematic approaches to assessing
validity (see, e.g., Athey and Imbens (2015, 2017); Athey,
Imbens, Pham, Wager (2017)



The potential outcomes framework

For a set of i.i.d. subjects i =1, ..., n, we observe a tuple
(Xi, Yi, W;), comprised of

» A feature vector X; € RP,

» A response Y; € R, and

» A treatment assignment W; € {0, 1}.

Following the potential outcomes framework (Holland, 1986,
Imbens and Rubin, 2015, Rosenbaum and Rubin, 1983, Rubin,
1974), we posit the existence of quantities Y,-(O) and Y,-(l).

» These correspond to the response we would have measured
given that the i-th subject received treatment (W; = 1) or no
treatment (W; = 0).

» NB: We only get to see Y; = Y}Wi)



The potential outcomes framework

For a set of i.i.d. subjects i =1, ..., n, we observe a tuple
(Xi, Yi, W;), comprised of

» A feature vector X; € RP,

» A response Y; € R, and

» A treatment assignment W; € {0, 1}.

» Define the average treatment effect (ATE), the average
treatment effect on the treated (ATT)

r=rATE_ g [Y(l) - Y“ﬂ AT | [Y(l) YO W, = 1] :
» and, the conditional average treatment effect (CATE)

T(x)=E [Y(l)— Y(O)‘X:X].



The potential outcomes framework

( My stomach hurts)

Maybe it was the bad tuna

Q | had for lunch

Too bad | don't have a
proper control group,

now I'll never know

freshspectrum.com



The potential outcomes framework

If we make no further assumptions, it is not possible to estimate
ATE, ATT, CATE, and related quantities.

» This is a failure of identification (infinite sample size), not a
small sample issue. Unobserved confounders correlated with
both the treatment and the outcome make it impossible to
separate correlation from causality.

» One way out is to assume that we have measured enough
features to achieve unconfoundedness (Rosenbaum and
Rubin, 1983)

{Y.(O), yl.(l)} Lw | x.

1

» When this assumption + OVERLAP (e(x) € (0, 1)) holds,
causal effects are identified and can be estimated.



Estimation Methods

The following methods are efficient when the number of covariates
is fixed:

» Propensity score weighting: compare treated and control
outcomes, weighted by inverse of probability of being treated

» “Direct” model of the outcome (model of E [Y,- ’ Xi, W,])
e.g. using regression

» Propensity-score weighted regression of Y on X, W (doubly
robust)

The choice among these methods is widely studied:
» Other popular methods include matching, propensity score

matching, propensity score blocking, which are not efficient
but often do better in practice.

» Note: Hirano, Imbens, Ridder (2003) establish that more
efficient to weight by estimated propensity score than actual.

» Which one is better? It depends.



Advertising Effectiveness: Specifics

What is the problem you are trying to solve for separating
correlation from causality?

> Users saw the ad because of an action they took indicating
interest in the product

» Users saw the ad becaues they were active on the internet
that day, and they are more likely to spend money when active
(“Activity Bias", e.g. Lewis et al)

What do you need to do to solve this problem?

» Adjust for confounders — compare two individuals for whom
the ad assignment was as good as random (allocation due to
budget constraints, randomness in ad assignment)

» Observables that indicate user interest, broadly and at this
moment

> In online setting, set of websites you have visited recently is
related to user interest as well as cookies for targeting

» Problem: there are lots of websites to potentially visit!



Regression Case

Suppose that conditional mean function is given by

:U’(va) = B(W) - X.
If we estimate using OLS, then we can estimate the ATT as
ATT = v _ x(@) . 30

Note that OLS is unbiased and efficient, so the above quantity
converges to the true values at rate /n:

X0 M. 50 - Op(i)



High-Dimensional Analogs??

Obvious possibility: substitute in the lasso (or ridge, or elastic net)
for OLS. But bias is a big problem.
With lasso, for each component j:

- 47 -0 /52)

This adds up across all dimensions, so that we can only guarantee
for the ATT:

. lo S —
ATT — ATT = 0,( grfp) 1% = Kolloo - 118l )



Improving the Properties of ATE Estimation in High
Dimensions: A “Double-Selection” Method

Belloni, Chernozukov, and Hansen (2013) observe that
confounders might be important if they have a large effect on
outcomes OR a large effect on treatment assignment. Propose:
» Run LASSO of W on X. Select variables with non-zero
coefficients at a selected \ (e.g. cross-validation).
» Run a LASSO of Y on X. Select variables with non-zero
coefficients at a selected A (may be different than first \).
» Run a OLS of Y on W and the union of selected variables.
(Not as good at purely predicting Y as using only second set.)
Result: under “approximate sparsity” of BOTH propensity and
outcome models, and constant treatment effects, estimated ATE is
asymptotically normal and estimation is efficient.



Doubly Robust Methods

With small data, a “doubly robust” estimator (though not the

typical one, where typically people use inverse propensity score
weighted regression) is (with 4; = é&,)):

29 =Xy BO + Erw—o%i (Y — Xi30)

To see why, note that the term in parentheses goes to 0 if we
estimate 3(9) well, while to show that we get the right answer if we
estimate the propensity score well, we rearrange the expression to
be

12 = (X1 — Brw—o(5:X:)) B® + Eiwmo¥i Vi
The first term has expectation 0, and the second term gives the
relevant counterfactual, if the propensity score is well-estimated.



Doubly Robust Methods: A High-Dimensional Analog?

N

a9 =Xy - BO 4 I@i;vv,:o’?i(yi - Xiﬁ(o))

How does this relate to the truth?

9 — 1§ = Xy - (BO — BO) + Biw,—o%i (e + X;89) — X;3)

= (X1 -4 Xo) - (B — BO) + Ei.w—oie;

With high dimensions, we could try to estimate f and the
propensity score with LASSO or post-LASSO rather than OLS.
However, this may not be good enough. It is also not clear how to
get good estimates of the inverse propensity score weights ~;, in
particular if we don't want to assume that the propensity model is
sparse (e.g. if the treatment assignment is a complicated function
of confounders).



An Efficient Approach with Non-Sparse Propensity

The solution proposed in Athey, Imbens and Wager (2016) for
attacking the gap

a9 —pd = (X1 —4'X) - (BO — 8O ¢ & o€

is to bound 1st term by selecting ~;'s using brute force. In
particular:

4 = argmin,( - || X1 — 7' Xolloo + (L = O3

The parameter ( is a tuning parameter; the paper shows that ¢
exists such that the «'s exist to tightly bound the first term above.

With overlap, we can make || X; — 7/ Xpl|oo be O( @).

Result: If the outcome model is sparse, estimate (3 using LASSO

yielding bias of second term Op(k M), so the bias term is

n
O(km), so for k small enough, the last term involving J;€;

dominates, and ATE estimator is O(%)



Summarizing the Approximate Residual Balancing Method
of Athey, Imbens, Wager (2016)

» Estimate lasso (or elastic net) of Y on X in control group.

» Find “approximately balancing” weights that make the control
group look like the treatment group in terms of covariates,
while attending to the sum of squares of the weights. With
many covariates, balance is not exact.

» Adjust the lasso prediction of the counterfactual outcome for
the treatment group (if it had been control) using
approximately balancing weights to take a weighted average of
the residuals from the lasso model.

Main result: if the model relating outcomes to covariates is linear
and sparse, and there is overlap, then this procedure achieves the
semi-parametric efficiency bound. No other method is known to do
this for non-sparse propensity models.

Simulations show that it performs much better than alternatives
when propensity is not sparse.



Estimating the Effect of a Welfare-to-Work Program

Data from the California GAIN Pro-
gram, as in Hotz et al. (2006).

» Program separately randomized
in: Riverside, Alameda, Los
Angeles, San Diego.

%

Coverage

0.85

» Qutcome: mean earnings over
next 3 years.

—— Oracle
—— Approx. Resid. Balance

» We hide county information. o | T Lessomesaiw
. g’ — No Correction
Seek to compensate with ‘ | ‘ : ‘
200 500 1000 2000 5000
p = 93 controls. n

» Full dataset has n = 19170.



Supplementary Analysis

To establish validity of models:
» Show multiple methods based on different types of
assumptions
» Assess how challenging the problem is:

» lllustrate overlap through plotting propensity scores for each

group
» Plot the “bias function” (Athey, Imbens, Pham and Wager,
2017)

» “Placebo tests”

» Others depending on setting; see Athey and Imbens (2017)



ML Methods for Causal Inference:
Treatment Effect Heterogeneity

» ML methods perform well in practice, but many do not have
well established statistical properties
» Unlike prediction, ground truth for causal parameters not
directly observed
» Need valid confidence intervals for many applications (AB
testing, drug trials); challenges include adaptive model
selection and multiple testing
» Different possible questions of interest, e.g.:
» Identifying subgroups (Athey and Imbens, 2016)
» Testing for heterogeneity across all covariates (List, Shaikh,
and Xu, 2016)
» Robustness to model specification (Athey and Imbens, 2015)
» Personalized estimates e.g. Wager and Athey, forthcoming;
Athey, Tibshirani, and Wager, 2017; Taddy et al 2014
» Personalized policy estimation: ML literature on contextual
bandits (e.g. John Langford et al)); Joachins et al; Athey and
Wager, 2017



ML Methods for Causal Inference:
More general models

v

Much recent literature bringing ML methods to causal
inference focuses on single binary treatment in environment
with unconfoundedness

Economic models often have more complex estimation
approaches

Athey, Tibshirani and Wager (2016): tackle general GMM
case, and establish asymptotic normality

» Quantile regression Instrumental Variables
» Consumer choice Panel Regression
» Euler equations Survival Analysis

See also “Deep IV" (Taddy, Lewis, Hartford, and
Leyton-Brown, 2017)



Heterogeneous Treatment Effects: Related Literature

> Zeilis et al (2008): model trees.

» Imai and Ratkovic (2013) analyze treatment effect
heterogeneity with LASSO

» Targeted ML (van der Laan, 2006) can be used as a
semi-parametric approach to estimating treatment effect
heterogeneity

> Literature on policy estimation, policy learning, and
contextual bandits: ML: Langford et al, Swaminathan and
Joachims; econometrics: Kitagawa and Tetenov (2015)

» See Wager and Athey (JASA, forthcoming) and Athey and
Imbens (PNAS, 2016) for add'l references on treatment effect
heterogeneity; see Athey and Wager (2017) for additional
references on policy estimation and evaluation



Baseline method: k-NN matching

Consider the k-NN matching estimator for 7(x):

R 1 1
T(X):ksz()yi—kzyia
1(x

So(x)

where Sy /1(x) is the set of k-nearest cases/controls to x. This is
consistent given unconfoundedness and regularity conditions.

» Pro: Transparent asymptotics and good, robust performance
when p is small.

» Con: Acute curse of dimensionality.

NB: Kernels have similar qualitative issues as k-NN.



Adaptive nearest neighbor matching

Random forests are a a popular heuristic for adaptive nearest
neighbors estimation introduced by Breiman (2001).

» Pro: Excellent empirical track record.

» Con: Often used as a black box, without statistical discussion.

There has been considerable interest in using forest-like methods
for treatment effect estimation, but without formal theory.
» Green and Kern (2012) and Hill (2011) have considered using
Bayesian forest algorithms (BART, Chipman et al., 2010).
» Several authors have also studied related tree-based
methods: Athey and Imbens (2016), Su et al. (2009), Taddy
et al. (2014), Wang and Rudin (2015), Zeilis et al. (2008), ...
Wager and Athey (JASA, forthcoming) provide the first formal
results allowing random forest to be used for provably valid
asymptotic inference.



Making k-NN matching adaptive
Athey and Imbens (2016) introduce causal tree: defines
neighborhoods for matching based on recursive partitioning
(Breiman, Friedman, Olshen, and Stone, 1984), advocate sample
splitting (w/ modified splitting rule) to get assumption-free
confidence intervals for treatment effects in each leaf.

Euclidean neighborhood,

for k-NN matching. Tree-based neighborhood.



From trees to random forests (Breiman, 2001)

Suppose we have a training set {(Xi, Y;, W;)}7_;, a test point x,
and a tree predictor

7(x) =T {(X:, Vi, Wi)hila)-

Random forest idea: build and average many different trees T*:

B
Ez Xla \/Iaw) )




From trees to random forests (Breiman, 2001)

Suppose we have a training set {(Xi, Y;, W;)}7_;, a test point x,
and a tree predictor

7(x) =T {(X:, Vi, Wi)hila)-

Random forest idea: build and average many different trees T*:

Uo\
Mm

{(Xi, i, Wi)}ioq)

We turn T into T by:
» Bagging / subsampling the training set (Breiman, 1996); this
helps smooth over discontinuities (Biihimann and Yu, 2002).

» Selecting the splitting variable at each step from m out of p
randomly drawn features (Amit and Geman, 1997).



Statistical inference with regression forests

Honest trees do not use the same data to select partition (splits)
and make predictions. Ex: Split-sample trees, propensity trees.

Theorem. (Wager and Athey, 2015) Regression forests are
asymptotically Gaussian and centered,

fin (x) = n(x) = N (0, 1), 02(x) =, 0,

on (x) !
given the following assumptions (4 technical conditions):

1. Honesty. Individual trees are honest.

2. Subsampling. Individual trees are built on random
subsamples of size s =< n®, where Bmin < 3 < 1.

3. Continuous features. The features X; have a density that is
bounded away from 0 and oo.

4. Lipschitz response. The conditional mean function
u(x) =E [Y | X = x] is Lipschitz continuous.



Valid Confidence Intervals

Athey and Imbens (2016), Wager and Athey (2015) highlight the
perils of adaptive estimation for confidence intervals, tradeoff
between MSE and coverage for trees but not forests.

Single Tree Forests
Ratio of infeasible MSE: Adaptive to honest'
TOT- 1.021 0.754 0.717 - :0"95: g’awss c
ATOT-H 7 Aot bias

F-A/F-H 0.491 0.985 0.993 Q| --- Adapt RMSE
T-AT-H 0.935 0.841 0918
CT-A/CT-H 0.929 0.851 0.785

Coverage of 90% confidence intervals — adaptive 53
TOT-A 0.82 0.85 0.78 0.81 0.69 0.74 S
F-A 0.89 0.89 0.83 0.84 0.82 0.82
TS-A 0.84 0.84 0.78 0.82 0.75 0.75 o~
CT-A 0.83 0.84 0.78 0.82 0.76 0.79 °

Coverage of 90% confidence intervals — honest .

TOT-H 0.90 0.90 0.90 0.89 0.89 0.90 o | e T ---
F-H 0.90 090  0.90 0.90  0.90 0.90 ol T T
TS-H 0.90 0.90 0.91 0.91 0.89 0.90 100 200 400 800 1600 3200

CT-H 0.89 0.90 0.90 0.90 0.89 0.90 n



Causal forest example

We have n = 20k observations whose features are distributed as
X ~ U([—1, 1]P) with p = 6; treatment assignment is random. All
the signal is concentrated along two features.

The plots below depict 7(x) for 10k random test examples,
projected into the 2 signal dimensions.

true effect 7(x) causal forest k-NN estimate

EE P .

Software: causalTree for R (Athey, Kong, and Wager, 2015)
available at github: susanathey/causalTree



Causal forest example
We have n = 20k observations whose features are distributed as
X ~ U([—1, 1]P) with p = 20; treatment assignment is random.
All the signal is concentrated along two features.

The plots below depict 7(x) for 10k random test examples,
projected into the 2 signal dimensions.

true effect 7(x) causal forest k-NN estimate

Software: causalTree for R (Athey, Kong, and Wager, 2015)
available at github: susanathey/causalTree



Causal forest example
The causal forest dominates k-NN for both bias and variance.
With p = 20, the relative mean-squared error (MSE) for 7 is

MSE for k-NN (tuned on test set)
MSE for forest (heuristically tuned)

=19.2.

causal forest k-NIN estimate

Estimated Treatment Effect

1.0

|
g?o"’%aa
B 8%
&

(A

i3
Estimated Treatment Effect

T T T T T T T T T T
0.0 05 1.0 15 2.0 0.0 0.5 1.0 15 2.0

True Treatment Effect True Treatment Effect

For p = 6, the corresponding MSE ratio for 7 is 2.2.




Applications of Instrumental Variables in Ad Effectiveness

» Intent-To-Treat v. Treatment on the Treated: Assignment to
target group is the intent to treat, but not all targeted users
are reached. Instrumental variables gives you the effect of the
treatment on the treated.

> “Viewability” and related approaches: Some users did not see
the ad because it was too low on the page or didn't render for
other reasons

» A/B tests can be used as instruments, e.g. in search
advertising, many A/B tests affect ad ranking; for
e-commerce websites, A/B tests may affect the prominence of
offers and "house” ads

Idea of IV: Use only the part of the variation in the treatment that
is explained by the instrument, where the instrument is truly
random

Use of ML: Control for confounders; personalized effects



Solving estimating equations with random forests

We have i =1, ..., n i.i.d. samples, each of which has an
observable quantity O;, and a set of auxiliary covariates X;.

Examples:
» Non-parametric regression: O; = {Y;}.
» Treatment effect estimation: O; = {Y;, W;}.

» Instrumental variables regression: O; = {Y;, W;, Z;}.

Our parameter of interest, 0(x), is characterized by an
estimating equation:

E [$9(x), () (Oi) | Xi =x] =0 forall x e X,

where v(x) is an optional nuisance parameter.



The GMM Setup: Examples

Our parameter of interest, 6(x), is characterized by
E [$9(x), () (Oi) | Xi = x] =0 forall xe X,

where v(x) is an optional nuisance parameter.

» IV regression, with treatment assignment W and instrument
Z. We care about the treatment effect 7(x):

_ (Zi(Yi = Wir(x) = p(x))
Vr(x), ul(x) = ( Yi — W;t(x) — ul(LX) > '



Solving heterogeneous estimating equations

The classical approach is to rely on local solutions (Fan and
Gijbels, 1996; Hastie and Tibshirani, 1990; Loader, 1999).

n

™ alxi X)) G000 (00 = 0.

i=1
where the weights a(x; X;) are obtained from, e.g., a kernel.
We use random forests to get good data-adaptive weights. Has

potential to be help mitigate the curse of dimensionality.

» Building many trees with small leaves, then solving the
estimating equation in each leaf, and finally averaging the
results is a bad idea. Quantile and IV regression are badly
biased in very small samples.

» Using RF as an “adaptive kernel” protects against this effect.



The random forest kernel

Forests induce a kernel via averaging tree-based neighborhoods.
This idea was used by Meinshausen (2006) for quantile regression.



Forests for GMM Parameter Heterogeneity

» Local GMM/ML uses kernel weighting to estimate
personalized model for each individual, weighting nearby
observations more.

» Problem: curse of dimensionality
» We propose forest methods to determine what dimensions
matter for “nearby” metric, reducing curse of dimensionality.
» Estimate model for each point using “forest-based” weights:
the fraction of trees in which an observation appears in the
same leaf as the target
» We derive splitting rules optimized for objective
» Computational trick:

» Use approximation to gradient (based on parent node
parameters) to construct pseudo-outcomes

» Then apply a splitting rule inspired by regression trees to these
pseudo-outcomes

» Asymptotic normality: more subtle than regression/causal
forests, but ultimately similar arguments apply



Empirical Application: Family Size

Angrist and Evans (1998) study the effect of family size on
women's labor market outcomes. Understanding heterogeneity can
guide policy.

>

>

>

Outcomes: participation, female income, hours worked, etc.
Treatment: more than two kids

Instrument: first two kids same sex

First stage effect of same sex on more than two kids: .06

Reduced form effect of same sex on probability of work,
income: .008, $132

LATE estimates of effect of kids on probability of work,
income: .133, $2200



Treatment Effects: Magnitude of Decline

Effect on Participation Baseline Probability of Working
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Asymptotic normality of GRFs
Theorem. (Athey, Tibshirani and Wager, 2016) Given regularity of
both the estimating equation and the data-generating distribution,
GRFs are consistent and asymptotically normal:

Bn(x) — 6(x)

2
p— = N(0,1), o, —0.

Proof sketch.

» Influence functions: Hampel (1974); also parallels to use in
Newey (1994).

> Influence function heuristic motivates approximating GRFs
with regression forests applied to (infeasible) pseudo-outcomes

0i=0—¢"A Y, 1, (05)

» Analyze the approximating regression forests using Wager and
Athey (2015)

» Use coupling result to derive conclusions about GRFs.



Pre-computing nuisance parameters

» For the IV case, can improve performance by residualizing the
variables prior to constructing moments using leave-one-out
estimators

> V= Yi—yU(X), Wy = Y — w0(X), Z = Z— 20(X))
» Moment conditions constructed using residualized variables
have the same solution, but are not sensitive to errors in
estimating nuisance parameters

» See Chernozhukov et al (2017) who argue for using
Neyman-orthogonal moments in estimating structural
parameters 6, e.g. the ATE, and Wager et al (2016)



Conclusions for Heterogeneous Parameter Estimation

» Local ML/GMM using kernel-based methods useful for
allowing flexible estimation of heterogeneity in parameter
estimates, but limited by curse of dimensionality

» Replacing kernel weighting function with forest-based function
makes use of one of best-performing ML methods for
non-parametric estimation without sacrificing asymptotic
normality

» Proposed method solves computational/engineering challenges
and guards against overfitting/instability

» Honesty (sample splitting) important



Efficient Policy Estimation

» Learning optimal policy assignment and estimating
treatment effect heterogeneity closely related

» ML literature proposed variety of methods (Langford et al;
Swaminathan and Joachims; in econometrics, Kitagawa and
Tetenov)

» Estimating the value of a personalized policy closely related to
estimating average treatment effect (comparing treat all
policy to treat none policy)

» Lots of econometric theory about how to estimate average
treatment effects efficiently (achieve semi-parametric
efficiency bound)

» Athey and Wager (2017): prove that bounds on regret (gap

between optimal policy and estimated policy) can be tightened
using an algorithm consistent with econometric theory

» Theory provides guidance for algorithm choice



Setup and Approach

Setup
» Policy m: X — {£1}
» Given a class of policies I1, the optimal policy 7* and the
regret R(m) of any other policy are respectively defined as

7 = argmaxzen {E[Y; (7 (X)]} (1)
R =EYi( (O -ENVi(x (). (2)

» Goal: estimate a policy 7 that minimizes regret R(m).

Approach: Estimate Q(), choose policy to minimize Q(r):
Q) =E[Yi (r (X))~ EV(-D + Yi(+ )] ()

T = argmax,cn {a(ﬂ)} ) (4)



Main Result

» Let V(7) denote the semiparametrically efficient variance for
estimating Q(7).

» Let Vi := V(7*) denote the semiparametrically efficient
variance for evaluating 7*

> Let Vinax denote a sharp bound on the worst case efficient
variance sup, V() for any policy . Results:

» Given policy class 1 with VC dimension VC (I1), proposed
learning rule yields policy & with regret bounded by

R(7)=0Op <\/V* log <V\n/1j(> \/Cn(|'|)> . (5)

» We also develop regret bounds for non-parametric policy
classes 'l with a bounded entropy integral, such as
finite-depth decision trees.




Policy

» Estimate Q(7) as
Qomi(m) = %ZW (X) T (6)

_ Y. _ ,&(_k(i))(X-)
A ~(—k(i J W; !
ri = :LL+1 (XI) — K4 ( ))(Xl) + VVI ~(—k(i)) ) (7)
Cw; (Xi)
» k(i) € {1, ..., K} denotes the fold containing the i-th
conservation.

» Estimated propensity score for treatment W;: é\(/;ik(i)) (Xi)

> Estimate this using a classifier with labels sign(l';) and
weights |



Conclusions

Contributions from causal inference and econometrics literature:
» |dentification and estimation of causal effects

» Classical theory to yield asymptotically normal and centered
confidence intervals

» Semiparametric efficiency theory
Contributions from ML:

» Practical, high performance algorithms for personalized
prediction and policy estimation

Putting them together:
» Practical, high performance algorithms
» Causal effects with valid confidence intervals

» Consistent with insights from efficiency theory





