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Interactive Systems
• Examples

– Ad Placement
– Search engines
– Entertainment media
– E-commerce
– Smart homes

• Log Files
– Measure and optimize 

performance
– Gathering and maintenance 

of knowledge
– Personalization



Historic Interaction Logs: 
Ad Placement

• Context 𝑥𝑥: 
– User and page

• Action 𝑦𝑦: 
– Ad that is placed

• Feedback 𝛿𝛿 𝑥𝑥, 𝑦𝑦 :
– Click / no-click



Historic Interaction Logs: 
News Recommender

• Context 𝑥𝑥: 
– User

• Action 𝑦𝑦: 
– Portfolio of newsarticles

• Feedback 𝛿𝛿 𝑥𝑥, 𝑦𝑦 :
– Reading time in minutes



Historic Interaction Logs: 
Search Engine

• Context 𝑥𝑥: 
– Query

• Action 𝑦𝑦: 
– Ranking

• Feedback 𝛿𝛿 𝑥𝑥, 𝑦𝑦 :
– Clicks on SERP



Batch Learning from Bandit Feedback

• Data
𝑆𝑆 = 𝑥𝑥1, 𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛

 “Bandit” Feedback
• Properties

– Contexts 𝑥𝑥𝑖𝑖 drawn i.i.d. from unknown 𝑃𝑃(𝑋𝑋)
– Actions 𝑦𝑦𝑖𝑖 selected by existing system 𝜋𝜋0: 𝑋𝑋 → 𝑌𝑌
– Feedback 𝛿𝛿𝑖𝑖 drawn i.i.d. from unknown 𝑃𝑃 𝛿𝛿𝑖𝑖 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖

• Goal of Learning
– Find new system 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

context
𝜋𝜋0 action

reward / loss

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]



Learning Settings

Full-Information 
(Labeled) Feedback

Partial-Information
(e.g. Bandit) Feedback

Online Learning • Perceptron
• Winnow
• Etc.

• EXP3
• UCB1
• Etc.

Batch Learning • SVM
• Random Forests
• Etc.

?



Outline of Talk
• Batch Learning from Bandit Feedback (BLBF)

𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛
 Find new policy 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

• Learning Principle for BLBF
– Hypothesis Space, Risk, Empirical Risk, and Overfitting
– Learning Principle: Counterfactual Risk Minimization

• Learning Algorithms for BLBF
– POEM: Bandit training of CRF for Structured Output 

Prediction
– BanditNet: Bandit training of Deep Networks

• Application: Display Advertising



Hypothesis Space

Definition [Stochastic Hypothesis / Policy]:
Given context 𝑥𝑥, hypothesis/policy 𝜋𝜋 selects action 
𝑦𝑦 with probability 𝜋𝜋 𝑦𝑦 𝑥𝑥

Note: stochastic prediction rules ⊃ deterministic 
prediction rules

𝜋𝜋1(𝑌𝑌|𝑥𝑥) 𝜋𝜋2(𝑌𝑌|𝑥𝑥)

𝑌𝑌|𝑥𝑥



Risk

Definition [Expected Loss (i.e. Risk)]: 
The expected loss / risk R(𝜋𝜋) of policy 𝜋𝜋 is

R 𝜋𝜋 = ��𝛿𝛿 𝑥𝑥, 𝑦𝑦 𝜋𝜋 𝑦𝑦 𝑥𝑥 𝑃𝑃 𝑥𝑥 𝑑𝑑𝑥𝑥 𝑑𝑑𝑦𝑦

𝜋𝜋1(𝑌𝑌|𝑥𝑥) 𝜋𝜋2(𝑌𝑌|𝑥𝑥)

𝑌𝑌|𝑥𝑥



�𝑅𝑅 𝜋𝜋0 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝛿𝛿𝑖𝑖

On-Policy Risk Estimation

Given 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1 , 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 , 𝛿𝛿𝑛𝑛 collected 
under 𝜋𝜋0,

 A/B Testing
Field 𝜋𝜋1: Draw 𝑥𝑥 ∼ 𝑃𝑃 𝑥𝑥 , predict 𝑦𝑦 ∼ 𝜋𝜋1 𝑌𝑌 𝑥𝑥 , get 𝛿𝛿(𝑥𝑥, 𝑦𝑦)
Field 𝜋𝜋2: Draw 𝑥𝑥 ∼ 𝑃𝑃 𝑥𝑥 , predict 𝑦𝑦 ∼ 𝜋𝜋2 𝑌𝑌 𝑥𝑥 , get 𝛿𝛿(𝑥𝑥,𝑦𝑦)

⋮
Field 𝜋𝜋|𝐻𝐻|: Draw 𝑥𝑥 ∼ 𝑃𝑃 𝑥𝑥 , predict 𝑦𝑦 ∼ 𝜋𝜋|𝐻𝐻| 𝑌𝑌 𝑥𝑥 , get 𝛿𝛿(𝑥𝑥, 𝑦𝑦)



Evaluating Online Metrics Offline

• Online: On-policy A/B Test

• Offline: Off-policy Counterfactual Estimates

Draw 𝑆𝑆1
from 𝜋𝜋1
 �𝑈𝑈 𝜋𝜋1

Draw 𝑆𝑆2
from 𝜋𝜋2
 �𝑈𝑈 𝜋𝜋2

Draw 𝑆𝑆3
from 𝜋𝜋3
 �𝑈𝑈 𝜋𝜋3

Draw 𝑆𝑆4
from 𝜋𝜋4
 �𝑈𝑈 𝜋𝜋4

Draw 𝑆𝑆5
from 𝜋𝜋5
 �𝑈𝑈 𝜋𝜋5

Draw 𝑆𝑆6
from 𝜋𝜋6
 �𝑈𝑈 𝜋𝜋6

Draw 𝑆𝑆 from 𝜋𝜋0

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋6

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋12

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋18

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋24

�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 ℎ1�𝑈𝑈 𝜋𝜋30

Draw 𝑆𝑆7
from 𝜋𝜋7
 �𝑈𝑈 𝜋𝜋7



Approach 1: Reward Predictor

• Data: 
𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1,𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 ,𝛿𝛿𝑛𝑛

• Idea: 
– Use data from 𝜋𝜋0 to learn 

reward predictor 𝛿𝛿 𝑥𝑥, 𝑦𝑦
• Learn �̂�𝛿: 𝑥𝑥 × 𝑦𝑦 → ℜ

1.Represent via features Ψ 𝑥𝑥, 𝑦𝑦
2.Learn regression based on 
Ψ 𝑥𝑥, 𝑦𝑦 from 𝑆𝑆 collected under 
𝜋𝜋0

3.Predict 𝛿𝛿 𝑥𝑥, 𝑦𝑦′ for 𝑦𝑦′ = 𝜋𝜋(𝑥𝑥)
of new policy 𝜋𝜋

�̂�𝛿(𝑥𝑥, 𝑦𝑦)

𝛿𝛿 𝑥𝑥, 𝑦𝑦𝑦

Ψ1

Ψ2



Approach 2:
Off-Policy Risk Evaluation

Given 𝑆𝑆 = 𝑥𝑥1, 𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛 collected 
under 𝜋𝜋0,

 Unbiased estimate of risk, if propensity nonzero
everywhere (where it matters).

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝛿𝛿𝑖𝑖
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝜋𝜋0 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]

Propensity 
𝑝𝑝𝑖𝑖

𝜋𝜋0(𝑌𝑌|𝑥𝑥) 𝜋𝜋(𝑌𝑌|𝑥𝑥)



Partial Information 
Empirical Risk Minimization

• Setup
– Stochastic logging using 𝜋𝜋0 with 𝑝𝑝𝑖𝑖 = 𝜋𝜋0(𝑦𝑦𝑖𝑖|𝑥𝑥𝑖𝑖)

 Data S = 𝑥𝑥1, 𝑦𝑦1 ,𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛 ,𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Stochastic prediction rules 𝜋𝜋 ∈ 𝐻𝐻: 𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

• Training

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

�𝜋𝜋 ≔ argmin𝜋𝜋∈𝐻𝐻�
𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

𝜋𝜋0(𝑌𝑌|𝑥𝑥) 𝜋𝜋1(𝑌𝑌|𝑥𝑥) 𝜋𝜋0(𝑌𝑌|𝑥𝑥) 𝜋𝜋237(𝑌𝑌|𝑥𝑥)



Generalization Error Bound for BLBF
• Theorem [Generalization Error Bound]

– For any hypothesis space 𝐻𝐻 with capacity 𝐶𝐶, and for all 
𝜋𝜋 ∈ 𝐻𝐻 with probability 1 − 𝜂𝜂

�𝑅𝑅 𝜋𝜋 = �𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛 𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝑝𝑝𝑖𝑖

𝛿𝛿𝑖𝑖

�𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 = �𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖
𝑝𝑝𝑖𝑖

𝛿𝛿𝑖𝑖

 Bound accounts for the fact that variance of risk 
estimator can vary greatly between different  𝜋𝜋 ∈ H

R 𝜋𝜋 ≤ �𝑅𝑅 𝜋𝜋 + 𝑂𝑂 �𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝑂𝑂(𝐶𝐶)

[Swaminathan & Joachims, 2015]

Unbiased 
Estimator

Variance 
Control

Capacity 
Control



Counterfactual Risk Minimization
• Theorem [Generalization Error Bound]

 Constructive principle for designing learning algorithms

[Swaminathan & Joachims, 2015]

R 𝜋𝜋 ≤ �𝑅𝑅 𝜋𝜋 + 𝑂𝑂 �𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝑂𝑂(𝐶𝐶)

𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐 = argmin
𝜋𝜋∈𝐻𝐻𝑖𝑖

�𝑅𝑅 𝜋𝜋 + 𝜆𝜆1 �𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝜆𝜆2𝐶𝐶(𝐻𝐻𝑖𝑖)

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛�

𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 �𝑉𝑉𝑀𝑀𝑉𝑉(𝜋𝜋) =

1
𝑛𝑛�

𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

2

− �𝑅𝑅 𝜋𝜋 2



Outline of Talk
• Batch Learning from Bandit Feedback (BLBF)

𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛
 Find new policy 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

• Learning Principle for BLBF
– Hypothesis Space, Risk, Empirical Risk, and Overfitting
– Learning Principle: Counterfactual Risk Minimization

• Learning Algorithms for BLBF
– POEM: Bandit training of CRF for Structured Output 

Prediction
– BanditNet: Bandit training of Deep Networks

• Application: Display Advertising



POEM Hypothesis Space

Hypothesis Space: Stochastic policies

𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 =
1

𝑍𝑍(𝑥𝑥)
exp 𝑤𝑤 ⋅ Φ 𝑥𝑥, 𝑦𝑦

with
– 𝑤𝑤: parameter vector to be learned
– Φ 𝑥𝑥, 𝑦𝑦 : joint feature map between input and output
– Z(x): partition function

Note: same form as CRF or Structural SVM



POEM Learning Method
• Policy Optimizer for Exponential Models (POEM)

– Data: 𝑆𝑆 = 𝑥𝑥1, 𝑦𝑦1,𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛,𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Hypothesis space: 𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 = exp 𝑤𝑤 ⋅ 𝜙𝜙 𝑥𝑥, 𝑦𝑦 /𝑍𝑍(𝑥𝑥)
– Training objective: Let 𝑧𝑧𝑖𝑖(𝑤𝑤) = 𝜋𝜋𝑤𝑤 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 𝛿𝛿𝑖𝑖/𝑝𝑝𝑖𝑖

[Swaminathan & Joachims, 2015]

Unbiased Risk 
Estimator

Variance 
Control

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖(𝑤𝑤) + 𝜆𝜆1
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 𝑤𝑤 2 −
1
𝑛𝑛�
𝑖𝑖=1

𝑛𝑛

𝑧𝑧𝑖𝑖 𝑤𝑤
2

+ 𝜆𝜆2 𝑤𝑤 2

Capacity 
Control



POEM Experiment
Multi-Label Text Classification

• Data: 𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1,𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛 ,𝛿𝛿𝑛𝑛 ,𝑝𝑝𝑛𝑛
– 𝑥𝑥: Text document
– 𝑦𝑦: Predicted label vector
– 𝛿𝛿: number of incorrect labels in y
– 𝑝𝑝𝑛𝑛: propensity under logging policy 𝜋𝜋0

• Results: Reuters LYRL RCV1 (top 4 categories)
– POEM with H isomorphic to CRF with one weight vector per label

0.28
0.33
0.38
0.43
0.48
0.53
0.58

1 2 4 8 16 32 64 128

Ha
m

m
in

g 
Lo

ss

|S| = Quantity (in epochs) of Training Interactions from pi0

f0 (log data)
CoStA
CRF(supervised)
POEM

[Swaminathan & Joachims, 2015]



Does Variance Regularization
Improve Generalization?

• IPS:

• POEM:   

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅 𝑤𝑤 + 𝜆𝜆2 𝑤𝑤 2

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅 𝑤𝑤 + 𝜆𝜆1 �𝑉𝑉𝑀𝑀𝑉𝑉 𝑤𝑤 /𝑛𝑛 + 𝜆𝜆2 𝑤𝑤 2

Hamming Loss Scene Yeast TMC LYRL
𝜋𝜋0 1.543 5.547 3.445 1.463

IPS 1.519 4.614 3.023 1.118
POEM 1.143 4.517 2.522 0.996

# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4



Counterfactual Risk Minimization
• Theorem [Generalization Error Bound]

 Constructive principle for designing learning algorithms

[Swaminathan & Joachims, 2015]

R 𝜋𝜋 ≤ �𝑅𝑅 𝜋𝜋 + 𝑂𝑂 �𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝑂𝑂(𝐶𝐶)

𝜋𝜋𝑐𝑐𝑐𝑐𝑐𝑐 = argmin
𝜋𝜋∈𝐻𝐻𝑖𝑖

�𝑅𝑅 𝜋𝜋 + 𝜆𝜆1 �𝑉𝑉𝑀𝑀𝑉𝑉 𝜋𝜋 /𝑛𝑛 + 𝜆𝜆2𝐶𝐶(𝐻𝐻𝑖𝑖)

�𝑅𝑅 𝜋𝜋 =
1
𝑛𝑛�

𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖 �𝑉𝑉𝑀𝑀𝑉𝑉(𝜋𝜋) =

1
𝑛𝑛�

𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

2

− �𝑅𝑅 𝜋𝜋 2



Problem: Propensity Overfitting

• Example
– Training sample with losses:

– Which 𝜋𝜋 𝑦𝑦 𝑥𝑥 minimize IPS? 

𝑅𝑅 𝜋𝜋 = min
𝜋𝜋∈𝐻𝐻

1
𝑛𝑛�

𝑖𝑖

𝑛𝑛
𝜋𝜋 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖)

𝑝𝑝𝑖𝑖
𝛿𝛿𝑖𝑖

 Avoid the training observations!
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Control Variate
• Idea: Inform estimate when expectation of correlated 

random variable is known.
– Estimator:

– Correlated RV with known expectation: 

𝑆𝑆 𝜋𝜋 =
1
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Alternative Risk Estimator: Self-normalized estimator
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NormPOEM Learning Method
• Method:

– Data: 𝑆𝑆 = 𝑥𝑥1, 𝑦𝑦1,𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛,𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Hypothesis space: 𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 = exp 𝑤𝑤 ⋅ 𝜙𝜙 𝑥𝑥, 𝑦𝑦 /𝑍𝑍(𝑥𝑥)
– Training objective: Let 𝑧𝑧𝑖𝑖(𝑤𝑤) = 𝜋𝜋𝑤𝑤 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 𝛿𝛿𝑖𝑖/𝑝𝑝𝑖𝑖

[Swaminathan & Joachims, 2015]

Self-Normalized 
Risk Estimator

Variance 
Control

𝑤𝑤 = argmin
𝑤𝑤∈ℜ𝑁𝑁

�𝑅𝑅𝑆𝑆𝑆𝑆(𝑤𝑤) + 𝜆𝜆1 �𝑉𝑉𝑀𝑀𝑉𝑉 �𝑅𝑅𝑆𝑆𝑆𝑆(𝑤𝑤) + 𝜆𝜆2 𝑤𝑤 2
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How well does NormPOEM 
generalize?

Hamming 
Loss

Scene Yeast TMC LYRL

𝜋𝜋0 1.511 5.577 3.442 1.459

POEM 1.200 4.520 2.152 0.914
NormPOEM 1.045 3.876 2.072 0.799

# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4



Ad Placement: Data and Setup
• Criteo Ad-Placement

– Task: 
• For user 𝑥𝑥, pick product 𝑦𝑦 from 

candidate set
• Size of candidate set: ~10 products 

– Performance measure 𝛿𝛿: 
• click through rate 

– Data: 
• 21M examples from stochastic production system with logged 

propensities
• Feature vector 𝜙𝜙 𝑥𝑥, 𝑦𝑦 : about 70k binary features

– Experiment Setup:
• Train/Validation/Test split
• Pick hyperparameters on Validation Set via IPS estimator
• Use IPS estimator to estimate true click through rate using test set

– Dataset publicly available [Lefortier et al., 2016]



Ad Placement: Results

• Criteo Ad-Placement
– Task: pick product 

from candidate set

– Performance measure: click through rate
– Data: stochastic logging with production system

Test-Set Click Rate (∗ 104) Est 
Random 44.7 ± 2.1
𝜋𝜋0 53.5 ± 0.2

Click-Predictor 48.4 ± 3.2
IPS 54.1 ± 2.5
DoublyRobust 57.4 ± 14.0
NormPOEM 58.0 ± 3.4



Outline of Talk
• Batch Learning from Bandit Feedback (BLBF)

𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1 , … , 𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛, 𝛿𝛿𝑛𝑛
 Find new policy 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿

• Learning Principle for BLBF
– Hypothesis Space, Risk, Empirical Risk, and Overfitting
– Learning Principle: Counterfactual Risk Minimization

• Learning Algorithms for BLBF
– POEM: Bandit training of CRF for Structured Output 

Prediction
– BanditNet: Bandit training of Deep Networks

• Application: Display Advertising



BanditNet: Hypothesis Space

Hypothesis Space: Stochastic policies

𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 =
1

𝑍𝑍(𝑥𝑥)
exp 𝐷𝐷𝑀𝑀𝑀𝑀𝑝𝑝𝐷𝐷𝑀𝑀𝐷𝐷(𝑥𝑥, 𝑦𝑦|𝑤𝑤)

with
– 𝑤𝑤: parameter tensors to be learned
– Z(x): partition function

Note: same form as Deep Net with softmax output



BanditNet: Learning Method
• Method:

– Data: 𝑆𝑆 = 𝑥𝑥1, 𝑦𝑦1,𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛,𝛿𝛿𝑛𝑛, 𝑝𝑝𝑛𝑛
– Hypotheses: 𝜋𝜋𝑤𝑤 𝑦𝑦 𝑥𝑥 = exp 𝐷𝐷𝑀𝑀𝑀𝑀𝑝𝑝𝐷𝐷𝑀𝑀𝐷𝐷 𝑥𝑥|𝑤𝑤 /𝑍𝑍(𝑥𝑥)
– Training objective: Let 𝑧𝑧𝑖𝑖(𝑤𝑤) = 𝜋𝜋𝑤𝑤 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 𝛿𝛿𝑖𝑖/𝑝𝑝𝑖𝑖
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Ad Placement: BanditNet Results
• Criteo Ad-Placement

– Task: pick product 
from candidate set

– BanditNet: 2-Layer, RELU, 100 Hidden Units
– Pick NumEpochs and LagrangeMultiplier on 

validation set, no other parameter tuning yet

Test-Set Click Rate (∗ 104) Est 
Random 44.7 ± 2.1
𝜋𝜋0 53.5 ± 0.2

Click-Predictor 48.4 ± 3.2
IPS 54.1 ± 2.5
DoublyRobust 57.4 ± 14.0
NormPOEM 58.0 ± 3.4
BanditNet 58.8



Conclusions and Future
• Batch Learning from Bandit Feedback

– Feedback for only presented action 
𝑆𝑆 = 𝑥𝑥1,𝑦𝑦1, 𝛿𝛿1,𝑝𝑝1 , … , 𝑥𝑥𝑛𝑛, 𝑦𝑦𝑛𝑛 , 𝛿𝛿𝑛𝑛,𝑝𝑝𝑛𝑛

– Goal: Find new system 𝜋𝜋 that selects 𝑦𝑦 with better 𝛿𝛿
• Learning Principle for BLBF

– Counterfactual Risk Minimization
– Self-Normalized Risk Estimator

• Learning Methods for BLBF
– POEM: [Swaminathan & Joachims, 2015c]
– NormPOEM: [Swaminathan & Joachims, 2015c]
– BanditNet: [Swaminathan, Grotov, DeRijke, Joachims, forthcoming]

• Future Research
– Other learning algorithms? 
– Other risk estimators? See poster tonight [Agarwal & Joachims, 2017] 
– How to handle new bias-variance trade-off in risk estimators?

• Software, Papers, SIGIR 2016 Tutorial, Criteo Data: www.joachims.org

http://www.joachims.org/
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