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Interactive Systems

e Examples
— Ad Placement
— Search engines ‘
— Entertainment media
— E-commerce
— Smart homes

e Log Files
— Measure and optimize

performance

— Gathering and maintenance
of knowledge

— Personalization

sanaR

the gocd news o



Historic Interaction Logs:
Ad Placement

* Context x:
— User and page -
* Action y:
— Ad that is placed 33
e Feedback 6(x,y): T eurie
— Click / no-click |

Frozen Let it Go - In Real Life

orking wit!




Istoric Interaction Logs:
News Recommender

e Context x:

= secTions  (Q SEARCH

— User

Countries
have borders.

Y A Ct i O n y : Stories dom'l..

Ehe New Pork Times

— Portfolio of newsarticles

Amtrak Crash : R The Opinion
I"Hm l'nates a8 : i ot, Deplorable Death

* Feedback 6(x,y): oo

— Reading time in minutes

have borders.
Stories don’t.

Mayor to Announce
Plan to Revamp New
York Public Housing

‘ace Murder-Related Charges in Waco M

Critics Hear E.P.A.’s  Jon Hamm on the ‘Mad Men' Series Finale




Istoric Interaction Logs:
Search Engine

e Context x:
— Query |
* Actiony:
— Ranking s
* Feedback 6(x,y): -
— Clicks on SERP '

in Edinburgh

on and




Batch Learning from Bandit Feedback

e Data

S = ((xl, V1, 01), s (X, Y 5n))

CT, b, S>>

- “Bandit” Feedback

* Properties
— Contexts x; drawn i.i.d. from unknown P(X)
— Actions y; selected by existing system my: X - Y
— Feedback §; drawn i.i.d. from unknown P(6;|x;, y;)

e Goal of Learning

— Find new system m that selects y with better 6
[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]



Learning Settings

Online Learning Perceptron
Winnow

Etc.

Batch Learning SVM
Random Forests
Etc.




Outline of Talk

Batch Learning from Bandit Feedback (BLBF)

S = ((xl) V1, 61)) Ll (xn» Vn 571))
—> Find new policy i that selects y with better §

Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Learning Principle: Counterfactual Risk Minimization

Learning Algorithms for BLBF

— POEM: Bandit training of CRF for Structured Output
Prediction

— BanditNet: Bandit training of Deep Networks
Application: Display Advertising



Hypothesis Space

Definition [Stochastic Hypothesis / Policy]:

Given context x, hypothesis/policy m selects action
y with probability m(y|x)

Note: stochastic prediction rules D deterministic
prediction rules



Risk

Definition [Expected Loss (i.e. Risk)]:
The expected loss / risk R(1) of policy m is

R(m) = f j 5(x, YIT(YIOP () dx dy




On-Policy Risk Estimation

Given S = ((x1,¥1,61), -, (n, Yn, ) ) collected

under 1,
n
~ 1
R(my) = 52 d;
i=1
- A/B Testing

Field ry: Draw x ~ P(x), predict y ~ ;1 (Y|x ), get 6(x,y)
Field m,: Draw x ~ P(x), predict y ~ m,(Y|x ), get 6 (x, y)

Field r)y,: Draw x ~ P(x), predict y ~ m g (Y|x), get 5(x, y)



Evaluating Online Metrics Offline

e Online: On-policy A/B Test

Draw S; Draw S, Draw S5 Draw S, Draw Ss Draw S Draw S,

from my fromm, fromm, fromm, frommg from g from m,

> ﬁ(ﬂ1) > U(ﬂz) -2 U(T[3) > ﬁ(Tt4) > ﬁ(”s) > ﬁ(ﬂ6) 2 ﬁ(”7)
e Offline: Off-policy Counterfactual Estimates

Draw S from




Approach 1: Reward Predictor

e Data: ke
S — ((xl; yl' 61): ery (xnl y‘ru 571))
e |dea:
— Use data from 1, to learn
reward predlctor 5(x,y)
e Learnd:x Xy > R
1.Represent via features W(x, y)

2.Learn regression based on
W(x,y) from S collected under
Ttg

3.Predict §(x,y") fory' = m(x)
of new policy




Approach 2:

Off-Policy Risk Evaluation

Given S = ((xl, V1,01), oo, (X0, Vi, 5n)) collected
under g,

e nlx)
R(m) = Ezl O 7To()’t|xi)

Propensity
Di

- Unbiased estimate of risk, if propensity nonzero
everywhere (where it matters).

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009.]



Partial Information
Empirical Risk Minimization

* Training -
~ . z m(y;lx;)
7T == argmingcy O;
l. Pi

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]



Generalization Error Bound for BLBF

e Theorem [Generalization Error Bound]

— For any hypothesis space H with capacity C, and for all
1 € H with probability 1 —n

R(m) < R(m)+0 (\/V/cfr(n)/n) + 0(C)

Unbiased
Estimator

R(m) = Mean (n(y;ixi) 5i)

Var(m) = Var m(Yilxi) 5;
D;

Variance Capacity

Control Control

- Bound accounts for the fact that variance of risk
estimator can vary greatly between different m € H

[Swaminathan & Joachims, 2015]



Counterfactual Risk Minimization

e Theorem [Generalization Error Bound]

R(m) < R(m)+0 (\/V/cfr(n)/n) + 0(C)

— Constructive principle for designing learning algorithms

"™ = argmin R () + 14 ( \/ Var(r) /n) + A,C(H;)

TEH;

5 1 (il - g ’
R(r) = ;Z n(ypl_x ) 5, Var(m) = %z (”(yl;lx‘) 5i> — R(m)?

L i

[Swaminathan & Joachims, 2015]




Outline of Talk

Batch Learning from Bandit Feedback (BLBF)

S = ((xl) V1, 61)) Ll (xn» Vn 571))
—> Find new policy i that selects y with better §

Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Learning Principle: Counterfactual Risk Minimization

Learning Algorithms for BLBF

— POEM: Bandit training of CRF for Structured Output
Prediction

— BanditNet: Bandit training of Deep Networks
Application: Display Advertising



POEM Hypothesis Space

Hypothesis Space: Stochastic policies

exp(w - O (x, y))

1
Ty, (y]x) = 7 (%)
with

— w: parameter vector to be learned

— ®(x,y): joint feature map between input and output

— Z(x): partition function

Note: same form as CRF or Structural SVM



POEM Learning Method

e Policy Optimizer for Exponential Models (POEM)

— Data: § = ((xl; V1, 51; P1)» XN (Xn, Yn 5n: pn))

— Hypothesis space: m,, (y]|x) = exp(w - P (x, y))/Z(x)
— Training objective: Let z;(w) = m,, (v;|x;)d; /p;

Variance
Control

[Swaminathan & Joachims, 2015]

n
|
w = argmin EZ zi(w) + A4

weRN

Unbiased Risk
Estimator

Capacity
Control




POEM Experiment
Multi-Label Text Classification

 Data: S — ((xl; }’1; 61) pl)l e (xn» Yn» 57’1' pn))
— x: Text document

— v: Predicted label vector
— 0: number of incorrect labels iny
— Py propensity under logging policy
e Results: Reuters LYRL RCV1 (top 4 categories)

— POEM with H isomorphic to CRF with one weight vector per label
0.58

v 0.53 \ fO (log data) —
3 0.48 w=== POEM I
no o

E o \ CRF(supervised)

£ 0.38 \

©
I 0.33
0.28

1 2 4 8 16 32 64 128
|S| = Quantity (in epochs) of Training Interactions from piO
[Swaminathan & Joachims, 2015]



Does Variance Regularization
Improve Generalization?

e |PS: w = argmin :E(W)+ﬂz||w||2]

weRN

—

e POEM: w = argmin /R\(W)+/11 <\[Var(w)/n>+/12||W||2]

weRN

I 1.543 5.547 3.445 1.463

1.519 4.614 3.023 1.118
POEM 1.143 4.517 2.522 0.996

# examples 4*1211 4*1500 4*21519 4*23149
# features 294 103 30438 47236
# labels 6 14 22 4




Counterfactual Risk Minimization

e Theorem [Generalization Error Bound]

R(m) < R(m)+0 (\/V/cfr(n)/n) + 0(C)

— Constructive principle for designing learning algorithms

"™ = argmin R () + 14 ( \/ Var(r) /n) + A,C(H;)

TEH;

5 1 (il - g ’
R(r) = ;Z n(ypl_x ) 5, Var(m) = %z (”(yl;lx‘) 5i> — R(m)?

L i

[Swaminathan & Joachims, 2015]




Problem: Propensity Overfitting

e Example
— Training sample with losses:

— Which m(y|x) minimize IPS? Y
n
1 T (y;|x;
RO :min_z: (ilx;) 5,
TEH N L Di

l
— Avoid the training observations!



Control Variate

e |dea: Inform estimate when expectation of correlated
random variable is known.

— Estimator: (v, Ix)
R(r )——Z )

[
— Correlated RV with known expectation:

S0 = ‘Z n(y;[xi)

E[S(n)] ZJ ﬂ(yllxa o (Vilx;))P(x)dy;dx; = 1

nO(yllxl)
- Alternative RISk Estimator: Self-normalized estimator
N R(m)
RN(1) = =



NormPOEM Learning Method

e Method:

— Data: § = ((xl; V1, 51; P1)» XN (Xn, Yn 5n: pn))

— Hypothesis space: m,, (y]|x) = exp(w - P (x, y))/Z(x)
— Training objective: Let z;(w) = m,, (v;|x;)d; /p;

w = argmin
weRN

RSN (w) + Al\/ Var(RSN(w)) + 2| Iwl|”

Variance
Control

Self-Normalized
Risk Estimator

Capacity
Control

[Swaminathan & Joachims, 2015]



How well does NormPOEM
generalize?

[ 3.442 1.459

POEM 2.152 0.914
NormPOEM 2.072 0.799

# examples 4*21519 4*23149
# features 30438 47236
# labels 22 4




Ad Placement: Data and Setup

e Criteo Ad-Placement —— N .
Top-Loading Washer -
— Task: White
* For user x, pick product y from $59999

candidate set
e Size of candidate set: ~10 products

" Ta
— Performance measure 9: EE;B%E%BLE EREI ERY
e click through rate sl e

— Data:
e 21M examples from stochastic production system with logged
propensities
* Feature vector ¢p(x, y): about 70k binary features
— Experiment Setup:
e Train/Validation/Test split
e Pick hyperparameters on Validation Set via IPS estimator
* Use IPS estimator to estimate true click through rate using test set

— Dataset publicly available [Lefortier et al., 2016]



Ad Placement: Results

e Criteo Ad-Placement

— Task: pick product 44.7+2.1
from candidate set 53.5+0.2

Click-Predictor 48.4 + 3.2

LG - 5.0 Cu. Ft. 8-Cycle

Top-Loading Washer -
White

IPS 54.1+25
$59999
DoublyRobust 57.4+14.0
T NormPOEM 58.0+3.4
SERVICE. FREE

UNBEATABLE I , lIIvER
PRICE. aN Ewuu_':-p AP
PURCHASES TOTALI

€217 Best Buy

— Performance measure: click through rate
— Data: stochastic logging with production system



Outline of Talk

Batch Learning from Bandit Feedback (BLBF)

S = ((xl) V1, 61)) Ll (xn» Vn 571))
—> Find new policy i that selects y with better §

Learning Principle for BLBF
— Hypothesis Space, Risk, Empirical Risk, and Overfitting
— Learning Principle: Counterfactual Risk Minimization

Learning Algorithms for BLBF

— POEM: Bandit training of CRF for Structured Output
Prediction

— BanditNet: Bandit training of Deep Networks
Application: Display Advertising



BanditNet: Hypothesis Space

Hypothesis Space: Stochastic policies

Ty (Y1x) = exp(DeepNet(x,y|w))

Z(x)
with
— w: parameter tensors to be learned
— Z(x): partition function

Note: same form as Deep Net with softmax output



BanditNet: Learning Method

e Method:

—Data: § = ((xl; Y1, 51; P1)» =) (Xn, Yn 5n: pn))
— Hypotheses: m,, (y|x) = exp(DeepNet(x|w))/Z(x)
— Training objective: Let z;(w) = m,, (v;|x;)d; /p;

RSN (w) + Al\/ Var(RSN(w)) + 2| Iwl|”

w = argmin
weRN

Self-Normalized
Risk Estimator

Variance Capacity
Control Control




Ad Placement: BanditNet Results

* Criteo Ad-Placement [ 447 + 9.1

— Task: pick product T, 53.5 + 0.2

from candidate set
Click-Predictor 48.4 + 3.2

IPS 541+25
DoublyRobust 57.4+14.0
NormPOEM 58.0+x3.4

LG - 5.0 Cu. Ft. 8-Cycle
Top-Loading Washer -
White

$59999

SERVICE. FREE -
oweies  DELIVERY BanditNet 58.8

ON ALL C
€2017 Best Buy PURCHASES TOTALING 5399 & L0

— BanditNet: 2-Layer, RELU, 100 Hidden Units

— Pick NumEpochs and LagrangeMultiplier on
validation set, no other parameter tuning yet




Conclusions and Future

Batch Learning from Bandit Feedback
— Feedback for only presented action
S = ((xl; Y1, 51' pl)r ey (Xn, Yn 671' pn))
— Goal: Find new system m that selects y with better 6
Learning Principle for BLBF
— Counterfactual Risk Minimization
— Self-Normalized Risk Estimator
Learning Methods for BLBF
— POEM: [Swaminathan & Joachims, 2015c]
— NormPOEM: [Swaminathan & Joachims, 2015c]
— BanditNet: [Swaminathan, Grotov, DeRijke, Joachims, forthcoming]
Future Research
— Other learning algorithms?
— Other risk estimators? See poster tonight [Agarwal & Joachims, 2017]
— How to handle new bias-variance trade-off in risk estimators?

Software, Papers, SIGIR 2016 Tutorial, Criteo Data: www.joachims.org



http://www.joachims.org/
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