Ranking and Calibrating Click-Attributed Purchases in
Performance Display Advertising

Sougata Chaudhuri, Abraham Bagherjeiran (*), and James Liu
A9 Advertising Science, A9.com (An Amazon Subsidiary)

August 14, 2017




Conversion Funnel

Click “

Impression

Ad Requests
1,000,000

Advertising is a lossy business.
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* Direct intent

« Multiple ads per slot

» Single goal conversion
» Advertiser-specific

Funnel: Impression, click, conversion




Performance Display Advertising
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* Direct intent

* Multiple ads per slot

« Single sale

« Sales for merchant only

“Purchase funnel: Impression, click, purchase




Amazon Contextual Ads
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Amazon Contextual Ads Problem
Some publisher Purchase
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Preference: Purchases first, but clicks are good, too.




Problem Statement

* Input
* User r = {11 (user, pub), Y2 (user, pub, ad), ¥3(ad)} € R?,
« Publisher page Extracted interaction features
 List of ads S

* Output Single rank{r?g(fuzction score
« 5-10 ads, ranked by a score

* Objective

« Maximize total expected value of purchase halo

How should we setup the learning problem?




Related Work: Modeling with Preferences

Binary classification (with weights)

« Purchase target only or click target only
Compound models

« P(Click) * P(Conversion)

Pair-wise comparisons

« Complex to evaluate

Value Regression
 How to capture value of clicks




Binary Classification
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Model Score Model Score

Binary assumes that P and C are the same.




Binary Classification Only

* One-Step
* | 2 C: Clicks v. Impressions
* | 2> P: Purchases v. Impressions
- Evaluation
« | > C: Great at predicting clicks, 17% worse at predicting purchases
« | > P: Great at predicting purchases, 23% worse at predicting clicks

Does | = P predict the “good clicks” vs “bad”?




Why Binary Classification Isn’t Enough

» Good clicks
* |n online tests, observed click rate went down
« Overall post-click conversion rate also went down
* Overall conversion rate went down
* Meaning
* Nested relationship appears to be present




Ordinal Regression

* K nested classes
* Impression
« Click
* Purchase
« Jointly train parallel linear models separating all classes

All clicks are equal, but some are better than others




Ordinal Classification

« Single score to separate
multiple classes
Preserves preferences

» Easy to evaluate

P(K|Score)

Model Score

Binary assumes that C and P are dependent.




Binary v. Ordinal

« Comparison
* | 2 C: Clicks v. Impressions
* | 2> P: Purchases v. Impressions
| > C - P: Ordinal

« Evaluation
« | > C: Great at predicting clicks, 17% worse at predicting purchases
« | > P: Great at predicting purchases, 23% worse at predicting clicks
« | > C > P: 5% worse at predicting clicks, 1% worse at purchases

Ordlinal is a good compromise between classes
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Complications

* Training ordinal models
« Extension to binary classification for linear models
* Increases data training size
* Increase efficiency of batch trainer with disk cache
» Data Preparation
» Weigh classes careful to adjust for imbalance
» Calibration
« Evaluated as a single model, score isn’t calibrated

Most of these complications are not too bad




Calibration

« Why is this a problem?
« Sigmoid isn’t good at small probability values (10-6)
« Other link functions possible

* Model and distribution stability
« Data fluctuations, cold start

« Training / Test distribution differences Despite what you’ve
heard, growing amount of

« Sometimes you need a probability score / adl aLetons are closer 1o
« First price auction: P(Purchase) * Sales 19 price than 2 price.

« Small errors in price = Big problems




Calibration isn’t solved

* Few solutions everyone uses
* PAV, Isotonic, Platt
* How do you know it’s working?
* Log loss: _Tl Z?:l [yz log(ﬁi)—l—(l—yi) log(l—ﬁi)]
« What’s the ground truth? What if there is only a few events?
« Highly sensitive to binning strategies
« 3% Log loss improvement by changing binning




Summary and Extensions

« Summary

« Ordinal regression is a good strategy for ranking with several objectives
« Additional event types for the full funnel

« Halo purchase

» Exact purchase

* Viewable impressions

« Ad interactions




Appendix




Compound Models

* Multiple two models
« P(Click) * P(Conversion | Click)
» Benefits
« Use different features or datasets for each model
* Problems
« How to avoid compounding errors when ranking on the joint score?

« When multiple ads are present, does not provide the right penalty for
non-converting clicks

« Unclear for margin-maximization models.

Very popular method but not a good fit for ranking
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Binary Classification and Ordinal Regression

Models.
Ordinal Ranking Model: A functifn) for an instaneeR?
predicts a clage< {1:2,--- K} , with classes rahked as<= K

. It is a natural fit for modeling purchase funnel by producing
classes for an ad as follows:

acI\C — y=1a€C\P = y=2 a€P = y=3




The ordinal ranking model can actually be reduced to a
binary classification problem and trained using well-tuned
binary classification training scripts .

1. Ranking and Calibrating Click-Attributed Purchases in Performance Display Advertising-
Chaudhuri et al., AdKdd and TargetAd, 2017.




The scores induced by ranking model is then calibrated to predict probability of
purchases.

. Empirical probability of purchases is estimated from validation data, by a non-
uniform binning strategy, which are then made continuous by fitting traditional
regression based calibration functions like isotonic, quadratic and Platt-scaled.







I —-C ° -17.2 % (1.1) -5.6 % (0.5)

J — P 27%61 0 -0.85 % (0.04)

Relative performance of 2 binary classification models (f_ C and f_P) and ordinal regression model
(f_O), in terms of AUC metric, averaged over 7 days (numbers in bracket show std. dev.). All
numbers have been expressed as % .
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l n . R
log-loss = -;E[)’f log(3;)+(1-y,)log(1-3,)]
i=1
Binning Isotonic Quadratic | Platt-Scaled
Uniform 0 0] 0)

Non-uniform | 3.45 (2.55) 2.95 (1.94) 3.01 (1.75)

Log-loss improvement for each calibration function, in conjunction
with proposed non-uniform binning, over uniform binning, for CVI
prediction. The results have been averaged over 5 days (numbers in
bracket show std.dev).







