

MM2RTB: Bringing Multimedia Metrics to Real-Time Bidding

Xiang Chen (<u>chxiang@comp.nus.edu.sg</u>) Bowei Chen (<u>bchen@lincoln.ac.uk</u>) Mohan Kankanhalli (<u>mohan@comp.nus.edu.sg</u>)

Problem description

- Single-slot scenario: [SIGIR 2017]
- Multi-slot scenario : [AdKDD & TargetAd 2017]

What is expected in this paper?

- Why do we need "multimedia metrics"? To measure the benefits of stakeholders
- What are the "multimedia metrics"?

Contextual relevance

Visual saliency

Image memorability

How do we integrate the "multimedia metrics"?
Optimize the trade-offs among all stakeholders

How does RTB work?

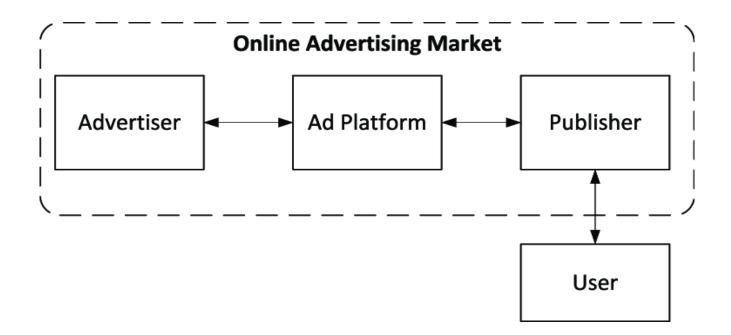


Fig 1: A simplified online advertising serving process [1]

[1] Estrada-Jiménez, José, et al. "Online advertising: Analysis of privacy threats and protection approaches." *Computer Communications* 100 (2017): 32-51.

What are the limitations?

Irrelevant ads

Only 2.8% of participants thought that ads on website were relevant. (Source: Infolinks and bannerblindness.org)

Ads overlook

Display ad viewability rates did not budge between 2013 and 2014. (Source: comScore)

• Competitive ads

Competitive ads changes the relationship between ad repetition and consumer memory [1].

Ineffective ad delivery

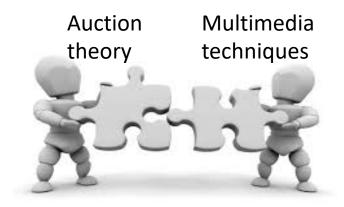
"Half the money I spend on advertising is wasted; the trouble is I don't know which half." ---- John Wanamaker (1838-1922)

[1] Burke, Raymond R., and Thomas K. Srull. "Competitive interference and consumer memory for advertising." *Journal of consumer research* 15.1 (1988): 55-68.

Existing works

Economics

- GSP auction model
- VCG auction model
- CTR forecasting
- **Guaranteed delivery**
- ...



Online

advertising

Psychology

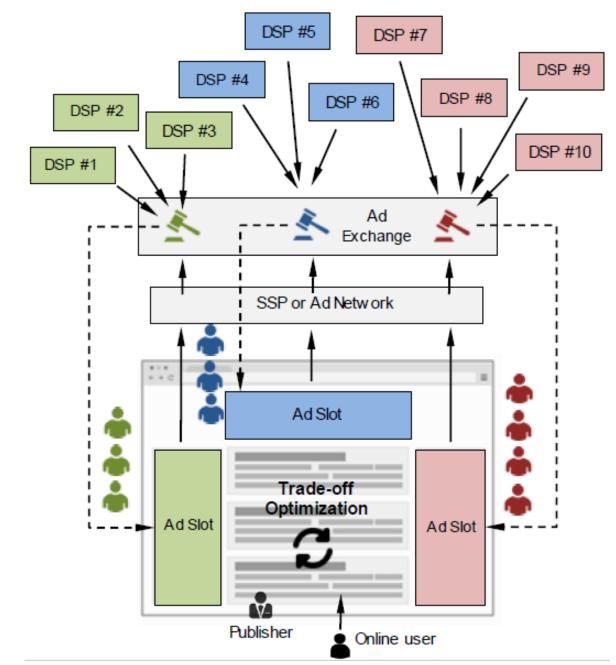
User behavior

Multimedia

- Contextual-advertising
- Target-advertising

...

Proposed framework



Proposed framework

• Main idea:

Publisher: the best ad should generate the best money; Advertiser and user: the best ad should fit the context well.

• Objective function:

Maximization of the joint benefits from all ad slots.

• Constraints:

(1) all ad slots have to be occupied by only one ad;(2) ad slot j must be occupied by the ad who bids for ad slot j;(3) no competitive ad-pair occurs;

Calculate benefits: metric variables

- Publisher's revenue
- Advertiser's utility
- Ad Click-through-rate (CTR)
- > Ad image memorability (MemNet [1])
- Contextual relevance (TF-IDF[2])
- Visual saliency (MBS [3])

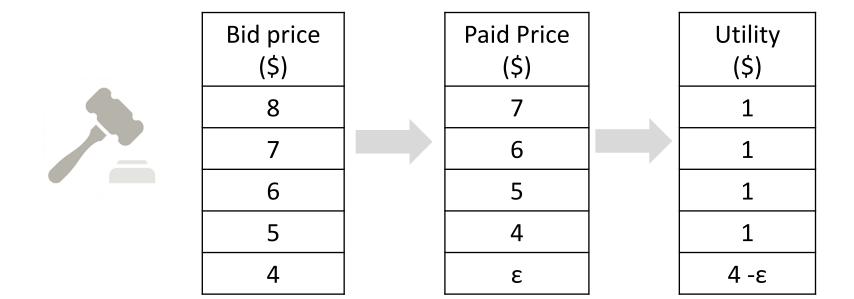
[1] Khosla, Aditya, et al. "Understanding and predicting image memorability at a large scale." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.

[2] MacKay, David JC. *Information theory, inference and learning algorithms*. Cambridge university press, 2003.

[3] Zhang, Jianming, et al. "Minimum barrier salient object detection at 80 fps." *Proceedings of the IEEE International Conference on Computer Vision*. 2015.

Calculate benefits: economics

The input is the bid prices in each auction



Utility = Value – Paid price

Calculate benefit

• Variables:

Revenue Utility Memorability

CTR Relevance Saliency

Variables for re-ranking (after normalization)							
Ad id	x_1	x_2	x_3	x_4	x_5	x ₆	
693	0.1999	0.0000	0.7164	0.9387	0.1699	0.7286	
1319	0.0400	0.0000	0.8277	0.4077	0.2187	0.1639	
1799	0.0160	0.0264	0.5567	0.3353	0.3698	0.8360	
1847	0.0000	0.0176	0.8971	0.3698	0.2671	0.1025	
2725	0.0000	0.0000	0.9244	0.0712	0.2617	0.8763	
3010	0.1999	0.1101	0.9139	0.2596	0.2734	0.1059	
3402	0.1441	0.0614	0.8950	0.7269	0.2361	0.7804	
4194	0.0400	0.0000	1.0000	0.0720	0.2163	0.2629	
5552	0.0400	0.1148	0.5420	0.2836	0.3405	0.8823	

• Benefits: linear combination

Determine optimal weights

• Let the Publisher decide the acceptable changes of variables:

$$\gamma^* = \underset{\gamma}{\operatorname{arg\,max}} \sum_{j=1}^n \gamma^\top x_{i^*}^{\{j\}}, \tag{3}$$

s.t.
$$0 \le \gamma_k \le 1, k = 1, \cdots, 6$$
, (4)

$$v^{\top} \mathbf{1} = 1,$$
 (5)

$$|\xi_1| \le |\theta_1|, \theta_1 \le 0,$$
 (6)

$$\xi_k \ge \theta_k, \theta_k \ge 0, k = 2, \cdots, 6,$$
 (7)

• The change of variable *k* is defined as:

$$\xi_{k} = \frac{\sum_{j=1}^{n} \left(x_{i^{*}}^{\{j\}}(k) - x_{i^{\neg}}^{\{j\}}(k) \right)}{\sum_{j=1}^{n} x_{i^{\neg}}^{\{j\}}(k)}, \quad k = 1, \cdots, 6.$$

Datasets

D	MSN	MSN	Yahoo	Yahoo	Website
Δ.	II	I	II	I	Crawler type
Ad	20 Jan 2017	20 Jan 2017	20 Jan 2017	20 Jan 2017	From
Ad at	30 Jan 2017	30 Jan 2017	30 Jan 2017	30 Jan 2017	То
Ν	Singapore	Singapore	Singapore	Singapore	Location
					# of webpages
	686	798	1,909	1,481	with 1 slot
	3,689	1,519	3510	1,978	with 2 slots
# of ac	146	3,633	4329	1,173	with 3 slots
	241	41	2,468	1,599	with ≥ 4 slots
# of use	9,466	14,899	31,951	15,836	# of total impressions
# of publ	163	160	631	692	of unique advertisers
-	99	96	431	475	# of total companies
# of adver					-
# of au					
# 0					

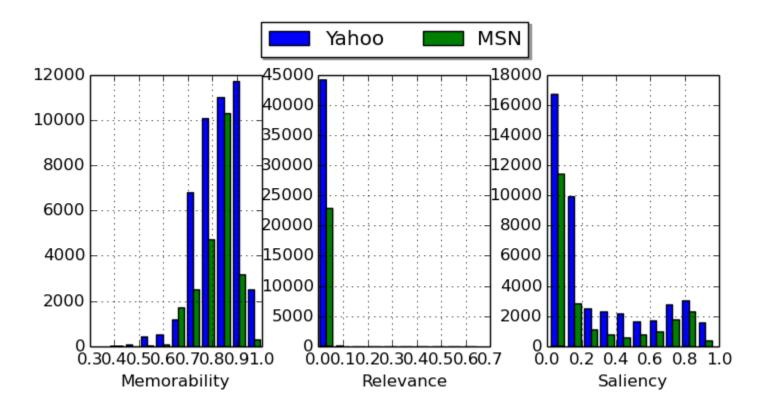
Table 1: Summary of multimedia dataset

Table 2: Summary of auction dataset

Dataset	SSP	Microsoft
Ad type	Display	Search
Ad auction	SP (RTB)	GSP
Market	UK	US
From	08 Jan 2013	26 Dec 2011
То	14 Feb 2013	03 Mar 2012
# of ad slots	31	4,376
# of user tags	NA	NA
# of publishers	NA	1
# of advertisers	374	NA
# of auctions	6,646,643	35,550
# of bids	33,043,127	NA
Bid quote	GBP/CPM	GBP/CPC
Bids of each auction	\checkmark	NA
Winning bid	\checkmark	\checkmark
Winning payment	\checkmark	\checkmark
Estimated CTR	NA	\checkmark

Empirical findings

• Distribution of multimedia variables



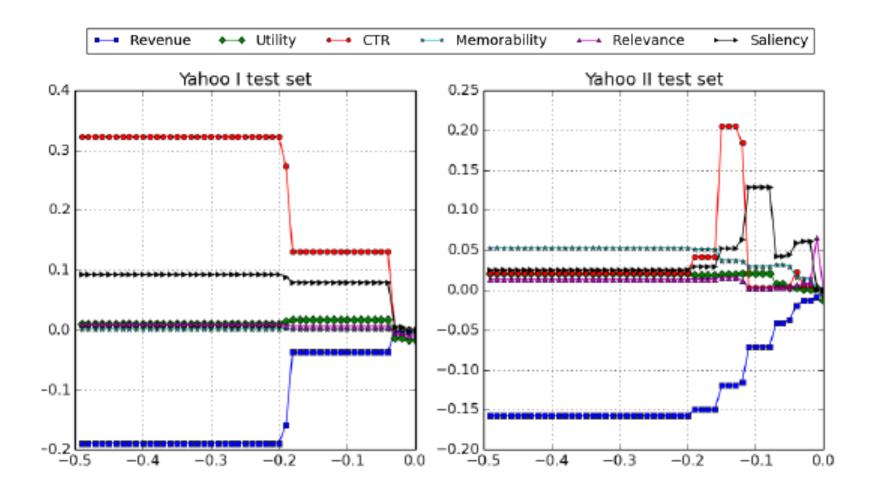
Empirical findings

• Statistic of competitive ad-pair

Ad dataset	Yahoo I	Yahoo II	MSN I	MSN II
# of total webpages	4,750	10,307	5,193	4,076
# of webpages with scenario 1)	786	2,169	3,669	1,480
# of webpages with scenario 2)	155	924	572	238
# of webpages with scenario 3)	412	836	158	82

- Scenario 1: two ads with the same landing webpage;
- Scenario 2: two different ads belongs to the same company; e.g., Apple IPhone 7 vs. Apple IPhone 6S
- Scenario 3: two competitive ads e.g., Apple IPhone 7 vs. Samsung Galaxy S7

Changes of variables



Changes of variables

What will happen if publisher (Yahoo) can accept 5% revenue loss?

- Loss of revenue is around 3.6%;
- Increase of CTR is around 13.1%;
- Increase of saliency is around 8.0%;
- Increase of utility is around 1.5%;
- Increase of relevance is around 0.5%;
- Increase of memorability is around 0.0%;

Conclusion and future work

- We proposed a computational framework to optimize trade-offs among all stakeholders. (SIGIR 2017)
- We have extended the framework from single-slot webpage to multi-slot webpage display advertising. (AdKDD & TargetAd, 2017)
- We will investigate how our framework will change and improve the advertising ecosystem in the long run. (future work)