Data-Driven Reserve Prices for Social Advertising Auctions at LinkedIn

Tingting Cui

Lijun Peng

David Pardoe

Relevance @ LinkedIn KDD 2017

Kun Liu

Deepak Kumar

Deepak Agarwal

Introduction

LinkedIn Sponsored Content (SC)

() Me	### More	Try Premi for free	um ?	
d to know r	now		0	
ut to Hit 20,0	000			
ob Numbers	Mean fo	r You		
e Repeal Cou Your Retiren	uld Affect nent	t Your		
king about this		vo rears		
alking about th				
TE ISTOMER HIPS.		FixDe	×	
erspectives	See m	ore		
gon r in the interne	t industry		+	
Holmes Amethyst			+	

- LinkedIn news feeds consist of both organic updates and sponsored content (SC)
- The number of SC LinkedIn can show to members is limited
- Different positions have different desirability
- Auctions: allocating positions

How Sponsored Content Auction Works

How Sponsored Content Auction Works

- What is reserve price
 - The minimum bid to enter auction
 - The minimum price to pay
- Why reserve price
 - Protect valuable inventory and optimize revenue
 - **Too high** advertisers are discouraged from participating in auctions, resulting in low sell-through rate and revenue
 - **Too low** poor price support in lack of competition

What & Why Reserve Price

Why Reserve Price for Sponsored Content

- Goal: scalable data-driven reserve price system
 - **Data-driven** Rate card based reserve prices were used when LinkedIn first launched SC, which does not reflect market dynamics now
 - **Pricing support** Protect valuable LinkedIn inventory, especially in regional markets with low liquidity
 - **Scalable** The scale of LinkedIn's social advertising imposes significant challenges in designing an effective system to compute & serve reserve

This Talk

- satisfaction
- reserve prices improve revenue metrics and auction health

 A scalable regression model which predicts the distribution of bidders' valuations to derive revenue maximizing reserve price at the user level

• A novel mechanism that produces the segment-level reserve price considering the trade-off between our revenue and advertisers'

• Field experiments from emerging and developed markets show that

Reserve Price Optimization

Two Stage Reserve Prices

Reserve Price Optimization

- Assumptions
 - 1. Advertiser valuation distribution is known to LinkedIn and advertisers
 - 2. Advertiser valuation distribution is log normal
 - 3. Advertisers bid their true valuation
 - Click probability declines more dramatically by position
 - Advertisers have an incentive to bid their true valuation
- The revenue optimizing reserve price r^* (Myerson 1981) • $r^* = (1 - F(r^*))/f(r^*)$, where F and f are CDF/PDF of valuation
- distribution

Fitting Valuation Distribution

- Fit valuation distribution for a *user* via linear regression
 - Fit log of valuations (V) against users' profile attributes (X) via linear regression $\log V = X^T \beta + \varepsilon, \varepsilon \sim N(0, \Sigma).$
 - *X*: a user-by-attribute binary matrix indicating the absence/presence of profile attributes for a user.
 - Following the assumption that bids (*B*) are asymptotically equal to valuations

$$\hat{\beta} = \left(X^T X + \lambda I \right)^{-1}$$

- Fit separate regression models for different geographic markets to reflect different market dynamics
- $^{-1}(X^T\log B).$

User-Level Reserve Prices

- Run optimization at user level
 - Indivisible and mutually exclusive unit
- Linear regression model to predict valuation distribution for each
- Numerically solve $r^* = (1 F(r^*))/f(r^*)$ for each user with fitted F and f to find the optimal reserve price

Campaign-Level Reserve Prices

- Serve at campaign level
 - Easy to communicate with advertisers
 - Regulate bidding behavior
 - Discourage cherry-picking
- Campaign-level reserve price: quantile of member-level reserve prices
 - The reserve price for a campaign targeting a user segment S :

$$\hat{r}_s = \sup\{r >$$

- 0 is the quantile of choice
- $> 0 | \Pr\{R_S \le r\} \le p\},$

Implementation

Engineering Implementation

Challenge – Scale of LinkedIn's user base and ads business
Component - Offline Hadoop pipeline + online web service

Offline Hadoop Pipeline

- Read the latest member profile and ad auction logs
- Fit the bidder valuation distributions & compute user-level reserve prices
- Store the optimal reserve price for each user in Pinot, a realtime distributed OLAP datastore, which is used at LinkedIn to deliver scalable real time analytics with low latency

Online Web Service

- Ad server calls Pinot store to retrieve campaign level floor price at serving time
- Campaigns with bid below the reserve price for the visiting member are removed from the auction
- The remaining campaigns are charged by *Max(second price cost, campaign level floor price)*

Architecture of Reserve Price System

Results

Experiment in Emerging Markets

- Emerging markets where sell-through-rates are relatively low Compared against the legacy rate-card based approach
- Results
 - Lower reserve prices: 20-60% drop depending on geographic market
 - Significant increase in demand: the percent of auctions with at least one participant increased by 30-60%
 - Positive revenue impact: the increased demand quickly made up for the lower price

Results from Emerging Markets

normalized so the starting value is 1.0.

Figure 1: Percentage of auctions with at least one participant in emerging markets,

Experiment in Developed Markets

- Developed markets where sell-through-rates are relatively high • Report results from CPC campaigns targeting the US market only Stratified sampling to balance advertiser's type and remove outlier

 - campaigns
- Revenue-related metrics direct revenue impact
 - +1.7% lift in *median bid*, +2.2% lift in *median CPC* for campaigns bidding above reserve prices
- Advertiser-centric metrics advertiser experience
 - +17% reduction in *churn rate*, mainly attributed to campaigns bidding at the reserve price, as they now tend to submit more realistic bids => more likely to win in auctions and stay active

Results from Developed Markets

Campaign group	Increase in median bid	Increase in median revenue per click	
Bid at reserve price	36.0%	36.0%	
Bid above reserve price	1.7%	2.2%	

Table 1: Changes in median bid and revenue per click, treatment v.s. control.

Campaign group	Abandonment rate	Churn rate	New campaigns per advertiser
Treatment	1.03	0.83	1.07
Control	1.0	1.0	1.0

Table 2: Advertiser-Centric Metrics, normalized so that the control group always have values of 1.0.

- Address Overestimation
 - Valuation is overestimated, as valuation below existing floors are not observed
 - Overestimation is more severe if auction is thinner
 - Current heuristic approach Apply a discount factor depending on sellthrough rates of different regional markets given the trade-off between revenue and efficiency
 - Future Improve the estimation of bidders' valuations

Thank you

- Distinct features of social advertising
 - **Rich user profile** work experience, industry, skill, interests, education...
 - More effective targeting users are usually required to log in, "I know what you did last night"

Generalized Second Price Auction

- Auction Mechanism
 - Generalized first price (GFP)
 - Vickrey–Clarke–Groves (VCG)
 - Generalized second price (GSP)
- GSP: widely used in industry & less susceptible to gaming
 - Ads are ranked by their quality-weighted bids
 - The price that an advertiser pays for a click is determined by the next highest bid (the minimum necessary to retain its position)
 - If there are fewer advertisers than slots, the last advertiser pays a *reserve price* r

Auction log

Results from Developed Markets

