

Profit Maximization for Online Advertising Demand-Side Platforms

Paul Grigas, UC Berkeley

Joint with Alfonso Lobos, Zheng Wen, Kuang-chih Lee

2017 AdKDD & TargetAd Workshop at KDD 2017, Halifax, Canada

- Problem motivation and perspectives
- Optimization model preliminaries, assumptions, and properties
- Solution approach based on Lagrangian duality
- Synthetic computational results
- Conclusions and ongoing work

+ Problem Motivation

+ Problem Motivation

- What is a demand side platform? (DSP)
- DSPs manage the campaigns of many different advertisers and play a crucial role connecting them with publishers

+ Problem Motivation cont.

- DSPs are faced with the challenge of <u>managing advertisers'</u> <u>campaigns</u> by interacting with ad exchanges in a real time bidding environment
 - Effective management requires forecasting the landscape of ad exchanges
- We focus on campaign management, particularly how to balance:
 - Meeting advertisers' goals and constraints
 - Profitability for the DSP
- DSPs may receive as many as a million ad requests per second and need to make decisions in real time
 - Thus simple greedy heuristics are often employed

+ Problem Formulation (in words)

- DSP profit maximization
- CPC/CPA pricing model
- Decision variables:
 - When a new impression arrives, who (among all the campaigns for the DSP) do we bid on behalf of and how much should we bid?
- Objective: maximize profit
- Constraints:
 - Campaign budget/pacing constraints
 - Targeting constraints
 - Supply (impression) availability constraints

Perspective and Contributions

- We develop a mathematical optimization formulation that:
 - Carefully models stochasticity in the real-time bidding process
 - Jointly optimizes over allocation strategies and bid prices
 - Accounts for limited supply of impression type inventory
- Our approach has several important features:
 - Scalability to the <u>large-scale</u> size of the problem
 - We address the <u>stochastic</u> nature of the problem
 - We account for the <u>dynamic</u> nature of the problem via model predictive control

 A crucial input to our methodology is accurate forecasting of the value of an incoming impression, and how this value varies across different campaigns (e.g., CTR prediction)

+ Related Literature

Revenue Management for the Publisher

- [Balseiro et al. 2014] and also [B. Chen et al. 2014] study how publishers should optimally trade-off guaranteed contracts with RTB
- [Y. Chen et al. 2011] studies how a publisher should optimally allocate impressions and set up bid prices for campaigns, under an implicit "central planner" assumption
- Revenue Management for the Ad Network
 - [Ciocan and Farias 2012] provides theoretical performance guarantees for a model predictive control approach
- Profit Optimization for the Advertiser
 - [Zhang et al. 2014] studies optimal RTB bidding for an advertiser (without impression allocation)
- Others...

+

Model Preliminaries

+ Model Preliminaries

- Planning over a fixed time horizon
- $\begin{array}{c|c} 1 & 1 \\ 2 & 2 \\ \vdots & \vdots \\ |\mathcal{I}| & |\mathcal{K}| \end{array}$

Impression Types

- *I* is the set of impression types
- \mathcal{K} is the set of campaigns
- Targeting constraints are specified via a bipartite graph

Campaigns

+ Modeling Impressions

- Impression types are defined via targeting (e.g. females, aged 25-34)
- Each arrival of impression type *i* corresponds to a real-time auction
- For each impression type, we assume that we can use a bid landscape forecasting model:
 - $\rho_i(b)$ is the probability of winning an auction for impression type *i* when entering bid *b*
 - $\beta_i^{\max}(b)$ is the expected second price, i.e., the expected payment if we win, as a function of the bid
- The total number of arrivals of impression type i is a random variable with mean s_i

Modeling Campaigns

- Each campaign has a fixed budget m_k over the time horizon
 - Budget pacing can be incorporated by controlling this input
- - \mathcal{K}_i is the set of campaigns targeted by impression type *i*
- $q_k > 0$ is the amount that campaign k is charged every time a click happens
- θ_{ik} is the predicted CTR for users of impression type *i* clicking on ads from campaign *k*
- $r_{ik} := q_k \theta_{ik}$ is the expected cost per impression (eCPI) value, which is the expected amount of revenue the DSP earns each time an ad from campaign k is shown to an impression i

Decision Variables and Corresponding Policy/Dynamics

Decision variables:

- x_{ik} is the probability of choosing campaign k to bid on behalf of when an arrival for impression type i occurs
- b_{ik} is the corresponding bid price

• Suppose that we bid b_{ik} on behalf of campaign k

+ Optimization Formulation

Deterministic optimization formulation, assuming all random variables take on their expected values:

$$\underset{\mathbf{x},\mathbf{b}}{\text{maximize}} \qquad \sum_{(i,k)\in\mathcal{E}} [r_{ik} - \beta_i^{\max}(b_{ik})] s_i x_{ik} \rho_i(b_{ik}) \qquad \text{(Total profit)}$$

subject to

$$\sum_{i \in \mathcal{I}_k} r_{ik} s_i x_{ik} \rho_i(b_{ik}) \leq m_k \quad \forall k \in \mathcal{K} \quad \text{(Budget constraints)}$$
$$\sum_{k \in \mathcal{K}_i} x_{ik} \leq 1 \quad \forall i \in \mathcal{I} \quad \text{(Supply constraints)}$$
$$\mathbf{x}, \mathbf{b} \geq 0.$$

Properties of the Deterministic Approximation

- Due to joint optimization over allocation probabilities and bid prices, the deterministic approximation is generally nonconvex
- "Difficulties" mainly arise due to the budget constraints
- Without the budget constraints, it is optimal to bid truthfully, i.e., to set $b_{ik}^* = r_{ik}$ and to greedily choose campaigns
- With budget constraints, it may be optimal for the DSP to underbid on a (relatively) less valuable impression due to the possibility of a more valuable impression arriving in the future
- For fixed bid prices, solving for the optimal allocation is a linear optimization problem

Solution Approach Based on Lagrangian Dual

Three Phase Solution Approach

- Phase 1: Solve (convex) dual problem obtained from Lagrangian relaxation of the deterministic problem
 - The main algorithm we use is subgradient descent (or some simple [e.g., stochastic] variant)
- Phase 2: Use optimal dual variables from Phase 1 to set bid prices
- Phase 3: Recover a "good" allocation strategy by solving the linear optimization problem obtained by fixing the bid prices determined from Phase 2
 - Solve using commercial LP solvers, or ADMM for largescale problems

+ Useful Observations

 $\underset{\mathbf{x},\mathbf{b}}{\text{maximize}} \qquad \sum_{(i,k)\in\mathcal{E}} [r_{ik} - \beta_i^{\max}(b_{ik})] s_i x_{ik} \rho_i(b_{ik})$

subject to
$$\sum_{i \in \mathcal{I}_k} r_{ik} s_i x_{ik} \rho_i(b_{ik}) \leq m_k \quad \forall k \in \mathcal{K}$$

 $\mathbf{x} \in \mathcal{S}$ (*S* denotes supply constraints)
 $\mathbf{x}, \mathbf{b} \geq 0$.

- Phase 1 is based on the following (previous) observations:
 - The objective function is just the total expected profit in a second price auction
 - Without budget constraints, the optimal setting of bid prices is , i. ϕ_{ij}^* bidding truthfully
 - With budget constraints, it may be optimal to under bid budget constraints are making the problem hard

Lagrangian Relaxation

• We put Lagrange multipliers $\lambda \in \mathbb{R}^m$ on the budget constraints and form the Lagrangian function:

$$L(\mathbf{x}, \mathbf{b}, \lambda) := \sum_{(i,k)\in\mathcal{E}} [r_{ik} - \beta_i^{\max}(b_{ik})] s_i x_{ik} \rho_i(b_{ik}) + \sum_{k\in\mathcal{K}} \lambda_k \left[m_k - \sum_{i\in\mathcal{I}_k} r_{ik} s_i x_{ik} \rho_i(b_{ik}) \right]$$

- Moving the budget constraint to the objective makes the problem "easy"
- Lagrangian may be re-written as:

$$L(\mathbf{x}, \mathbf{b}, \lambda) = \sum_{(i,k)\in\mathcal{E}} [(1-\lambda_k)r_{ik} - \beta_i^{\max}(b_{ik})]s_i x_{ik}\rho_i(b_{ik}) + \sum_{k\in\mathcal{K}} \lambda_k m_k$$

+ Phase 1 – Dual Problem

$$L(\mathbf{x}, \mathbf{b}, \lambda) = \sum_{(i,k)\in\mathcal{E}} [(1 - \lambda_k)r_{ik} - \beta_i^{\max}(b_{ik})]s_i x_{ik}\rho_i(b_{ik})$$

+ $\sum_{k\in\mathcal{K}} \lambda_k m_k$

- The dual function is then $L^*(\lambda) := \max_{\mathbf{x} \in S, \mathbf{b} \ge 0} L(\mathbf{x}, \mathbf{b}, \lambda)$
 - The dual function is convex
 - When computing the dual function, "it is optimal to bid truthfully and allocate impressions greedily"
 - Thus the dual function and subgradients of the dual function may be computed efficiently

And the dual problem is:

 $\begin{array}{c} \underset{\lambda}{\text{minimize}}\\ \text{subject to} \end{array}$

$$L^{+}(\lambda)$$

 $0 \le \lambda_k \le 1 \text{ for all } k \in \mathcal{K}$

 $\tau * \langle \rangle$

+ Phase 1 – Dual Problem

 $\begin{array}{ll} \underset{\lambda}{\text{minimize}} & L^*(\lambda) \\ \text{subject to} & 0 \leq \lambda_k \leq 1 \quad \text{for all } k \in \mathcal{K} \ . \end{array}$

- We use projected subgradient descent to solve this problem
- Effective when the number of impressions and the number of campaigns are very large
- This yields a vector of (approximately) optimal dual variables λ^*
- Importantly, $L^*(\lambda^*)$ provides an upper bound on the optimal profit

+ Phase 2 – Set Bid Prices

Recall that the Lagrangian satisfies:

$$L(\mathbf{x}, \mathbf{b}, \lambda) = \sum_{(i,k)\in\mathcal{E}} [(1 - \lambda_k)r_{ik} - \beta_i^{\max}(b_{ik})]s_i x_{ik}\rho_i(b_{ik}) + \sum_{k\in\mathcal{K}} \lambda_k m_k$$

- Thus, given optimal dual variables λ^* , we interpret $(1 \lambda_k^*)r_{ik}$ as a modified valuation/bid price that accounts for the budget constraint
- In Phase 2, we set $\hat{b}_{ik} := (1 \lambda_k^*) r_{ik}$
 - This setting is not necessarily optimal but should have good performance guarantees
 - Proving good performance guarantees is ongoing

Phase 3 – Allocation Recovery

- Phase 2 gives us a setting of the bid prices as $\hat{b}_{ik} := (1 \lambda_k^*) r_{ik}$
- Phase 3: fix these bid prices and solve the deterministic linear optimization problem to recover allocation probabilities x
 - We end up with an approximate solution (\hat{x}, \hat{b}) to the original problem
- Linear optimization solution approaches:
 - Commercial solvers scales to moderate to large size problems
 - Distributed/parallel ADMM based on decomposition across campaigns and impression types – scales to huge size problems

+ Synthetic Computational Set-up

- Each impression type and each campaign line has a quality score (QS_i and QS_k) that is uniformly distributed on [0,1]
- # of campaigns targeting impression type *i* is $Bin(m, QS_i)$
- $\rho_i(\cdot)$ is a maximum of $Bin(k, QS_i)$ uniform RVs
- The CTR is given by $heta_{ik} := \mathrm{QS}_i \cdot \mathrm{QS}_k$
- Campaigns pay \$1 for each click

Synthetic Computational Set-up cont.

- We compare the policy implied by our approach to a simple greedy baseline policy
- Simulations are based on our distributional assumptions (i.e., assuming perfect forecasting)
- Recall that campaigns pay \$1 for each click
- The baseline policy chooses the campaign j with largest value of θ_{ik} and uses θ_{ik} as the corresponding bid price

+ Synthetic Computational Results

- Example 1: 100 campaigns, 100 impression types; budget is constant across campaigns, forecasted supply is constant across impression types
- Our approach solved the joint (allocation, bid price) problem to within 13% of optimality
- Simulation Statistics (averaged over 500 runs):

Relative Profit (our	1.257		Our policy	Baseline policy
policy/baseline) Relative cost	0.286	Budget utilization	0.483	0.636
Relative Revenue	0.759	Profit/Rev enue	0.807	0.487

+ Synthetic Computational Results cont.

 Same example, but now campaign budget is correlated with quality score

Relative Profit (our	1.576		C po	Dur olicy	Baseline policy
Relative cost	0.431	Bud utiliza	get 0. ation	.542	0.801
Relative Revenue	0.677	Profit	/Rev 0. ue	.500	0.215

Synthetic Computational Results cont.

- Example 2: 100 campaigns, 10 impression types
- Here we examine the effect of varying the average budget of each campaign (results averaged over 500 runs)

Conclusions and Ongoing Work

- Developed a mathematical optimization formulation for the management of a DSP that balances profitability with meeting advertisers' targeting goals and budget constraints
 - Our approach accounts for uncertainty in the real time bidding process
 - Jointly optimizes over allocation strategies and bid prices
- Developed a two phase solution approach to solve the nonconvex joint (bid price, allocation) problem based on Lagrangian relaxation

Conclusions and Ongoing Work cont.

- Compared our policy against a baseline policy in simulations
 - Results indicate that our policy generates significantly more profit, mainly by reducing costs by avoiding overly-aggressive bidding strategies

Ongoing work:

- Extensions to incorporate advertisers' utility functions, model predictive control, CPM and/or oCPC pricing, robustness to uncertainty in parameter estimation, ...
- Theoretically characterize the gap between Lagrangian relaxation upper bound and recovered primal solution
- More extensive computational evaluations based on real-world data

Thank You!