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Problem Motivation

n What is a demand side platform? (DSP)

n DSPs manage the campaigns of many different advertisers 
and play a crucial role connecting them with publishers
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Problem Motivation cont.

n DSPs are faced with the challenge of managing advertisers’ 
campaigns by interacting with ad exchanges in a real time 
bidding environment 
n Effective management requires forecasting the landscape of ad 

exchanges

n We focus on campaign management, particularly how to 
balance:
n Meeting advertisers’ goals and constraints
n Profitability for the DSP

n DSPs may receive as many as a million ad requests per 
second and need to make decisions in real time
n Thus simple greedy heuristics are often employed
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Problem Formulation (in words)

n DSP profit maximization

n CPC/CPA pricing model

n Decision variables:
n When a new impression arrives, who (among all the campaigns for 

the DSP) do we bid on behalf of and how much should we bid?

n Objective:  maximize profit

n Constraints:
n Campaign budget/pacing constraints
n Targeting constraints
n Supply (impression) availability constraints
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+
Perspective and Contributions 

n We develop a mathematical optimization formulation that:
n Carefully models stochasticity in the real-time bidding process

n Jointly optimizes over allocation strategies and bid prices

n Accounts for limited supply of impression type inventory

n Our approach has several important features:
n Scalability to the large-scale size of the problem

n We address the stochastic nature of the problem 

n We account for the dynamic nature of the problem via model 
predictive control
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+
“DSP Analytics Pipeline”

n A crucial input to our methodology is accurate forecasting of 
the value of an incoming impression, and how this value 
varies across different campaigns (e.g., CTR prediction)

Historical 
Data

Statistical 
Model

Decision 
Strategies

CTR prediction
Bid landscape modeling
Impression arrival modeling
…

Profit/goal optimization
Budget pacing
Ad quality optimization
…

8



+
Related Literature

n Revenue Management for the Publisher
n [Balseiro et al. 2014] and also [B. Chen et al. 2014] study how 

publishers should optimally trade-off guaranteed contracts with RTB
n [Y. Chen et al. 2011] studies how a publisher should optimally allocate 

impressions and set up bid prices for campaigns, under an implicit 
“central planner” assumption

n Revenue Management for the Ad Network
n [Ciocan and Farias 2012] provides theoretical performance 

guarantees for a model predictive control approach

n Profit Optimization for the Advertiser
n [Zhang et al. 2014] studies optimal RTB bidding for an advertiser 

(without impression allocation)

n Others…
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Model Preliminaries
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Model Preliminaries

n Planning over a fixed time 
horizon

n is the set of impression 
types

n is the set of campaigns

n Targeting constraints are 
specified via a bipartite 
graph

Campaigns

1

2

...

1

2

...

Impression Types
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+
Modeling Impressions

n Impression types are defined via targeting (e.g. females, 
aged 25-34)

n Each arrival of impression type i corresponds to a real-time 
auction

n For each impression type, we assume that we can use a bid 
landscape forecasting model:
n is the probability of winning an auction for impression type i 

when entering bid 

n is the expected second price, i.e., the expected payment 
if we win, as a function of the bid

n The total number of arrivals of impression type i is a random 
variable with mean 

b
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+
Modeling Campaigns

n Each campaign has a fixed budget       over the time horizon
n Budget pacing can be incorporated by controlling this input

n is the set of impression types that campaign k targets
n is the set of campaigns targeted by impression type i

n is the amount that campaign k is charged every time a 
click happens

n is the predicted CTR for users of impression type i 
clicking on ads from campaign k

n is the expected cost per impression (eCPI) value, 
which is the expected amount of revenue the DSP earns each 
time an ad from campaign k is shown to an impression i
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+
Decision Variables and 
Corresponding Policy/Dynamics

n Decision variables:
n is the probability of choosing campaign k to bid on behalf of 

when an arrival for impression type i occurs

n is the corresponding bid price

Impression 
type i 

arrives

47

62

Flip coins with probabilities        to 
decide which campaign to bid for
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+
Policy Dynamics cont.
n Suppose that we bid       on behalf of campaign k

k

Win 
auction

Lose 
auction

Click
Win with 
probability  

No click

Earn 
Revenue

Click with 
probability 
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Optimization Formulation

n Deterministic optimization formulation, assuming all random 
variables take on their expected values:

(Total profit)

(Budget constraints)

(Supply constraints)
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+
Properties of the Deterministic 
Approximation  

n Due to joint optimization over allocation probabilities and 
bid prices, the deterministic approximation is generally non-
convex

n “Difficulties” mainly arise due to the budget constraints

n Without the budget constraints, it is optimal to bid truthfully, 
i.e., to set                  and to greedily choose campaigns

n With budget constraints, it may be optimal for the DSP to 
underbid on a (relatively) less valuable impression due to 
the possibility of a more valuable impression arriving in the 
future

n For fixed bid prices, solving for the optimal allocation is a 
linear optimization problem
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Solution Approach Based on 
Lagrangian Dual
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Three Phase Solution Approach

n Phase 1:  Solve (convex) dual problem obtained from 
Lagrangian relaxation of the deterministic problem

n The main algorithm we use is subgradient descent (or 
some simple [e.g., stochastic] variant)

n Phase 2:  Use optimal dual variables from Phase 1 to set bid 
prices

n Phase 3: Recover a “good” allocation strategy by solving the 
linear optimization problem obtained by fixing the bid 
prices determined from Phase 2

n Solve using commercial LP solvers, or ADMM for large-
scale problems
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Useful Observations

n Phase 1 is based on the following (previous) observations:
n The objective function is just the total expected profit in a second 

price auction

n Without budget constraints, the optimal setting of bid prices is                 
, i.e., bidding truthfully

n With budget constraints, it may be optimal to under bid – budget 
constraints are making the problem hard 

b⇤ij = rij

(     denotes supply constraints)S
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+
Lagrangian Relaxation
n We put Lagrange multipliers              on the budget 

constraints and form the Lagrangian function:

n Moving the budget constraint to the objective makes the 
problem “easy”

n Lagrangian may be re-written as:

� 2 Rm
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+
Phase 1 – Dual Problem

n The dual function is then

n The dual function is convex

n When computing the dual function, “it is optimal to bid truthfully 
and allocate impressions greedily”

n Thus the dual function and subgradients of the dual function may 
be computed efficiently

n And the dual problem is:
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Phase 1 – Dual Problem

n We use projected subgradient descent to solve this problem

n Effective when the number of impressions and the number of 
campaigns are very large

n This yields a vector of (approximately) optimal dual 
variables 

n Importantly,              provides an upper bound on the optimal 
profit
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+
Phase 2 – Set Bid Prices

n Recall that the Lagrangian satisfies:

n Thus, given optimal dual variables      , we interpret                   
as a modified valuation/bid price that accounts for the 
budget constraint

n In Phase 2, we set                            
n This setting is not necessarily optimal but should have good 

performance guarantees

n Proving good performance guarantees is ongoing

�⇤
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+
Phase 3 – Allocation Recovery 

n Phase 2 gives us a setting of the bid prices as 

n Phase 3:  fix these bid prices and solve the deterministic 
linear optimization problem to recover allocation 
probabilities 
n We end up with an approximate solution             to the original 

problem

n Linear optimization solution approaches:
n Commercial solvers – scales to moderate to large size problems

n Distributed/parallel ADMM based on decomposition across 
campaigns and impression types – scales to huge size problems
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+
Synthetic Computational Set-up

n Each impression type and each campaign line has a quality 
score (        and         ) that is uniformly distributed on [0,1]

n # of campaigns targeting impression type i is  

n is a maximum of                    uniform RVs 

n The CTR is given by 

n Campaigns pay $1 for each click

Bin(m,QSi)

Bin(k,QSi)
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+
Synthetic Computational Set-up 
cont.
n We compare the policy implied by our approach to a simple 

greedy baseline policy

n Simulations are based on our distributional assumptions (i.e., 
assuming perfect forecasting)

n Recall that campaigns pay $1 for each click

n The baseline policy chooses the campaign j with largest 
value of        and uses       as the corresponding bid price
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+
Synthetic Computational Results

n Example 1:  100 campaigns, 100 impression types; budget is 
constant across campaigns, forecasted supply is constant 
across impression types

n Our approach solved the joint (allocation, bid price) problem 
to within 13% of optimality

n Simulation Statistics (averaged over 500 runs):

Relative Profit (our 
policy/baseline)

1.257

Relative cost 0.286

Relative Revenue 0.759

Our 
policy

Baseline
policy

Budget 
utilization

0.483 0.636

Profit/Rev
enue

0.807 0.487
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Synthetic Computational Results 
cont.

n Same example, but now campaign budget is correlated with 
quality score

Relative Profit (our 
policy/baseline)

1.576

Relative cost 0.431

Relative Revenue 0.677

Our 
policy

Baseline
policy

Budget 
utilization

0.542 0.801

Profit/Rev
enue

0.500 0.215
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Synthetic Computational Results 
cont.

n Example 2:  100 campaigns, 10 impression types

n Here we examine the effect of varying the average budget of 
each campaign (results averaged over 500 runs)
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Conclusions and Ongoing Work

n Developed a mathematical optimization formulation for the 
management of a DSP that balances profitability with 
meeting advertisers’ targeting goals and budget constraints
n Our approach accounts for uncertainty in the real time bidding 

process

n Jointly optimizes over allocation strategies and bid prices

n Developed a two phase solution approach to solve the non-
convex joint (bid price, allocation) problem based on 
Lagrangian relaxation
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Conclusions and Ongoing Work 
cont.

n Compared our policy against a baseline policy in simulations
n Results indicate that our policy generates significantly more 

profit, mainly by reducing costs by avoiding overly-aggressive 
bidding strategies

n Ongoing work:
n Extensions to incorporate advertisers’ utility functions, model 

predictive control, CPM and/or oCPC pricing, robustness to 
uncertainty in parameter estimation, …

n Theoretically characterize the gap between Lagrangian relaxation 
upper bound and recovered primal solution

n More extensive computational evaluations based on real-world 
data
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Thank You!
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