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Problem Motivation

m What is a demand side platform? (DSP)

m DSPs manage the campaigns of many different advertisers
and play a crucial role connecting them with publishers
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Problem Motivation cont.

m DSPs are faced with the challenge of managing advertisers’
campaigns by interacting with ad exchanges in a real time
bidding environment

m Effective management requires forecasting the landscape of ad
exchanges

m We focus on campaign management, particularly how to
balance:

m Meeting advertisers’ goals and constraints
m Profitability for the DSP

m DSPs may receive as many as a million ad requests per
second and need to make decisions in real time

m Thus simple greedy heuristics are often employed



Problem Formulation (in words)

m DSP profit maximization
m CPC/CPA pricing model

m Decision variables:

= When a new impression arrives, who (among all the campaigns for
the DSP) do we bid on behalf of and how much should we bid?

m Objective: maximize profit

m Constraints:
» Campaign budget/pacing constraints
» Targeting constraints
» Supply (impression) availability constraints



+
Perspective and Contributions

m We develop a mathematical optimization formulation that:
m Carefully models stochasticity in the real-time bidding process
m Jointly optimizes over allocation strategies and bid prices

m Accounts for limited supply of impression type inventory

m Our approach has several important features:

m Scalability to the large-scale size of the problem

m We address the stochastic nature of the problem

m We account for the dynamic nature of the problem via model
predictive control



+
“DSP Analytics Pipeline™

m A crucial input to our methodology is accurate forecasting of
the value of an incoming impression, and how this value
varies across different campaigns (e.g., CTR prediction)

Historical Statistical Decision
Data ﬁ Model ﬁ Strategies
CTR prediction Profit/goal optimization
Bid landscape modeling Budget pacing

Impression arrival modeling Ad quality optimization




Related Literature

m Revenue Management for the Publisher

» [Balseiro et al. 2014] and also [B. Chen et al. 2014] study how
publishers should optimally trade-off guaranteed contracts with RTB

m [Y.Chen et al. 2011] studies how a publisher should optimally allocate
impressions and set up bid prices for campaigns, under an implicit
“central planner” assumption

m Revenue Management for the Ad Network

m [Ciocan and Farias 2012] provides theoretical performance
guarantees for a model predictive control approach

m Profit Optimization for the Advertiser

m [Zhang et al. 2014] studies optimal RTB bidding for an advertiser
(without impression allocation)

m Others...
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Model Preliminaries

m Planning over a fixed time  Impression Types Campaigns
horizon

m 7 is the set of impression
types

m | is the set of campaigns

m Targeting constraints are
specified via a bipartite

graph




Modeling Impressions

m Impression types are defined via targeting (e.g. females,
aged 25-34)

m Each arrival of impression type 1 corresponds to a real-time
auction

m For each impression type, we assume that we can use a bid
landscape forecasting model:

= P (b) is the probability of winning an auction for impression type I
when entering bid b

m 5;%%*(b) is the expected second price, i.e., the expected payment
if we win, as a function of the bid

m The total number of arrivals of impression type i is a random
variable with mean s;



Modeling Campaigns

m Each campaign has a fixed budget my over the time horizon

m Budget pacing can be incorporated by controlling this input

m 7, is the set of impression types that campaign k targets

m [C; is the set of campaigns targeted by impression type i

m g; > 0 is the amount that campaign k is charged every time a
click happens

m 0 is the predicted CTR for users of impression type i
clicking on ads from campaign k

m ;. = qr0;; 1s the expected cost per impression (eCPI) value,
which is the expected amount of revenue the DSP earns each
time an ad from campaign k is shown to an impression I



Decision Variables and
Corresponding Policy/Dynamics

m Decision variables:

m T; 1s the probability of choosing campaign k to bid on behalf of
when an arrival for impression type I occurs

= b;, is the corresponding bid price

Impression
type 1

arrives

\

Flip coins with probabilities Z;k to
decide which campaign to bid for




Policy Dynamics cont.

m Suppose that we bid b;;, on behalf of campaign k

Lose
auction

l No click

Win
auction

Earn
Revenue

Win with Y
probability P (bzk) \ J

Click with |
probability 6, qr. >0



+
Optimization Formulation

m Deterministic optimization formulation, assuming all random
variables take on their expected values:

ma}}cci,{)nize ( %26[7“ ik = B (bik)]si%ikpi(bik) (Total profit)
ik)€

subject to ZiEIk rikSiTikpi(bik) < mi Vk € K (Budget constraints)
Doker. Tik < 1 Viel (Supply constraints)

x,b > 0.
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Properties of the Deterministic

Approximation

m Due to joint optimization over allocation probabilities and

bid prices, the deterministic approximation is generally non-
convex

m “Difficulties” mainly arise due to the budget constraints

m Without the budget constraints, it is optimal to bid truthfully,
l.e.,toset b, = r;, and to greedily choose campaigns

m With budget constraints, it may be optimal for the DSP to
underbid on a (relatively) less valuable impression due to

the possibility of a more valuable impression arriving in the
future

m For fixed bid prices, solving for the optimal allocation is a
linear optimization problem



Solution Approach Based on
Lagrangian Dual




+
Three Phase Solution Approach

m Phase 1: Solve (convex) dual problem obtained from
Lagrangian relaxation of the deterministic problem

» The main algorithm we use is subgradient descent (or
some simple [e.q., stochastic] variant)

m Phase 2: Use optimal dual variables from Phase 1 to set bid
prices

m Phase 3: Recover a ““good” allocation strategy by solving the
linear optimization problem obtained by fixing the bid
prices determined from Phase 2

= Solve using commercial LP solvers, or ADMM for large-
scale problems



Useful Observations

ma};:ci,rglize Z [Tz'k — Binax(bik)]sixikpi(bik)
(i,k)eE

subject to ZieIk rikSiTikpi(bix) < my Vk €K

xeS ( S denotes supply constraints)
x,b > 0.

m Phase 1 is based on the following (previous) observations:

m The objective function is just the total expected profit in a second
price auction

m Without budget constraints, the optimal setting of bid prices is
, 1., biddjng truthfully

m With budget constraints, it may be optimal to under bid — budget
constraints are making the problem hard



==
Lagrangian Relaxation

m We put Lagrange multipliers ) ¢ R™ on the budget
constraints and form the Lagrangian function:

L(x,b,A) == > peelric — B (bir)|siwirpi(bix)
+Zkelc Ak [mk - Zigk Tiksz‘ﬂ?z‘km(bikﬂ

m Moving the budget constraint to the objective makes the
problem “easy”

m Lagrangian may be re-written as:

L(X7 b, >\) — Z(i,k)eg[(l - )‘k)rik — 5gnax(bik)]3iﬂ7ikpz’(bik) + Zkelc AR,



Phase 1 — Dual Problem

L(x,b,A) =3 pyeel(l = Ae)riw — B (bir)]siwik pi (bir)
+ ke AT

m The dual function is then L*()\) := max L(x,b, \)
Xco,b>

® The dual function is convex

m When computing the dual function, “it is optimal to bid truthfully
and allocate impressions greedily”

m Thus the dual function and subgradients of the dual function may
be computed efficiently

. minimize L*(\)
m And the dual problem is: A
subject to 0< AN, <1 forall ke K.



Phase 1 — Dual Problem

mini}\mize L*(\)
subject to 0< AN <1 forall ke K.

m We use projected subgradient descent to solve this problem

m Effective when the number of impressions and the number of
campaigns are very large

m This yields a vector of (approximately) optimal dual
variables \*

m Importantly, L*(\*) provides an upper bound on the optimal
profit



+
Phase 2 — Set Bid Prices

m Recall that the Lagrangian satisfies:

L(x,b,A) =3 pyeel(I = Ae)riw — B (bir)]siwik pi (bir)
+ ke AR

m Thus, given optimal dual variables )\*,we interpret (1 — A\ )7
as a modified valuation/bid price that accounts for the
budget constraint

m In Phase 2, we set by, := (1 — AX)ri

m This setting is not necessarily optimal but should have good
performance guarantees

m Proving good performance guarantees is ongoing



Phase 3 — Allocation Recovery

A

= Phase 2 gives us a setting of the bid prices as b;;, := (1 — A\})ri

m Phase 3: fix these bid prices and solve the deterministic
linear optimization problem to recover allocation
probabilities x

= We end up with an approximate solution (X, f)) to the original
problem

m Linear optimization solution approaches:

m Commercial solvers — scales to moderate to large size problems

m Distributed/parallel ADMM based on decomposition across
campaigns and impression types — scales to huge size problems



+
Synthetic Computational Set-up

m Each impression type and each campaign line has a quality
score (QS, and S, ) that is uniformly distributed on [0, 1]

m # of campaigns targeting impression type 1 is Bin(m, QS,)
® p;(+) is a maximum of Bin(k, QS,) uniform RVs
m The CTR is given by 0, := QS, - QS,

m Campaigns pay $1 for each click



+
Synthetic Computational Set-up
cont.

m We compare the policy implied by our approach to a simple
greedy baseline policy

m Simulations are based on our distributional assumptions (i.e.,
assuming perfect forecasting)

m Recall that campaigns pay $1 for each click

m The baseline policy chooses the campaign j with largest
value of 6, and uses 6;; as the corresponding bid price



Synthetic Computational Results

m Example 1: 100 campaigns, 100 impression types; budget is
constant across campaigns, forecasted supply is constant
across impression types

m Our approach solved the joint (allocation, bid price) problem
to within 13% of optimality

m Simulation Statistics (averaged over 500 runs):

Our Baseline
Relative Profit (our 1.257 policy policy
policy/baseline) Budget  0.483 0.636
Relative cost 0.286 utilization

Relative Revenue 0.759 Profit/Rev 0.807 0.487
enue




+ 29
Synthetic Computational Results
cont.

m Same example, but now campaign budget is correlated with
quality score

Our Baseline
Relative Profit (our 1.576 policy policy

policy/baseline)

Budget 0.542 0.801
Relative cost 0.431 utilization
Relative Revenue 0.677 Profit/Rev 0.500 0.215

enue



Synthetic Computational Results

cont.

m Example 2: 100 campaigns, 10 impression types

m Here we examine the effect of varying the average budget of
each campaign (results averaged over 500 runs)
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Conclusions and Ongoing Work

m Developed a mathematical optimization formulation for the
management of a DSP that balances profitability with
meeting advertisers’ targeting goals and budget constraints

m Our approach accounts for uncertainty in the real time bidding
process

m Jointly optimizes over allocation strategies and bid prices

m Developed a two phase solution approach to solve the non-
convex joint (bid price, allocation) problem based on
Lagrangian relaxation



Conclusions and Ongoing Work
cont.

m Compared our policy against a baseline policy in simulations

m Results indicate that our policy generates significantly more
profit, mainly by reducing costs by avoiding overly-aggressive
bidding strategies

m Ongoing work:

m Extensions to incorporate advertisers’ utility functions, model
predictive control, CPM and/or oCPC pricing, robustness to
uncertainty in parameter estimation, ...

m Theoretically characterize the gap between Lagrangian relaxation
upper bound and recovered primal solution

m More extensive computational evaluations based on real-world
data
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