Anti-Ad Blocking Strategy: Measuring its True Impact

Atanu R. Sinha (Adobe), Meghanath Macha (CMU), Pranav Maneriker (Adobe), Sopan Khosla (Adobe), Avani Samdariya (Adobe), Navjot Singh (IIT Bombay)

Presenter – Deepak Pai (Adobe)
Outline

- What is Ad-blocking?
- What is Anti-ad blocking?
- What is the research problem?
- Method
- Solution
- Evaluation
Online Advertisements
Meet the Blocker!

AdBlock
Ad-Blocking is on a Rise

- **198 million** active ad-block users globally as on June'15
- Ad blocking **grew by 41%** globally in 2014-15.
- US ad blocking **grew by 48%** to reach 45 million users
- UK ad blocking **grew by 82%** to reach 12 million users

Source: The cost of ad blocking, PageFair and Adobe 2015 ad blocking report
Effect of Ad-Blocking on:

Publisher
Ad revenue loss, the main source of income for most of them

User
Threat to existence of favorite sites and free internet content

Advertiser
Potential views on ads get limited

- Resources like bandwidth are still costing money
- The estimated loss of global revenue in 2015 was $21.8B

Source: The cost of ad blocking, PageFair and Adobe 2015 ad blocking report
What is the response?

Enter Anti-ad Blocking Actions
We’re committed to hosting safe ads and respecting your privacy.

To keep reading, please disable your ad blocker.
The Reactions...

FINANCIAL TIMES

Axel Springer says it is winning fight against adblockers

Bild readers stop blocking adverts when asked to buy subscription

![Image](image_url)

Would switch off ad blocker if requested by site to access content

<table>
<thead>
<tr>
<th>Type of Access</th>
<th>All</th>
<th>18-24s</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Net" would switch off</td>
<td>54%</td>
<td>73%</td>
</tr>
<tr>
<td>Only on favourite/frequently used sites</td>
<td>31%</td>
<td>46%</td>
</tr>
<tr>
<td>On some websites</td>
<td>19%</td>
<td>26%</td>
</tr>
<tr>
<td>On all sites</td>
<td>3%</td>
<td>1%</td>
</tr>
</tbody>
</table>

Source: Would you switch off your ad blocker? (IAB)
A Hit on traffic.. Drop in Alexa Rankings

- Denial of access to ad blockers
 - Ranking based on reach and page view calculated daily.

Source: Sites that block ad-blockers seem to be suffering (The Stack)
Research Question

Context: Anti-ad blocking actions are implemented site-wide

All adblockers in treatment group
(Every adblock user inflicted by action)

Questions:

a) How to measure effectiveness of Anti-ad blocking actions?

b) How effectiveness varies by different ad blocking tendencies?
True Effectiveness

Measurement is challenging

- Any site-wide action suffers from lack of natural control group (not subjected to action)
- Before – After measure, widely used, subject to sampling bias due to group differences
- Choice of time period for comparison contributes to sampling bias
- Difference in differences (DiD) could potentially be used
 - But, which group(s) to use as control ??
 - Data from other comparable websites are not forthcoming !
Our Approach

- Ex post, that is, uses only past, observational data
 - without running new, costly experiments.
- Allows endogenous selection of the control group from the available data, going back in time.
 - Ad blockers from a previous time
 - (Multiple experiments to find the appropriate control group)
- Allows endogenous selection of clusters of visitors within the DiD framework
 - recognizing heterogeneity in ad blocking tendencies
- Shows to quantify the effect of anti-ad blocking action the Negative Binomial regression model performs better than Poisson regression.
Data

- Unnamed online-only publisher
- Data span three days after anti-ad blocking action
- Prior to action two months of data are available
- Hit level data of clicks
- Aggregate data of outcome metrics like pageviews, time spent,

22,000 users
Featuring: Features

<table>
<thead>
<tr>
<th>Hit Level Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Tags (10 major)</td>
</tr>
<tr>
<td>Browser (5 major)</td>
</tr>
<tr>
<td>Geolocation</td>
</tr>
<tr>
<td>Script Versions</td>
</tr>
<tr>
<td>Total Time Spent</td>
</tr>
<tr>
<td>User page tag sequence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>User Level Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of each tag in user sequence</td>
</tr>
<tr>
<td>Time spent on Ti</td>
</tr>
<tr>
<td>Freq(Ti)</td>
</tr>
<tr>
<td>Capture co-occurrence of tags in page sequence</td>
</tr>
<tr>
<td>Bigrams and Trigrams</td>
</tr>
<tr>
<td>How updated is the Browser / OS version</td>
</tr>
<tr>
<td>Browser &OS</td>
</tr>
</tbody>
</table>

Engineered Features

- Empty data fields
- Web crawlers
- Mobile Devices

Unsupervised Scheme: Clustering

- K-means Clustering\(^{[1]}\)
 - Euclidean distance
 - Scaled data columns
 - Gave stable clusters
 - Interesting insights in user segmented clusters

Algorithm – at cluster level

Time series of metrics, treatment date (D)

Choose d_1, d_2 (number of days)
Pre treatment: $[D - d_1, D)$,
Post treatment: $(D, D + d_2)$

Choose k, for control:
$[D - 7k - d_1, D - 7k) \cup$
$(D - 7k, D - 7k + d_2)$

Select the best k
using Wilcoxon Test

Negative Binomial regression
on pre treatment and corres-
ponding control period

Output d_1, d_2, k of model with min AIC

Figure 1: Summary of Effectiveness algorithm
Control group selection – at cluster level

Visitors broken down by these **Control Variables**

- Browser
- Operating system
- Sections
- Language
- First touch marketing channel
- Page depth

5 options for control group

Hypothesis testing using Wilcoxon signed rank test on all **control variables**

Control group which matches on maximum number of control variables picked
Evaluation

- No ground truth available to us
 - Implementation site-wide
- Even if A/B testing is done, the implementation of either A or B is site-wide
 - Produces differences with testing results
- We perform indirect evaluation
Model free evidence

Control_1 is our method.
Control_2 is where the control group is same duration as the treatment group, selected from recent preceding time.
Control_3 is where multiple equivalent durations are selected going back in time and then averaged.

Figure 3: Real Life Data - Aggregate Statistics for Adblockers
Model based evidence

Table 3: Real Life Data - Cluster level model for Visitors

<table>
<thead>
<tr>
<th>Visitors</th>
<th>Cluster1</th>
<th>Cluster2</th>
<th>Cluster3</th>
<th>Cluster4</th>
<th>Cluster5</th>
<th>Cluster6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.09**</td>
<td>4.80**</td>
<td>5.21**</td>
<td>3.10**</td>
<td>2.62**</td>
<td>3.61**</td>
</tr>
<tr>
<td>timeperiod</td>
<td>0.46**</td>
<td>0.49**</td>
<td>0.44**</td>
<td>0.07</td>
<td>0.50**</td>
<td>0.27**</td>
</tr>
<tr>
<td>grouptype</td>
<td>0.25**</td>
<td>0.17**</td>
<td>0.19**</td>
<td>-0.20**</td>
<td>-0.16**</td>
<td>0.02</td>
</tr>
<tr>
<td>dummy_1</td>
<td>-1.22**</td>
<td>-1.18**</td>
<td>-1.21**</td>
<td>-0.81**</td>
<td>-1.17**</td>
<td>-1.04**</td>
</tr>
<tr>
<td>dummy_2</td>
<td>-0.05</td>
<td>0.05</td>
<td>-0.05</td>
<td>0.24**</td>
<td>0.05</td>
<td>0.21**</td>
</tr>
<tr>
<td>weekend</td>
<td>-0.43**</td>
<td>-0.45**</td>
<td>-0.40**</td>
<td>-0.44**</td>
<td>-0.31**</td>
<td>-0.56**</td>
</tr>
<tr>
<td>t:tg</td>
<td>-0.59**</td>
<td>-0.66**</td>
<td>-0.56**</td>
<td>0.11</td>
<td>-0.54**</td>
<td>-0.40**</td>
</tr>
</tbody>
</table>

Significance codes: * < 0.05, ** < 0.01

Table 4: Cluster Details

<table>
<thead>
<tr>
<th>Visitors</th>
<th>(% of total)</th>
<th>Visits (of total)</th>
<th>End of Article Reached (%)</th>
<th>Viewed 5 Pages (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster1</td>
<td>32.44</td>
<td>32.41</td>
<td>8.45</td>
<td>0.35</td>
</tr>
<tr>
<td>Cluster2</td>
<td>22.51</td>
<td>22.24</td>
<td>90.22</td>
<td>0.04</td>
</tr>
<tr>
<td>Cluster3</td>
<td>34.69</td>
<td>34.63</td>
<td>11.47</td>
<td>0</td>
</tr>
<tr>
<td>Cluster4</td>
<td>2.18</td>
<td>2.15</td>
<td>92.72</td>
<td>29.17</td>
</tr>
<tr>
<td>Cluster5</td>
<td>1.94</td>
<td>1.90</td>
<td>56.52</td>
<td>0.56</td>
</tr>
<tr>
<td>Cluster6</td>
<td>6.24</td>
<td>6.66</td>
<td>26.57</td>
<td>1.56</td>
</tr>
</tbody>
</table>
Limitations and Future Work

- Do Direct Evaluation with suitable Data
- Extend analysis to other websites
- Compare actions across publishers
- Scrape tags from content
EXTRAS - EXTRAS - EXTRAS
Feature Buckets

Loyalty
- End of article reached
- Monthly user
- Visit number
- Total Hits

Interest
- Frequency of tags
- Avg. time per tag

Technology
- Browser Version
- OS version
- New/ Old
- Cookies enabled
- JavaScript Version

Geo-Segmentation
- Country
- Region
- City
Clustering Quality – Loyalty Set

- Number of clusters: Average Silhouette\(^2\) Width

\[
s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}
\]

\(a(i)\): average dissimilarity of \(i\) with all other data within the same cluster

\(b(i)\): lowest dissimilarity of \(i\) to any other cluster

Silhouette Score

Silhouette plot of (\(x = \text{km\modelscluster, dist = dist(df)}\))

- Number of clusters: Average Silhouette\(^2\) Width

- Cluster Analysis

6 clusters \(C_i\)

1: 1201 | 0.35

2: 3764 | 0.81

3: 9979 | 0.76

4: 1067 | 0.29

5: 4208 | 0.45

6: 407 | 0.93

Average silhouette width: 0.67