Anti-Ad Blocking Strategy: Measuring its True Impact

Atanu R. Sinha (Adobe), Meghanath Macha (CMU), Pranav Maneriker (Adobe), Sopan Khosla (Adobe), Avani Samdariya (Adobe), Navjot Singh (IIT Bombay)

Presenter – Deepak Pai (Adobe)

Outline

- What is Ad-blocking?
- What is Anti-ad blocking?
- What is the research problem?
- Method
- Solution
- Evaluation

Online Advertisements

Meet the Blocker!

Ad-Blocking is on a Rise

- **198 million** ctive ad-block users globally as on June'15
- Ad blocking grew by 41% globally in 2014-٠ 15.
- US ad blocking grew by 48% to reach 45 • million users
- UK ad blocking grew by 82% to reach 12 • million users

Adblock Plus is an open source project. Join us!

Adblock Plus is the most popular browser extension.

Over 300 million downloads

Adblock Plus will never collect any of your personal data.

181M

Privacy Guaranteed

121M

Global Ad Blocking Growth

Blocking ads continues to build on the strong growth rates seen during 2013 and 2014

The findings

- Globally, usage of ad blockers grew by 41% YoY (Q2 2014 Q2 2015).
- · As of June 2015, there were 198 million monthly active users for the major browser extensions that block ads.

Source: The cost of ad blocking, PageFair and Adobe 2015 ad blocking report

Effect of Ad-Blocking on:

				Bui	y Fromme	No.M	2.6
Publisher		User			Adver	tiser	
Ad revenue loss, the main source of income for most of them		Threat to existence of favorite sites		Pote	ntial view	vs on ads ge	t
							\frown
No. Adobe Economic cost of blocking ads in the US US Ad Blocking Cost US Ad Spend \$20.38)			S PageFair 🔼	Adobe		\$41.4B
\$3,5B	•	Resources like bandwidth are still costin money	Ig	Global eco cost of bloo	cking ads	\$21.8B)
\$42.8B \$49.5B \$58.6B \$68.0B	•	The estimated loss of global revenue in 2015 was \$21.8B		\$7.2B			
2013 2014 2015 2016	Ad spend sourced from eMarketer			2013	2014	2015	2016

Source: The cost of ad blocking, PageFair and Adobe 2015 ad blocking report

What is the response?

Enter Anti-ad Blocking Actions

We noticed you're using an ad blocker. Support Slate's journalism and help us reduce our dependence on advertising — join Slate Plus!

×

BILD SHO

COMMUNIT

KONTAKI

LOGIN

The Reactions...

Source : Would you switch off your ad blocker?(IAB)

A Hit on traffic.. Drop ir Alexa Rankings

Source : Sites that block ad-blockers seem to be suffering (The Stack)

- Denial of access to ad blockers
- Ranking based on reach and page view calculated daily.

Research Question

Context: Anti-ad blocking actions are implemented site-wide

All adblockers in treatment group (Every adblock user inflicted by action)

Questions:

- a) How to measure effectiveness of Anti-ad blocking actions?
- b) How effectiveness varies by different ad blocking tendencies?

True Effectiveness

Measurement is challenging

- Any site-wide action suffers from lack of natural control group (not subjected to action)
- Before After measure, widely used, subject to sampling bias due to group differences
- Choice of time period for comparison contributes to sampling bias
- Difference in differences (DiD) could potentially be used
 - But, which group(s) to use as control ??
 - Data from other comparable websites are not forthcoming !

Our Approach

- Ex post, that is, uses only past, observational data
 - without running new, costly experiments.
- Allows endogenous selection of the control group from the available data, going back in time.
 - Ad blockers from a previous time
 - (Multiple experiments to find the appropriate control group)
- Allows endogenous selection of clusters of visitors within the DiD framework
 - recognizing heterogeneity in ad blocking tendencies
- Shows to quantify the effect of anti-ad blocking action the Negative Binomial regression model performs better than Poisson regression.

- Unnamed online-only publisher
- Data span three days after anti-ad blocking action
- Prior to action two months of data are available
- Hit level data of clicks
- Aggregate data of outcome metrics like pageviews, time spent,

22,000 users

Featuring: Features

Unsupervised Scheme : Clustering

- K means Clustering^[1]
 - Euclidean distance
 - Scaled data columns
 - Gave stable clusters
 - Interesting insights in user segmented clusters

 $\ensuremath{\mathbb{C}}$ 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential

Algorithm – at cluster level

Figure 1: Summary of Effectiveness algorithm

Control group selection – at cluster level

Evaluation

- No ground truth available to us
 - Implementation site-wide
- Even if A/B testing is done, the implementation of either A or B is site-wide
 - Produces differences with testing results
- We perform indirect evaluation

Model free evidence

Figure 3: Real Life Data - Aggregate Statistics for Adblockers

Control_1 is our method.

Control_2 is where the control group is same duration as the treatment group, selected from recent preceding time. Control_3 is where multiple equivalent durations are selected going back in time and then averaged.

Model based evidence

Table 3: Real Life Data - Cluster level model for Vis	sitors
---	--------

Visitors	Cluster1	Cluster2	Cluster3	Cluster4	Cluster5	Cluster6
Intercept	5.09**	4.80**	5.21**	3.10**	2.62**	3.61**
timeperiod	0.46**	0.49**	0.44**	0.07	0.50**	0.27**
grouptype	0.25**	0.17**	0.19**	-0.20**	-0.16**	0.02
dummy_1	-1.22**	-1.18**	-1.21**	-0.81**	-1.17**	-1.04**
dummy_2	-0.05	0.05	-0.05	0.24**	0.05	0.21**
weekend	-0.43**	-0.45**	-0.40**	-0.44**	-0.31**	-0.56**
t:g	-0.59**	-0.66**	-0.56**	0.11	-0.54**	-0.40**

Significance codes: * < 0.05, ** < 0.01

Table 4: Cluster Details

	Visitors	Visits	End of Article	Viewed 5
	(%) of total	(%) of total	Reached (%)	Pages (%)
Cluster1	32.44	32.41	8.45	0.35
Cluster2	22.51	22.24	90.22	0.04
Cluster3	34.69	34.63	11.47	0
Cluster4	2.18	2.15	92.72	29.17
Cluster5	1.94	1.90	56.52	0.56
Cluster6	6.24	6.66	26.57	1.56

Limitations and Future Work

Do Direct Evaluation with suitable Data

Extend analysis to other websites

Compare actions across publishers

Scrape tags from content

EXTRAS - EXTRAS - EXTRAS

Feature Buckets

Technology

- **Browser Version** •
- OS version •
- New/ Old •
- **Cookies enabled** •
- JavaScript Version

- Avg. time per tag

- Country
- Region
- City

Clustering Quality – Loyalty Set

[2] Rousseeuw, Peter J. "Silhouettes: a graphical aid to the interpretation and validation of cluster analysis." Journal of computational and applied mathematics 20 (1987): 53-65.

8

9

10

29

7

 $\ensuremath{\mathbb{C}}$ 2016 Adobe Systems Incorporated. All Rights Reserved. Adobe Confidential.

6

5

0.60

0.58

0.56

0.54

0.52

0.50

ASW

Average silhouette width : 0.67