DEEP & CROSS NETWORK FOR AD CLICK PREDICTIONS

Ruoxi Wang Stanford University AdKDD2017, Halifax

Joint work with

Bin Fu (Google), Gang Fu (Google) and Mingliang Wang (Google, summer intern host)

OUTLINE

- Introduction
- Deep & Cross Network (DCN)
- Experimental Results
- Cross Network Analysis

INTRODUCTION

PROBLEM AND CHALLENGE

Goal

- Input $\{(x_i, y_i)\}_{i=1}^N$, x_i : data, y_i : label
- Predict Ad click-through rate (CTR) accurately

Key

- Identify predictive feature crossings
- Explore rare or unseen features

Challenge

- Large and sparse feature space
- Manual feature engineering

- Factorization Machines (FMs) [Rendle et al, 2010]
- Deep Crossing (DC) [Shan et al, 2016]
- Wide-and-Deep (W&D) [Cheng et al, 2016]

FM

- © Handles sparse input
- © Generalizes well
- © 2nd-order interactions

DCN (our model)

 \odot

© higher-order interactions

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

- Factorization Machines (FMs) [Rendle et al, 2010]
- Deep Crossing (DC) [Shan et al, 2016]
- Wide-and-Deep (W&D) [Cheng et al, 2016]

DC (and DNN-based model)

- © Complex interactions
- Implicit crossing:linear + ReLu (or Sigmoid)

DCN (our model)

 \odot

Explicit & bounded crossing:e. g, X₁X₂, X₁X₃X₄

- Factorization Machines (FMs) [Rendle et al, 2010]
- Deep Crossing (DC) [Shan et al, 2016]
- Wide-and-Deep (W&D) [Cheng et al, 2016]

W&D

- © Memorization + Generalization
- No efficient method to select cross features

DCN (our model)

© Automatic + efficient

DEEP & CROSS NETWORK (DCN)

DCN: ARCHITECTURE & ADVANTAGES

- Joint training
- No need of manual feature engineering

DCN: EMBEDDING AND STACKING

- Inputs are mostly categorical features (e.g. "country=usa")
- One-hot vector encoding (e.g. "[0,1,0]")
- Leads to excessively highdimensional feature spaces
- Input of our model: output from embedding

Low dimensional embedding

Stacking

$$\mathbf{x}_0 = \left[\mathbf{x}_{\mathrm{embed},1}^T, \dots, \mathbf{x}_{\mathrm{embed},k}^T, \mathbf{x}_{\mathrm{dense}}^T\right]$$

DCN: CROSS NETWORK

$$x_{l+1} = x_0 x_l^T w_l + b_l + x_1$$

- Generate all d² cross pairs
- $d^2 \rightarrow d$ by an immediate embedding
- Optimization selects informative crossings
- Residual network

O EXPERIMENTAL RESULTS

CRITEO DISPLAY ADS DATA

- 13 integer features and 26 categorical features
- 11 GB user logs from a period of 7 days (~41 million records)
- Improvement of 0.001 in logloss is considered as practically significant

Best test logloss from different models

Model	DCN	DC	DNN	FM	LR
Logloss	0.4419	0.4425	0.4428	0.4464	0.4474

✓ Outperforms DNN with 60% less memory!

- DC: deep crossing (the same embedding (stacking) layer as DCN)
- DNN: deep neural network (the DCN model with no cross network)
- FM: factorization machine based model (proprietary details)
- LR: logistic regression (all single features + carefully selected cross features)

COMPARISON: DCN & DNN (CRITEO)

#parameters needed to achieve a desired logloss

Logloss	0.4430	0.4460	0.4470	0.4480
DCN	7.9E+05	7.3E+04	3.7E+04	3.7E+04
DNN	3.2E+06	1.5E+05	1.5E+05	7.8E+04

✓ ~ an order of magnitude more memory efficient!

Best logloss achieved with various memory budgets

#params	5.0E+04	1.0E+05	4.0E+05	1.1E+06	2.5E+06
DCN	0.4465	0.4453	0.4432	0.4426	0.4423
DNN	0.4480	0.4471	0.4439	0.4433	0.4431

- ✓ consistently outperforms!
- ✓ captured meaningful feature interactions!

NON-CTR (DENSE) DATASETS

Forest datatype

(581012 samples and 54 features)

Model	DCN	DNN	DC
Accuracy	0.9740	0.9737	0.9737

Higgs

(11M samples and 28 features)

Model	DCN	DNN
Logloss	0.4494	0.4506

✓ Performs well on non-CTR data!

✓ DCN outperforms with 50% of the memory used in DNN!

CROSS NETWORK ANALYSIS

- Consider an *l* layer cross network
- Our effective hypothesis functions live in the space of degree l+1 polynomials
- We use only O(d) parameters to characterize them

• $P_n(x) = \{\sum_{\alpha} w_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \le |\alpha| \le n, \alpha \in \mathbb{N}^d \}$; $O(d^n)$ parameters

- $P_n(x) = \{\sum_{\alpha} w_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \le |\alpha| \le n, \alpha \in \mathbb{N}^d\}; O(d^n) \text{ parameters}$
- $x_{i+1} = x_0 x_i^T w_i + x_i$; Input: $x_0 = [x_1, x_2, ..., x_d]^T$; Output: $g_l(x_0) = x_l^T w_l$
- Explicitly applies feature crossing at each layer, and reproduces:

$$\left\{ \sum_{\boldsymbol{\alpha}} c_{\boldsymbol{\alpha}}(\mathbf{w}_0, \dots, \mathbf{w}_l) x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \le |\boldsymbol{\alpha}| \le l+1, \boldsymbol{\alpha} \in \mathbb{N}^d \right\}$$

- $P_n(x) = \{\sum_{\alpha} w_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \leq |\alpha| \leq n, \alpha \in \mathbb{N}^d \}$; $O(d^n)$ parameters
- $x_{i+1} = x_0 x_i^T w_i + x_i$; Input: $x_0 = [x_1, x_2, ..., x_d]^T$; Output: $g_l(x_0) = x_l^T w_l$
- Explicitly applies feature crossing at each layer, and reproduces:

$$\left\{ \sum_{\alpha} c_{\alpha}(\mathbf{w}_{0}, \dots, \mathbf{w}_{l}) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{d}^{\alpha_{d}} \middle| 0 \leq |\alpha| \leq l+1, \alpha \in \mathbb{N}^{d} \right\}$$

 \checkmark cross term of degree $|\alpha| = \sum_i \alpha_i$

- $P_n(x) = \{\sum_{\alpha} w_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \le |\alpha| \le n, \alpha \in \mathbb{N}^d \}$; $O(d^n)$ parameters
- $x_{i+1} = x_0 x_i^T w_i + x_i$; Input: $x_0 = [x_1, x_2, ..., x_d]^T$; Output: $g_l(x_0) = x_l^T w_l$
- Explicitly applies feature crossing at each layer, and reproduces:

$$\left\{ \sum_{\alpha} c_{\alpha}(\mathbf{w}_{0}, \dots, \mathbf{w}_{l}) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{d}^{\alpha_{d}} \middle| 0 \leq |\alpha| \leq l+1, \alpha \in \mathbb{N}^{d} \right\}$$

$$\checkmark \text{ cross term of degree } |\alpha| = \sum_{i} \alpha_{i}$$

✓ all cross terms of degree $0 \sim l + 1$

- $P_n(x) = \{\sum_{\alpha} w_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \leq |\alpha| \leq n, \alpha \in \mathbb{N}^d \}$; $O(d^n)$ parameters
- $x_{i+1} = x_0 x_i^T w_i + x_i$; Input: $x_0 = [x_1, x_2, ..., x_d]^T$; Output: $g_l(x_0) = x_l^T w_l$
- Explicitly applies feature crossing at each layer, and reproduces:

- $P_n(x) = \{\sum_{\alpha} w_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_d^{\alpha_d} \mid 0 \le |\alpha| \le n, \alpha \in \mathbb{N}^d \}$; $O(d^n)$ parameters
- $x_{i+1} = x_0 x_i^T w_i + x_i$; Input: $x_0 = [x_1, x_2, ..., x_d]^T$; Output: $g_l(x_0) = x_l^T w_l$
- Explicitly applies feature crossing at each layer, and reproduces:

$$\left\{ \sum_{\alpha} c_{\alpha}(\mathbf{w}_{0}, \dots, \mathbf{w}_{l}) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \dots x_{d}^{\alpha_{d}} \middle| 0 \leq |\alpha| \leq l+1, \alpha \in \mathbb{N}^{d} \right\}$$

$$\checkmark \alpha \neq \beta \Rightarrow c_{\alpha} \neq c_{\beta} \qquad \checkmark \text{ cross term of degree } |\alpha| = \sum_{i} \alpha_{i}$$

$$\checkmark O(d) \text{ parameters} \qquad \checkmark \text{ all cross terms of degree } 0 \sim l+1$$

$$e.g., c_{\alpha} = \sum_{i,j,k \in P_{\alpha}} w_0^{(i)} w_1^{(j)} w_3^{(k)} + w_0^{(i)} w_2^{(j)} w_3^{(k)} + w_1^{(i)} w_2^{(j)} w_3^{(k)} \quad (l = 3)$$

RECAP

Proposed the DCN that

- handles a large set of sparse and dense features
- learns explicit cross features of bounded degree jointly with traditional deep representations
- delivers state-of-the-art performance on Criteo CTR dataset, in terms of both model accuracy and memory usage

DEEP & CROSS NETWORK FOR AD CLICK PREDICTIONS

Ruoxi Wang, Bin Fu, Gang Fu, Mingliang Wang

- Factorization Machines (FMs) [Rendle et al, 2010]
- Deep Neural Networks (DNNs)
- Deep Crossing (DC) [Shan et al, 2016]
- Wide-and-Deep Model (W&D) [Cheng et al, 2016]

RELATED WORK

- Factorization Machines (FMs) [Rendle et al, 2010]
- Field-aware Factorization Machines (FFMs) [Juan et al, 2016]
- Deep Crossing (DC) [Shan et al, 2016]
- Wide-and-Deep Model (W&D) [Cheng et al, 2016]

$$\langle \mathbf{v}_{i,f_1}, \mathbf{v}_{j,f_2} \rangle x_i x_j$$

FORMULA FOR MONOMIAL COEFFICIENT

$$c_{\alpha} = M_{\alpha} \sum_{\mathbf{i} \in B_{\alpha}} \sum_{\mathbf{j} \in P_{\alpha}} \prod_{k=1}^{|\alpha|} w_{i_k}^{(j_k)}$$

- M_{α} is a constant independent of w_i 's
- $B_{\alpha} = \{ y \in \{0, 1, \dots, l\}^{|\alpha|} \mid y_i < y_j \land y_{|\alpha|} = l \}$
- P_{α} is the set of all the permutations of the indices (1, ..., 1, ..., d, ..., d) α_1 times α_d times

EFFICIENT PROJECTION

$$\mathbf{x}_{p}^{T} = \begin{bmatrix} x_{1}\tilde{x}_{1} \dots x_{1}\tilde{x}_{d} & \dots & x_{d}\tilde{x}_{1} \dots x_{d}\tilde{x}_{d} \end{bmatrix} \begin{bmatrix} \mathbf{w} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{w} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{w} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{w} \end{bmatrix}$$

HYPER-PARAMS TUNING RANGE

CRITEO

- # Hidden layers: 2 ~ 5; Hidden layer size: 32 ~1024
- # Cross layers: 1 ~ 6 (DCN)
- # Residual units: $1 \sim 5$; Input dimension and cross dimension: $100 \sim 1026$ (DC)
- Initial learning rate: 0.0001 0.001

Non-CTR

- # Deep layers: $1 \sim 10$; Layer size: $50 \sim 300$
- # Cross layers: 4 ~ 10
- # Residual units: $1 \sim 5$; Input dimension and cross dimension: $50 \sim 300$ (DC)

HYPER-PARAMS FOR BEST MODELS

CROTEO

- DCN: 2 deep layers of size 1024 + 6 cross layers
- DNN: 5 deep layers of size 1024
- DC: 5 residual units with input dimension 424 + cross dimension 537
- LR: 42 cross features

FOREST

- DCN: 8 cross layers of size 54 + 6 deep layers of size 292
- DNN: 7 deep layers of size 292
- DC: 4 residual units with input dimension 271 + cross dimension 287

HIGGS

- DCN: 4 cross layers of size 28 + 4 deep layers of size 209
- DNN: 10 deep layers of size 196

RESULTS WITH STD (CRITEO)

- **DCN**: $0.4422 \pm 9 \times 10 5$
- **DNN**: $0.4430 \pm 3.7 \times 10-4$
- DC: $0.4430 \pm 4.3 \times 10-4$