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PROBLEM AND CHALLENGE

Goal
Input {(x;,v;)}\.,, x;: data, y;: label
Predict Ad click-through rate (CTR) accurately

Key
Identify predictive feature crossings

Explore rare or unseen features

Challenge X = @

and feature space
feature engineering




RELATIONS TO EXISTING WORK

= Factorization Machines (FMs) [Rendle et al, 2010]
= Deep Crossing (DC) [Shan et al, 2016]
= Wide-and-Deep (W&D) [Cheng et al, 2016]

FM DCN (our model)
© Handles sparse input ©
© Generalizes well ©

® 2nd-order interactions © higher-order interactions




RELATIONS TO EXISTING WORK

= Factorization Machines (FMs) [Rendle et al, 2010]

= Deep Crossing (DC) [Shan et al, 2016]
= Wide-and-Deep (W&D) [Cheng et al, 2016]

DC (and DNN-based model) DCN (our model)
© Complex interactions ©
© V (smooth) f,Ve, || f = fll <€ ©
® Implicit crossing: © Explicit & bounded crossing:

linear + Relu (or Sigmoid) e.8, Xq1Xy, X1X3X4

Residual:
Units

Embedding and
Staking



RELATIONS TO EXISTING WORK

= Factorization Machines (FMs) [Rendle et al, 2010]
= Deep Crossing (DC) [Shan et al, 2016]
= Wide-and-Deep (W&D) [Cheng et al, 2016]

W&D DCN (our model)
© Memorization + Generalization ©
® No efficient method to select © Automatic + efficient

cross features
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Combination output layer P .

p= Singid(VVlogitwstaCk =+ blogit) T

EEmbedding and stacking layer

Handle Large Set of Sparse Features

@ Dense feature
(O Sparse feature
(O Embedding vec
(O Cross layer
. Deep layer
@ Output

DCN:
RRCHITECTURE
&

RDVANTAGES

= Joint training

= No need of manual
feature engineering




DCN: EMBEDDING AND STACKING

= Inputs are mostly categorical features

(e.g.“country=usa’)

= One-hot vector encoding

(e.qg.“[0,1,0])

= Leads to excessively high-
dimensional feature spaces

= Input of our model:

output from embedding

Low dimensional embedding

Xembed,i = Wembed,ixi

Look up table

V X forembedding _______
| @@000! {@0!,... @
I  e@@00—+ 00 @
% . (@@000; (@0 @)

{country:cn, country:us}
Stacking

[T T T
X0 = [Xembed,h ++ ) Xembed, k Xdense]
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DCN:
CROSS NETWORK

Generate all d? cross
pairs

d? - d by an immediate
embedding

Optimization selects
informative crossings

Residual network






CRITEO DISPLAY ADS DATA

= 13 integer features and 26 categorical features
= 11 GB user logs from a period of 7 days (~ 41 million records)

= Improvement of 0.001 in logloss is considered as practically significant

Best test logloss from different models

m DCN DC DNN FM LR

0.4419 0.4425 0.4428 0.4464 0.4474

v Outperformms DNN with 60% less memory!

= DC: deep crossing (the same embedding (stacking) layer as DCN)
= DNN: deep neural network (the DCN model with no cross network)

= FM: factorization machine based model (proprietary details)

= LR: logistic regression (all single features + carefully selected cross features)



COMPARISON: DCN & DNN (CRITEO)

Hparameters needed to achieve a desired logloss

m 0.4430 0.4460 0.4470 0.4480 )
v' ~ an order of magnitude

1.9E+05 1.3E+04 3.1E+04 3.7E+04 more memory efficient!
3.2E+06 1.5E+08 1.5E+08 1.8E+04

Best logloss achieved with various memory budgets

5.0E+04 1.0E+05 4.0E+05 1.1E+06 2.5E+06 v’ consistently outperforms!
v captured meaningful

0.4480 0.4471 0.4439 0.4433 0.4431




NON-CTR (DENSE)

Forest datatype
(581012 samples and 54 features)

[ Vodel EC I Y DC

0.9740 0.9737 0.9737

v Performs well on non-CTR data!

DATASETS

Higgs
(11M samples and 28 features)

PUEN pen DNN

0.4494 0.4506

v" DCN outperforms with 50% of the
memory used in DNN!






DCN: CROSS NETWORK ANALYSIS

Consider an [- layer cross network
Our effective hypothesis functions live in the space of polynomials

We use only parameters to characterize them



DCN: CROSS NETWORK ANALYSIS

Po(x) = {Zawex; ' x,% x40 < |a| < n,a € N4}, ') parameters



DCN: CROSS NETWORK ANALYSIS

Po(x) = {Zawex; ' x,% x40 < |a| < n,a € N4}, ') parameters

Xis1 = XoXiw; + X;; Input: xg = [x1,xy, ..., x4]7; Output: g;(xo) = x7 w;

applies feature crossing at each layer, and reproduces:

a1 Q9 ad
an(wo,...,wl)xl Ty ... Ty

(87

0<|al <I+1,a€cN



DCN: CROSS NETWORK ANALYSIS
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DCN: CROSS NETWORK ANALYSIS

Po(x) = {Zawex; ' x,% x40 < |a| < n,a € N4}, ') parameters

Xis1 = XoXiw; + X;; Input: xg = [x1,xy, ..., x4]7; Output: g;(xo) = x7 w;

applies feature crossing at each layer, and reproduces:

Y1 02 Qd
an(wo,...,wl)xl Ty’ ... Ty

x
v

0<|a|<I+1,acN



DCN: CROSS NETWORK ANALYSIS

= Py(x) = {Zawax; %52 x| 0 < |a| < n,a € N4}, O(d") parameters
= Xjp1 = XoXiw; + X;; Input: xo = [xq, X5, ..., x4]7; Output: g;(xo) = x7 w;

= Explicitly applies feature crossing at each layer, and reproduces:

Va+f=cy#cg v’ cross term of degree |a| = Y; a;

v' O(d) parameters v' all cross terms of degree 0 ~ [ + 1

e.g.,Cq = z W(gi) Wl(j)wsgk) + Wéi) Wz(j)wék) + Wl(i) Wz(j)wsgk) (l=3)

[,j,KEP,




RECAP

Proposed the DCN that
handles a large set of and features
learns cross features of jointly with traditional deep
representations

delivers state-of-the-art performance on Criteo CTR dataset, in terms of both
model and usage
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RELATIONS TO EXISTING WORK

= Factorization Machines (FMs) [Rendle et al, 2010]
= Deep Neural Networks (DNNs)

= Deep Crossing (DC) [Shan et al, 2016]

= Wide-and-Deep Model (W&D) [Cheng et al, 2016]




RELATED WORK

= Factorization Machines (FMs) [Rendle et al, 2010]

= Field-aware Factorization Machines (FFMs) [Juan et al, 2016]
» Deep Crossing (DC) [Shan et al, 2016] L= @ - Va=
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» Wide-and-Deep Model (W&D) [Cheng et al, 2016]



FORMULA FOR MONOMIAL COEFFICIENT

M, is a constant independent of w;'s
P, is the set of all the permutations of the indices (1,...,1, ..., d,...,d)
a7 times a g tirés



EFFICIENT PROJECTION

T - . . .
= (0l &g L xgdy x4l




HYPER-PERAMS TUNING RANGE

= # Hidden layers: 2 ~ 5; Hidden layer size: 32 ~1024

= # Cross layers: 1 ~ 6 (DCN)

= # Residual units: 1 ~ 5; Input dimension and cross dimension: 100 ~ 1026 (DC)
= Initial learning rate: 0.0001 - 0.001

= # Deep layers: 1 ~ 10; Layer size: 50 ~ 300
= # Cross layers: 4 ~ 10

= # Residual units: 1 ~ 5; Input dimension and cross dimension: 50 ~ 300 (DC)



HYPER-PERAMS FOR BEST MODELS

= DCN: 2 deep layers of size 1024 + 6 cross layers
= DNN: 5 deep layers of size 1024
= DC: 5 residual units with input dimension 424 + cross dimension 537

= LR: 42 cross features

= DCN : 8 cross layers of size 54 + 6 deep layers of size 292
= DNN: 7 deep layers of size 292

= DC: 4 residual units with input dimension 271 + cross dimension 287

= DCN: 4 cross layers of size 28 + 4 deep layers of size 209
= DNN: 10 deep layers of size 196



RESULTS WITH STD (CRITEO}

DCN: 0.4422 £ 9 X 10—-5
DNN:0.4430 * 3.7 X 10—4
DC:0.4430 + 4.3 X 10—-4



