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ABSTRACT
Etsy 1 is a global marketplace where people across the world connect
to make, buy and sell unique goods. Sellers at Etsy can promote
their product listings via advertising campaigns similar to traditional
sponsored search ads. Click-Through Rate (CTR) prediction is an
integral part of online search advertising systems where it is utilized
as an input to auctions which determine the final ranking of promoted
listings to a particular user for each query. In this paper, we provide a
holistic view of Etsy’s promoted listings’ CTR prediction system and
propose an ensemble learning approach which is based on historical
or behavioral signals for older listings as well as content-based
features for new listings. We obtain representations from texts
and images by utilizing state-of-the-art deep learning techniques
and employ multimodal learning to combine these different signals.
We compare the system to non-trivial baselines on a large-scale
real world dataset from Etsy, demonstrating the effectiveness of
the model and strong correlations between offline experiments and
online performance. The paper is also the first technical overview to
this kind of product in e-commerce context.
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Figure 1: Promoted and organic search results for a query
layering necklace is shown where promoted listings are
presented in the first row and organic results followed.

1 INTRODUCTION
Etsy, founded in 2005, is a global marketplace where people around
the world connect to make, buy and sell unique goods: handmade
items, vintage goods, and craft supplies. Users come to Etsy to
search for and buy listings other users offer for sale. Currently,
Etsy has more than 45M items to sell with nearly 2M active sellers
and 30M active buyers across the globe2. As millions of people
search for items on the site every day and increasingly more sellers
compete for more customers, Etsy has started to offer Promoted
Listings Program3 to help sellers get their items in front of these
interested shoppers by placing some of their listings higher up in
related search results. An example of promoted listings, blending
with organic results, are shown in Figure 1.

In a nutshell, promoted listings at Etsy work as follows. A seller,
who is willing to participate in the program, would specify a total
budget that he/she wants to spend during the whole campaign and
Etsy, as the platform, would choose queries or keywords that the
campaign runs on and how much bid price for each query. In a
simplified setting, for each query q and each relevant promoted
listing l, the platform computes bl,q , the bidding price of the listing
l to the query q, and the expected Click-Through Rate (CTR) θl,q .
The score bl,q × θl,q is used in a generalized second price auction4

2https://www.etsy.com/about/
3https://www.etsy.com/advertising#promoted listings
4https://en.wikipedia.org/wiki/Generalized second-price auction

http://www.etsy.com
https://www.etsy.com/about/
https://www.etsy.com/advertising#promoted_listings
https://en.wikipedia.org/wiki/Generalized_second-price_auction
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with other qualified listings. The final pricing and the position of a
promoted listing is determined by the auction. The whole process is
similar to traditional sponsored search with two distinctions:

• Sellers can only specific the overall budget without the
control on each bidding price.

• Sellers cannot choose which queries they want to bid on.

For both aspects, Etsy as a platform would operate on seller’s behalf.
Etsy uses Cost-Per-Click (CPC) model, meaning that the site charges
sellers budget when a buyer clicks on the promoted listing. A similar
program exists in eBay5 while it uses Cost-Per-Action (CPA) model.
As Etsy is using CPC model to operate promoted listings, in order to
optimize the platform’s revenue, it implies that we need more clicks
for each promoted listing and each such clicked listing pays more.
In other words, we would like to have higher bl,q and θl,q for each
clicked listing l to the query q.

In this paper, we discuss the methodologies and systems to drive
CTR θ, given a fixed bidding strategy which computes b. To our
knowledge, our paper is the first study to systematically discuss how
a promoted listings system can be built with practical considera-
tions. In particular, we focus on areas to address these research and
engineering questions:

• What is the architecture to balance the effectiveness and
simplicity of the system, given the current scale of Etsy?

• What are the effective CTR prediction algorithm and fea-
tures as well as modeling techniques?

• As an e-commerce site where images are ubiquitous and vi-
tal to the user experience, what is the strategy to incorporate
such information into the algorithm?

• Is there any correlation between offline evaluation metrics
and online model performance, such that we can constantly
improve our models?

Although some of these questions might have been tackled in prior
work (e.g., [2, 8, 10, 12]), we provide a comprehensive view of these
issues in this paper. In addition to the holistic view, in terms of
modeling techniques, we propose an ensemble learning approach
which leverages historical or users’ behavioral signals for existing
listings as well as content-based features for new listings. In order
to learn meaningful representations from features, we utilize feature
hashing and deep learning techniques to obtain representations from
texts and images and employ a multimodal learning process to com-
bine these different signals. To demonstrate the effectiveness of the
system, we compare the proposed system to non-trivial baselines
on a large-scale real world dataset from Etsy in the offline setting
as well as online experimental results. During this process, we also
establish a strong correlation between offline evaluation metrics
and online performance ones, which serves as a guidance for future
experimental plans.

The paper is organized as follows. We start a brief review of
related work in Section 2, followed by the discussion of our method-
ology in Section 3. We demonstrate the effectiveness of the system
in Section 4 and conclude the paper in Section 5.

5http://pages.ebay.com/seller-center/stores/promoted-listings/benefits.html

2 RELATED WORK
In this section, we briefly review some related work to online adver-
tising and multimodal modeling with respect to learning to rank.

Ads’ CTR Prediction: Several industrial companies shared their
practical lessons and methodologies to build large-scale ads systems.
Early authors from Microsoft proposed online Bayesian probit re-
gression [6] to tackle the CTR prediction problem. Arguably the
first comprehensive review is from Google’s ads system [12] where
the paper not only talks about different aspects of machine learning
algorithms (e.g., models, features and etc.) to improve ads click-
through-rate modeling but also layouts what kind of components
need to be built for a robust industrial system (e.g., monitoring and
alerts). The paper also populated Follow-The-Regularized-Leader
(FTRL) as a strong ads CTR prediction baseline. In [8], authors from
Facebook described their ads system with the novelty of utilizing
Gradient Boosted Decision Trees (GBDT) as feature transformers, as
well as online model updates and data joining. Twitter’s engineers
and researchers [10] advanced the field by utilizing both pointwise
and pairwise learning to CTR prediction problem, with detailed fea-
ture analysis. LinkedIn’s authors [2] proposed to utilize ADMM
to fit large-scale Bayesian logistic regression and also provided de-
tailed discussion on how to cache model coefficients and features.
Chapelle et al. [4] described Yahoo’s CTR prediction algorithms
with the emphasis on a wide range of techniques to improve the
accuracy of the model including subsampling, feature hashing and
multi-task formalism.

Multimodal Learning to Rank: There exists many works to
utilize multimodal data, especially images, for the scenario of learn-
ing to rank. The basic idea behind multimodal learning is to learn
different representations from different data types and combine their
predictive strengths in another layer (e.g., [3, 9]). Specifically in
learning to rank, Lynch et al. [11] utilized deep neural networks to
extract images features and learned a pairwise SVM model to rank
organic search results to queries. Recently proposed ResNet [7]
has been widely treated as a generic image feature generation tool,
which is used in the current work.

3 SYSTEMS AND METHODOLOGIES
On high level, our promoted listings system matches a user query
with an initial set of promoted listing results based on the textual
relevance. The final ranking of the listings is determined by a gener-
alized second price auction mechanism that takes multiple factors
such as bids, budgets, pacing and CTR of those items into account.
In this paper, we focus on the CTR prediction of the system.

3.1 System Overview
Out CTR prediction system consists of three main components:

(1) data collection and training instances creation
(2) model training and deployment
(3) inference and CTR prediction scores serving

Firstly, real-time events, including which promoted listings are
served and how users interact with them, are processed through
Kakfa 6 pipeline to our Hadoop Distributed File System (HDFS)
regularly. We then extract listings’ information with historical user

6https://kafka.apache.org/

http://pages.ebay.com/seller-center/stores/promoted-listings/benefits.html
https://kafka.apache.org/
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Figure 2: The high-level CTR prediction system overview, which
is described in Section 3.1 and historical and multimodal list-
ings embedding is covered in Section 3.3, model training in Sec-
tion 3.2, offline evaluations and predictions in Section 4.1 and
Section 4.2

behavior data from HDFS. During this process, we assign positive
and negative labels to listings where each clicked listing is consid-
ered as a positive data instance while each non-clicked listing is
considered as negative. The listings information are transformed
into a feature vector containing both historical and multimodal em-
beddings described in Section 3.3. All listings features excluding
the image representations are extracted via multiple MapReduce
Hadoop jobs. The deep visual semantic features are extracted in a
batch mode on a set of single boxes with GPUs using Torch 7. The
visual features are then transferred to HDFS where they are joined
with all other listing features to create a labeled training instance.

We utilize Vowpal Wabbit 8 to train our CTR prediction models
where all training processes happen on a single box. The details
about CTR prediction model is described in Section 3.2. The model
is then deployed to multiple boxes as an API endpoint for inference.
The new model is validated through a set of offline evaluation metrics
discussed in Section 4.1 on a holdout dataset of promoted listings
search logs.

At inference time a new CTR prediction score is generated for ev-
ery active listing available for sale. These listings are tagged with the
feature representations similar to training side via multiple MapRe-
duce Hadoop jobs to create testing instances. The model is applied
on each testing instance via the API endpoint in a MapReduce job
where a CTR prediction score is returned. The CTR prediction scores
are calibrated to control for CPC by keeping the CTR mean and stan-
dard deviation the same across multiple experimental variants. The
calibrated CTR prediction are the final input to the auction mech-
anism deciding the final ranking of promoted listings. Figure 2
provides an overview of this architecture.

3.2 CTR Prediction
In a nutshell, given a query q issued by a user, CTR prediction is to
determine how likely a listing l is going to be clicked by the user
under the context of q. In other words, the system is to model the
conditional probability P (c | q, l) where c is the binary response,
click or not.

In practice, we form a feature vector xq,l ∈ Rd to represent the
overall feature representation of query q and listing l. In later part
of the paper, we will discuss how xq,l is constructed in detail. As
7http://torch.ch/
8http://hunch.net/∼vw/

logistic regression is a widely-used de-facto machine learning model
for CTR prediction in industry, due to it’s scalability and speed, we
also follow the same formalism, modeling P (c | q, l) = σ(w · xq,l)
where w ∈ Rd is a coefficient vector and σ(a) = 1/(1+ exp(−a))
is a sigmoid function. Many approaches exist to obtain optimal
w. Here, we utilize FTRL-Proximal algorithm as the primary
learning tool for both single and multimodal feature representations
discussed in Section 3.3:

wt+1 = argmin
w

(
g1:t ·w +

1

2

t∑
s=1

σs||w −ws||22 + λ1||w||1
)

where wt+1 is the optimal coefficient vector at iteration t + 1,
g1:t =

∑t
s=1 gs (gs is the gradients at iteration s) and σs is the

learning-rate schedule and λ1 is the regularization parameter. The
detailed description of the algorithm is discussed in [12].

3.3 Feature Representations
The feature representation x plays a vital role in the effectiveness
of the model. Here, we focus on the set of listing features that
are important to the performance. The listing features used in CTR
prediction can be divided into two sets of features: historical features
based on promoted listing search logs that record how users interact
with each listing and content-based features which are extracted
from the information presented in each listing’s page.

Historical Features: This type of features track how a particular
listing performs in terms of CTR and other behavior metrics in the
past, which is a usually strong baseline to the problem. Here, we
describe how historical smoothed CTR works while other types of
historical features can be easily extended from this discussion.

For a listing li, we assume that click events are random variables,
drawn from a Binomial distribution with parameter θi, being the
probability to be clicked by users. The naı̈ve estimator, which is
also the Maximum Likelihood Estimator (MLE), θ̂i = ci

vi
where

ci is the number of clicks for the item i and vi is the number of
impressions for the item i. This estimator is only reliable for listings
with significant enough data. However, this is usually not the case
for new listings with much less or zero impressions. This motivates
us to use a prior distribution to smooth the estimation, similar to
the method described in Section 3.1 of [1]. Essentially, we put a
Beta(α, β) prior on θi and the mean of the posterior distribution
(which is also a Beta distribution due to conjugacy) becomes:

ci + α

vi + α+ β

where α can be set as global average of clicks and β can be set
as global average of impressions (We understand that there exists
empirical Bayes method to estimate both parameters from data). We
denote this estimator as smoothed CTR, which has a smaller variance
and is more stable compared to the MLE estimator. In practice, we re-
compute average number of clicks and impressions for α and β for
every time period and compute the exponential smoothing over these
numbers to make sure the prior numbers are stable. The smoothed
CTR is computed over the training set per day and is used as the only
feature for a logistic regression model, denoted as historical model
discussed in Section 4.2. From our experiments, we found that this
model serves a strong baseline and smoothed CTR also contributes
significantly in the final predictive model.

http://torch.ch/
http://hunch.net/~vw/
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In addition to historical CTR, we compute similar historical fea-
tures for other user behaviors, including listing favorites, purchases
and etc.

Content-based Features: Etsy listings are composed of text
information such as tags, title and description, numerical information
such as price and listing id and at least one main image representing
the item for sale. The goal here is to learn an effective multimodal
feature representation Fl for a listing item l, given its title and tag
words, a numerical listing id, a numerical price, and a listing image.

For text, we obtain a feature vector by embedding unigram and
bigrams of tags and title in a text vector space, utilizing the hashing
trick [14]. As raw text can grow unbounded and most raw features
only appear handful of times, the feature hashing technique can help
us have a finite and meaningful representation of texts. We denote
the text embedding as Tl.

For images, we embed each image into a representation de-
noted by Il. Here, Il is obtained by adopting a transfer learning
method [13] where the internal layers of a pre-trained convolutional
neural network act as generic feature extractors on other datasets
with or without fine tuning depending on the specs of the dataset.
The image features are transfer-learned from a pre-trained deep
residual neural network (ResNet101 [7]) that is pre-trained on Ima-
geNet [5]. We utilize the last fully connected layer of the residual
neural network to obtain a 2048 dimensional representation of listing
l in the image space.

The multimodal embedding of the item l is then obtained as Fl =
[Tl, Il], which is a simple concatenation of both text embedding
features and the image embedding features. The final multimodal
feature representation is used to train the logistic regression (dented
as content-based model) discussed in Section 4.2.

3.4 Ensemble Learning
As we discussed in 3.3, different features might capture different
aspects of listings such that it may not perform well by simply con-
catenating them together. From our preliminary experiments, we
found that historical features and listing embedding features are
effective in slightly different ways. Historical features show strong
performance for listings with enough data while perform poorly for
the ones with little data or no data (behaving like prior distribution in
those cases). On the other hand, content-based features demonstrate
robust performance for listings with little data. Based on these obser-
vations, we propose an ensemble learning approach to combine these
different features. To be specific, we train separate CTR prediction
models purely based on historical features and content-based fea-
tures. Then, we combine these individual models with a higher level
model, again another logistic regression model. This higher level
model determines how to balance signals (in this case, prediction
scores) from models based on historical features and models based
on content-based features. In practice, we train multiple such higher
level models with different regions of data (e.g., listings with enough
historical data or not), which will be discussed in Section 4.

4 EXPERIMENTAL SETUP
In this section, we present the results of our CTR prediction system
on a number of experiments on real-world large scale datasets from

the online marketplace Etsy. We follow the common practice of Pro-
gressive Validation [12] where for each modeling pipeline we have
the training data extracted from [t− 32, t− 2] and t is the current
date. The date t− 1’s data is used as validation set for model com-
parisons and parameter tuning. The winning model can be deployed
on date t. We can run multiple such pipelines to support different
variants for online A/B testing. Therefore, under this framework, we
can consistently innovate on models and compare offline and online
model performances.

Here, we report a set of experimental results from one date. The
dataset for the date consists of more than 35 million Etsy listings.
We collect the training data from [t− 32, t− 2] days of historical
promoted listings search logs across all users. Each training instance
is an active listing with an impression within the past 30 days. We
assign positive labels to clicked listings and negative ones to listings
with no clicks. Since the dataset is heavily imbalanced with non-
clicked impressions dominating, we subsample the negative class
where the down-sampled training dataset consists of 26.5 million
data instances. The t − 1’s validation set consists of 19.5 million
instances that are collected over one day of promoted search logs.
We report the offline evaluation metrics on this dataset which is in
line with the live A/B tests, as discussed in section 4.1.

4.1 Evaluation Metrics
Meaningful offline evaluation metrics that establish correlations
with online A/B test results are a key requirement of production
quality iterative systems such as CTR prediction systems. Online
A/B tests can be expensive in a number of ways, especially: 1) for a
particular web service, the overall traffic is fixed for a given period
of time and therefore usually cannot afford to run a large number
of experiments, and 2) each experiment requires at least several
days to weeks, sometimes months to tell the statistical significant
difference between the control and the treatment group. Thus, it
becomes critical to launch experiments with confidence. In other
words, we want to launch models winning experiments with high
probability and reduce the cost of running many online A/B tests.
In order to achieve this, we would like to seek correlations between
offline experimental metrics and online A/B testing metrics such
that we could use offline metrics to determine which variant would
likely make a successful online A/B candidate. Similar ideas have
been also explored in [15].

The overall process to establish the correlation between offline
metrics and online metrics is complicated. Here, we describe a
simplified version. In short, we have launched a number of exper-
iments with known offline effects (e.g., a particular model outper-
forms/underperforms the baseline production model in a number
of offline metrics which are described below). Then, we observed
how these models perform in online A/B tests and see among all
these offline metrics, which ones are good indicator for online key
business metrics (e.g., clicks, revenue and etc.). In general, we not
only want to seek a sign-correlation (e.g., an offline win indicates an
online win or an offline lose implies an online lose) but also want
to have the right magnitude (e.g., single digit AUC win indicates
single digit CTR win for A/B tests). It should be noted that through
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Figure 3: Offline evaluation metrics: AUC and Average Impres-
sion Log Loss on the hold out data (one day of promoted listings
search click logs)

multiple such studies, we have established the Area Under the Re-
ceiver Operating Characteristic Curve (AUC) as a reliable indicator
of predictive power of our models.

In our system, we monitor AUC, Average Impression Log Loss
and Normalized Cross Entropy [15] as key metrics, which are widely
used in industry as offline evaluation metrics. Here, we discuss these
three metrics in details.

AUC: AUC is a good metric for measuring ranking quality without
accounting for calibration [8]. Empirically, we have found AUC
to be a very reliable measure of relative predictive power of our
models. Improvements in AUC (> 1%) have consistently resulted in
significant CTR wins in multiple rounds of online A/B tests. Figure 3
shows offline AUC of multiple models. Figure 4 (bottom figure)
shows AUC and clicks per request for a production model.

Log Loss: Log loss is the negative log-likelihood of the Bernoulli
model and is often used as an indicator of model performance in
online advertisement. Minimizing log loss indicates that P (c | q, l)
should converge to the expected click rate and result in a better
model 3. A model with lower average impression log loss is then
preferred. Figure 3 (bottom figure) shows the average impression
log loss for multiple variants compared to a baseline model.

Normalized Cross Entropy: This metric is proposed in He et
al. [8]. In essence normalized cross entropy is the average impres-
sion log loss normalized by the entropy of average empirical CTR
of the training dataset. In each training of the model, we compute
the average empirical CTR for the training set used by each variant.
We then divide the average impression log loss by this empirical
training CTR to obtain the normalized cross entropy. The key bene-
fit normalized cross entropy is its robustness to empirical training
CTR. Figure 4 (top figure) shows this metric for multiple variants
compared to a baseline model.

4.2 Empirical Results
Here we present and discuss results of our offline evaluations on
metrics discussed in Section 4.1 for a typical date. Recall that for
our ensemble learning described in Section 3.4, we want final higher

Figure 4: Offline evaluation metrics: Normalized cross entropy
on the hold out data (one day of promoted listing search click
logs) and overlayed AUC with clicks per request per day

level models to learn how to balance different individual models in
different data region. Based on some of our preliminary experiments,
we found that simply dividing datasets based on the number of
impressions are already a good starting point. In particular, in
this experiment, the training and test sets are both divided into
two partitions: listings with more than or equal to k impressions
(denoted as warm) and listings with less than k impressions during
the training period (denoted as cold). We denote the original training
and testing dataset as mixed datasets. We set k = 30 empirically
as the impression breakdown threshold for cold and warm datasets.
Here, we only report offline experimental results but online A/B
tests share similar results as AUC is a consistent indicator of the
offline/online experiments correlation.

Table 1 summarizes the results of our experiments in terms of
AUC, average impression log loss and normalized cross entropy. All
models are compared to a baseline model: a logistic regression with
FTRL trained on mixed training dataset using a numerical listing
id as the single feature representation, which was deployed as the
production model. We report the changes in metrics compared to
this baseline. The historical model denotes the model trained on the
warm training dataset with average smoothed CTR of Section 3as
the single listing representation. The cold, warm and mixed metrics
show the relative performance of this model in comparison with the
baseline model. We can observe that the historical model outper-
forms the baseline in terms of evaluation metrics on warm, cold and
mixed testing sets.

The content-based model is a model that utilizes a multimodal(text
and image) feature representation of listings in the training dataset.
The content-based model performs significantly better on the cold
testing set as illustrated in Table 1. As expected this model performs
worse in terms of offline evaluation metrics on warm and mixed
training sets.

The Ensemble model takes the previous models predictions (his-
torical model trained on warm training set and content-based model
trained on cold to maximize it’s performance) along with smoothed
impressions (blog(impressioncount)c) as the input feature. This
model performs significantly better in terms of AUC (> 1.9% lift on
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Historical Content-based Ensemble

mixed cold warm mixed cold warm mixed cold warm

AUC (%)
+1.56 +1.89 +1.55 −1.57 +6.39 −1.74 +1.95 +8.34 +1.83

Log Loss (×103)
−0.016 −0.048 −0.018 +0.311 −0.194 +0.335 −0.092 −0.332 −0.087

Normalized Entropy (×103)
−0.29 −1.23 −0.31 +5.67 −5.00 +6.01 −1.68 −8.55 −1.56

Table 1: Changes in AUC (%), average impression log loss (×103) and normalized cross entropy (×103) on the dataset is compared to a
numerical listing id only model, which was deployed as the production model, across different variants. The historical model utilized
historical smoothed CTR for the logistic regression while the content-based model uses the multimodal listing features discussed in
Section 3.3. The ensemble model is trained with content-based and historical models scores along with blog(impressioncount)c as an
input to the ensemble. The impressions break threshold for this experiment is set at k = 30 as discussed in Section 4.2.

the mixed testing set, > +8% lift on cold testing set and > +1.8%
lift on the warm testing set), log loss and normalized entropy on
the mixed testing set. The model also performs significantly better
compared to the baseline and previous models on cold and warm
testing sets.

5 CONCLUSION
In this paper we presented an overview of how promoted listings’
CTR prediction system works at Etsy. In addition to the holistic
view, we proposed an ensemble learning approach to leverage differ-
ent signals of listings. In order to learn meaningful representations
from features, we utilize feature hashing and deep learning tech-
niques to obtain representations from texts and images and employ
a multimodal learning process to combine these different signals.
To demonstrate the effectiveness of the system, we compare the
proposed system to non-trivial baselines on real world data from
Etsy in the offline setting, which correlates online experimental re-
sults. During this process, we also established a strong correlation
between offline evaluation metrics and online performance ones,
which serves as a guidance for future experimental plans. This paper
serves as the first study to systematically discuss how a promoted
listings system can be built with practical considerations.
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