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ABSTRACT
Cost-per-action (CPA), or cost-per-acquisition, has become the primary

campaign performance objective in online advertising industry. As

a result, accurate conversion rate (CVR) prediction is crucial for any

real-time bidding (RTB) platform. However, CVR prediction is quite chal-

lenging due to several factors, including extremely sparse conversions,

delayed feedback, a�ribution gaps between the platform and the third

party, etc. In order to tackle these challenges, we proposed a practical

framework that has been successfully deployed on Yahoo! BrightRoll,
one of the largest RTB ad buying platforms. In this paper, we �rst show

that over-prediction and the resulted over-bidding are fundamental chal-

lenges for CPA campaigns in a real RTB environment. We then propose

a safe prediction framework with conversion a�ribution adjustment to

handle over-predictions and to further alleviate over-bidding at di�erent

levels. At last, we illustrate both o�ine and online experimental results

to demonstrate the e�ectiveness of the framework.
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1 INTRODUCTION
In the past few years, advertisers have been rapidly shi�ing their media

buying budgets to programmatic ad buying via RTB protocol. With

di�erent product goals in mind, advertisers can start campaigns with

di�erent goal types, including cost-per-milli (CPM) model, which are

priced in bundles of 1,000 impressions (or ads delivery) and cost-per-

click (CPC) or cost-per-action (CPA), which are priced by the resulted

clicks or conversions. Among these goal types, CPA campaigns have

become dominant due to its direct e�ects on advertisers’ true return

on investment (ROI). Especially they are also less a�ected by notorious

online frauds.
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1.1 CPA Campaign Setup
To run a CPA campaign in a buying platform, the �rst step is to set up

a pixel to track conversion events. �is is typically done by inserting

a piece of JavaScript code at a speci�c page in an advertiser’s website.

A�er the pixel installation, any load of this page triggers the embed-

ded JavaScript code, which fetches user’s cookie ID, along with some

other information, and sends it back to the platform. �is is counted

as one global conversion since it has yet to be credited to a winning

platform by a third-party company. On the other side, the platform

needs to �gure out which global conversions may be a�ributed to itself

periodically. Depending on the preset a�ribution rules, the a�ribution

process traces back from the conversion time with a prede�ned time

window to locate ads or clicks generated by the platform. If any shown

ad or click happened within the time window, this global conversion is

considered as a local a�ribution by the platform. However, whether this

conversion will be a�ributed to the platform can only be determined by

the third-party company who has a panorama view of ad events from all

buying platforms. For any single buying platform, there is no way to be

ascertain that a global conversion will �nally be a�ributed to it. �e local

a�ribution process is invoked a�er a user visits a page that triggers the

�ring of the conversion pixel, and followed by all subsequent updates

happening in CVR prediction process. For CPA campaigns, a widely-

used performance metric is the e�ective cost per action or acquisition

(eCPA)
1

eCPA =
total cost of showing ads

total number of actions

,

which tells the advertisers the actual inventory acquisition cost they

spend for each action.

1.2 Challenges
On the surface, CVR prediction may look very similar to the well studied

CTR prediction problem. As a consequence, there is far less literature

regarding CVR prediction and most researches consider CVR prediction

as a natural extension from CTR prediction. However, a conversion

requires more user engagement than a click in terms of time and/or

monetary spending. Such a costly event requires a user to demonstrate

stronger intention signals in advance and thus users’ behavior-related

features are more important. As the industry leading programmatic

ad buying platform, Yahoo! Brightroll automates RTB buying processes

for thousands of CPA campaigns and provides predictions on billions

of events everyday. We argue that when developing a CVR prediction

model used in the real RTB production environment, the following

challenges must be tackled:

Conversion Rarity Compared with CTR, CVR is usually several

magnitude smaller. �is kind of extreme rarity makes CVR pre-

diction much more challenging. As elaborated later in Section

3, over-predictions are more commonly observed in CVR pre-

diction and consequently depart campaigns actual eCPAs far

away from the advertisers’ goals.

1
h�p://cpm.wiki/de�ne/eCPA
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Delayed Conversion Feedback �e time length between an im-

pression and its click is usually seconds, but the time length

between an impression and the resulted conversion could be

hours or even days. �is di�erence leads to two complications.

First, the conversion model needs to be built to predict events

happening in a much later future time. Second, algorithms

with non-delayed performance feedback assumptions are very

unlikely to be applicable anymore.

Local vs. Global Contributions Another challenge that impacts

CVR estimation is local a�ribution. As explained before, we

are only certain of local a�ribution, which usually results in

an in�ated number of a�ributed conversions compared to the

�nal a�ributed conversions from the third party company. �is

discrepancy sometimes can be unexpectedly large.

Impression Value Divergence In display ad systems, the inven-

tory cost generally follows the second-price auction model and

the best practice is to bid with the true value [13]. For a CPC

goal ad, the estimated true value is fully determined by the

predicted CTR. However, due to the existence of a�ribution,

the true value estimation for a CPA campaign ad is not only

dependent on the predicted CVR but also other factors like the

“residual value” from the previous shown ads.

�e rest of this paper is organized as follows. In Section 2, we review

related work. �e CVR over-prediction issue is explored in Section 3. We

argue that over-prediction is extremely detrimental for CPA campaigns’

performance and any well-designed CVR prediction model must handle

it properly. In Section 4, we propose a practical framework that can

tackle these practical challenges which has been successfully deployed

on Yahoo! BrightRoll. Section 5 shows how to further reduce prediction

bias and adjust the bidding price caused by a�ribution allocations. Ex-

perimental results and evaluations are presented in Section 6. Finally,

Section 7 concludes the paper.

2 RELATEDWORK
�ere has been extensive research [7, 11, 14] on CTR prediction for both

search and display advertising. Since both clicks and conversions are

post-impression events, it’s a natural idea to borrow the well-studied

modeling techniques used for CTR predictions and apply them directly

to CVR predictions [16]. However, as summarized in Section 1.2, con-

siderations have been taken into to address those challenges in order to

successfully achieve campaign goals. Very few studies focus on these

challenges and the following is a complete list to the best of our knowl-

edge. [10] studied the delay between a conversion and previous impres-

sions with the focus on designing mechanisms for CPA campaigns but

not CPA predictions. [8] discussed the di�erence in incentives between

CPC and CPA from economic point of view. [4] focused on post-click

CPA and compared the di�erences in click-to-impression and action-to-

click a�ribution processes. [3] tackled the delayed feedback issue by

introducing an additional model that captures the conversion delay. [12]

proposed a multi-touch a�ribution strategy to narrow the discrepancy

between local and global a�ributions. [9] presented a simple approach to

estimating CVR by �nding hierarchical groups of the user, publisher, and

advertiser features. [15] proposed a framework that combines natural

language processing and dynamic transfer learning for CVR prediction.

3 PERFORMANCE SAFE PREDICTION
For RTB predictions, over-prediction is a much more common phe-

nomena than under-prediction during evaluations due to a�ribution

allocation between the third party company and the platform itself. RTB

has huge supplies and a systematic over-prediction could quickly lead

to winning a massive amount of low quality impressions and rapidly

exhaust the campaign budgets. �erefore, it is the top priority for design-

ing a prediction system that has no systematic over-prediction prone,

namely performance safety. In this section, we �rst analyze the rationales
for CVR over-prediction. �en, we brie�y describe our system design

philosophy to adaptively control and correct systematic over-prediction.

3.1 CVR Over-Prediction Rationales
3.1.1 No Empirical Lower Bound. Compared to clicks on an ad, con-

versions are much more strong signals re�ecting users’ interest and

intent for given ads. �e user could simply click on an ad out of curiosity

without any subsequent steps, or even just by mistake. We have observed

signi�cant amount of ads clicks even when random ads are shown in

viewable publisher placements. �us in practice it’s safe to assume an

empirical lower bound when predicting CTR. More speci�cally, let pi
be the true CTR for an impression, p̂i the predicted CTR, and Gcpc the

CPC goal amount. Ideally we should bid at the expected value p̂i ·Gcpc.

In practice, we have observed that the clearing price is proportional to

the bid price in RTBs that operate on second-price auction basis, that is,

λ · pi ·Gcpc, where 0 < λ < 1, then we can calculate the e�ective cost

per click as:

eCPC =

∑
i λp̂i ·Gcpc∑

i pi
= λ ·Gcpc ·

∑
i p̂i∑
i pi
,

where the summations are over impressions. Due to the existence of

the empirical lower bound for the true CTR pi , as long as we don’t

over predict, i.e. p̂i < pi , we are performance safe, meaning that we are

guaranteed to achieve the CPC goal. If the empirical CTR lower bound

is big enough to make a reasonable high bid price, we can safely do

exploration without worrying about the performance sink. However,

CVR is a completely di�erent story; it’s usually several magnitudes lower

than CTR. And, unlike that for CTR, we don’t observe any empirical

lower bound for the true CVR. eCPA is calculated analogously as:

eCPA = λ ·Gcpa ·

∑
i p̂i∑
i pi
,

whereGcpa is the goal amount. Note that the expected number of con-

versions

∑
i pi in the denominator could be arbitrarily close to 0 leading

to the explosion of eCPA. �us, the non-existence of CVR lower bound

requires more e�ort to guarantee the performance safety.

3.1.2 Gap Between Observations and Predictions. As there is no way

to observe each impression’s true conversion rate, we can only compare

predictions with observations from a group of impressions. We show

that, under certain assumptions over-prediction is inherent even if our

prediction is empirically unbiased.

Lemma 3.1. Given n impressions, let C1,C2, . . . ,Cn be their true con-
version rates, and C their empirical conversion rate. Suppose that our
predicted conversion rate Ĉ is unbiased in that Ĉ = 1

n
∑n
i=1Ci , and we bid

at the estimated true value Ĉ ·Gcpa. Furthermore, suppose that for each
of these impressions the highest third-party bid price follows log-normal
∼ lnN (µi ,σ

2) with mean at the true value µi = Ci ·Gcpa. �en Ĉ is an
over-prediction:

Ĉ ≥ C,

where the equality holds only if C1 = C2 = · · · = Cn , that is, when all
impressions under consideration have equal true conversion rates.

Proof. Let

wi =

∫ Ĉ ·Gcpa

0

lnN (x ; µi ,σ
2)dx

be the probability that the i-th impression wins by over-bidding all third-

party platforms. �en the expected number of winning impressions is∑n
i=1wi and the expected number of conversions is

∑n
i=1wiCi . �us

the observed empirical CVR is

C =

∑n
i=1wiCi∑n
i=1wi

.
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Figure 1: “Plus” v.s. “minus” training model approaches

By de�nitionwi can be wri�en as

wi = Φ
[(
ln

(
Ĉ ·Gcpa

)
−Ci ·Gcpa

)
/σ

]
,

which is a decreasing function in Ci , where Φ(x ) is the cumulative

distribution function of the standard normal distribution. Without loss of

generality, assume thatC1 ≤ C2 ≤ · · · ≤ Cn .�enw1 ≥ w2 ≥ · · · ≥ wn ,

and hence

n Ĉ ·
n∑
i=1

wi =

n∑
i=1

Ci

n∑
i=1

wi

= 〈C1,C2, . . . ,Cn〉〈w1,w2, ...,wn−1,wn〉
T

+ 〈C1,C2, . . . ,Cn〉〈w2,w3, ...,wn ,w1〉
T

+ · · ·

+ 〈C1,C2, ...,Cn〉〈wn ,w1, ...,wn−2,wn−1〉
T

≥ n · 〈C1,C2, ...,Cn〉〈w1,w2, ...,wn−1,wn〉
T

(1)

= n
n∑
i=1

Ciwi ,

where inequality (1) follows from the fact that, for any permutation

w (1) ,w (2) , . . . ,w (n) , we must have

∑n
i=1w (i )Ci ≥

∑n
i=1wiCi . It follows

that Ĉ ≥ C . �

One key assumption in the above proof is that for an impression,

there exists some other buying platform with average bidding price the

same as ours, or equilibrium conditions, since all buying platforms are

ge�ing the same information as summarized in Subsection 1.1.

3.1.3 Training Data Limitations and Biases. First, the conversions are
proprietary of advertisers, unlike clicks, when building a CVR prediction

model for one advertiser, we have to exclude all other advertisers’ data

from training, which further limits the training examples. Second, the

training data contains only RTB wins, which takes only a small propor-

tion of entire RTB supplies, and this sampling is heavily biased by the

previously serving model. �ere are some previous literature discussing

how to handle these two limitations in practice [15, 17].

In our framework, we focus on alleviating the over-predictions caused

by training sample selection bias. For example, for certain regions of the

feature space where the previous model’s prediction is suppressed, we

get fewer winning instances. �e few training examples could cause new

models vastly over-predict in these regions. And a�er deploying into

production, the new model then tends to bid aggressively but incorrectly

over such regions. In the next section, we brie�y describe our design

philosophy.

3.2 Design Performance Safe Prediction System
With the presence of over-prediction, it is too risky to derive the bid

price directly from themodel’s predictionwithout considering prediction

qualities. �ere are generally two di�erent approaches to make use of

the prediction qualities. As illustrated in Figure 1, one is ‘minus’, the

other is ‘plus’.

(1) In the ‘minus’ way, two models are generated from training

data, one outputs prediction values while another estimates

prediction qualities. �e �nal prediction is a function of the

prediction discounted by its prediction qualities.

(2) In the ‘plus’ way, predictions initially are limited only to regions

that have high con�dence of their predictions. More regions

are gradually added on to enable prediction in the model’s life

cycle when more feedback performance data are collected.

�e ‘minus’ way requires to �nd all low prediction quality areas before

deploying a model into production, which is impossible in practice.

On the contrary, we are much safer to explicitly control the numbers

and sizes of currently exploring areas with the ‘plus’ way. �us, we

adopted the ‘plus’ approach and have successfully implemented a novel

system that continuously generate CVR predictions with high qualities.

In Section 4, we describe details of this framework. Later, Section 5

presents some additional adjustments to further reduce the prediction

biases.

4 CVR SAFE PREDICTION FRAMEWORK
In this section, we describe how to construct our performance-safe CVR

prediction framework. We extend ideas similar to ensemble trees in the

way that the �nal output ensembles predictions from a collection of trees,

where each leaf node in a tree represents a subset of the feature space.

And the major di�erence between our method and the regular ensemble

tree method is that none of our trees is complete. Only leaf nodes with

signi�cant amount of historical data (or high-con�dent predictions in

corresponding subsets) are generated and become active. Because trees

in our framework are not complete, they are not static and keep growing

during the campaigns’ life cycles. With more data collected, new leaf

nodes are created while some existing leaf nodes might be pruned. �e

growth of the trees is also carefully controlled to maintain performance

safety of the overall prediction. To generalize, there are two types of

trees in our system:

Data-Driven Trees are enumeration trees, where each leaf node

in the same tree corresponds to a unique value combination

from a common subset of features. �e limitation of data-driven

trees is that at the campaign starting time, they have no leaf

nodes and therefore cannot bootstrap by themselves.

Machine-Learning Trees make predictions usingmachine learn-

ing models. �eir main purpose is to help jump-start the data-

driven trees’ generation during the campaign initial stage.

Figure 2 illustrates how the trees evolved: initially there are no leaf nodes

in the data-driven trees and only the machine-learning trees are capable

of making predictions. As more past performance data are collected, the

data-driven trees begin to grow and start to use leaf nodes to make more

accurate predictions.

4.1 Data-Driven Tree
Each data-driven tree is an incomplete enumeration tree corresponding

to a unique subset of features, and it tries to catch the interaction among

the features. Figure 3 demonstrates an example of data-driven tree

de�ned by the feature subset {Gender, URL}. It contains only four selected
leaf nodes for demonstration, which is far fewer compared to the possible

value combinations of these two features in our practice.

4.1.1 Construction. We leverage the capability of Gradient Boosted

Decision Tree (GBDT) [5, 6] to identify strong feature interactions and
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Figure 2: Tree evolution. Newly nodes are colored in purple.

Male

yahoo.com

predictor

videogames.com

predictor

Female

yahoo.com

predictor

cosmetics.com

predictor

Gender

URL

Figure 3: Data-Driven Tree

URL = yahoo.com?

Gender = Male?

URL = videogames.com?

{URL, Gender}

data-driven trees

State = California?

{URL, Gender, State}

data-driven trees

URL = cosmetics.com?

Gender = Female? Ad Position = 1?

{URL, Ad Position}

data-driven trees

Yes

Yes No

No

Yes No

Figure 4: GBDT tree to Construct Data-Driven Trees

use these feature combinations to construct data-driven trees. We �rst

train a GBDT model with data from all advertisers. Note that even

though this GBDT model uses data across di�erent advertisers, we do

not use this model to predict CVR for each advertiser directly. Instead,

this GBDT model is used only to guide us on how to create the data-

driven trees. When the GBDT is trained, we extract the set of features

based on the path from the root node to each leaf node, then a data-

driven tree is built for each unique feature set. For example, assume

the trained GBDT has a tree with the structure in Figure 4. �en the

extracted feature sets are {URL, Gender}, {URL, Gender, State}, and
{URL, Ad Position}, which are used to build the initial data-driven

trees.

4.1.2 Prediction. A leaf node issues CVR predictions via the Beta-

Binomial model, similarly to [1]. We assume that the number of con-

versions falling into the leaf node follows a binomial distribution. More

speci�cally, given the CVR (or p) for the node that the impression is

associated with, and the number of impressions (or B), the number of the

resulted conversions A follows a binomial distribution Binomial (B,p).

We take a conjugate prior for p: B(α , β )
def

= Beta(α , β − α ), with mean

α and variance Var(p) =
α (β−α )
β 2 (β+1) . Here we de�ned B(α , β ) for conve-

nience since α and β correspond to the prior conversion and impression

counts respectively. �e performance of this model is quite sensitive to

the choices of α and β at the beginning [2]. A naive approach would be

directly to set them to the conversion and impression numbers respec-

tively at the beginning of the underlying CPA campaign. In other words,

let At and Bt be the conversion and impression numbers at time t , then

α ← At , β ← Bt .

However, due to the dynamic nature of RTB, the true distribution is

more likely to shi� quickly over time; the naive estimates would be soon

dominated by decayed data. A simple �x is to only use recent data. Letw
be the preset length of a time window, say for example one month, then

we use only data between time t −w and t to estimate the parameters,

that is,

α ← At −At−w , β ← Bt − Bt−w .

A more re�ned method is to use exponential decay over time, instead of

the �xed-width time window. Let 0 < δ < 1 be the decay factor, then

α ← δαt−1 + (At −At−1), β ← δβt−1 + (Bt − Bt−1).

�e estimates using the decay factor would utilize more data but weigh

more on recent data. In our framework, we take the exponential decay

over time method as it outperforms the other two in terms of prediction

accuracy in practice.

4.1.3 Tree Update. Initially all data-driven trees are empty at cold-

start stage. New leaf nodes are added a�er su�ciently many impressions

or conversions are observed. For example, the leaf node (Genger=male)
× (URL=yahoo.com) is not in the tree until we have observed su�ciently

many users who are Male and visited yahoo.com. More precisely, a leaf

node is present in the tree only if the Beta distribution B(α̃ , ˜β ) for the
CVR satis�es

(α̃ > α0 or ˜β > β0) and Var(p) < v0,

where α0, β0 andv0 are preset thresholds according to CPA performance

goals and α̃ , ˜β are posterior updates from the Beta-Binomial model.

Based on these conditions, new leaf nodes may be added and disquali�ed

leaf nodes may be pruned from the tree.

4.2 Machine-Learning Tree
Machine-learning trees are used to augment and bootstrap data-driven

trees. When a new campaign is setup, there is no campaign-wise impres-

sions or local a�ributed conversions so that the data-driven tree does

not have any leaf node to make predictions. However, we can still collect

its historical global conversions, since conversion pixels are required to

�re before new campaign starts. Note that we could not directly feed

these global conversions to data-driven trees. �is is because not all

of global conversions are related to impressions we have shown, and

adding them into data-driven trees will introduce systematic bias to the

CVR estimation at each leaf node. Instead, a machine learning model

can take advantage of these global conversions by using them as addi-

tional positive examples during training. �e trained machine learning

model is able to predict user level conversion rate and is very suitable

to jump-start a campaign. In our framework, machine-learning tree

generates most cold-start CVR predictions and drive the growth of the

data-driven trees. During campaign’s �ight time, the machine-learning

model keeps being updated to takes into consideration of the most recent

global conversion data.

To construct a machine-learning tree, we need to �rst de�ne a con-

�dence threshold. A�er that, a tree with a single leaf node is created.

�is leaf node will only provide predictions for any instance with score

greater than the con�dence threshold. In practice, for each GBDT model,

we usually set the con�dence threshold as the score cut-o� of the top 10%

scores obtained from the training dataset. 10% is chosen because it is big

enough for the full delivery for most campaigns on our platform. Simi-

larly to the data-driven tree, when a leaf node in the machine-learning

tree accumulates su�cient data it could start to use the Beta-Binomial

model for predictions, which is also dynamically updated throughout

the campaign life cycle.
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Figure 5: Comparing the precision-recall curve of the three en-
semble method.

4.3 Ensemble Predictions
For each bid sample, each quali�ed data-driven or machine-learning tree

makes a prediction on the CVR, then these predictions are combined to

make the �nal prediction. We propose three di�erent ensemble methods.

Let p1,p2, . . . ,pn be the tree predictions.

Maximum �e �nal prediction is the maximum of all predictions:

p̂ = max{p1,p2, . . . ,pn }. �e disadvantage is that it may lead to

over-prediction.

Simple Average �e �nal prediction is the average of all pre-

dictions: p̂ = 1

n
∑n
i=1 pi . �e advantage is that it e�ectively

prevents over-prediction. �e disadvantage is that it assumes

the underlying trees are equally accurate.

Weighted Average �e �nal prediction is the average of all pre-

dictions weighted by their inverse variance: p̂ =
∑n
i=1 Var(pi )

−1pi∑n
i=1 Var(pi )−1

.

�is method is applicable when the campaign is out of the cold-

start stage, where the tree predictions follow Beta-Binomial

models as described in Subsection 4.1.2. In other words, let

pi ∼ B(αi , βi ) = Beta(αi , βi − αi ), then Var(pi ) =
αi (βi−αi )
β 2

i (βi+1)
.

Figure 5 compares their performance in terms of precision-recall. We

used three days of impression data on 10 randomly selected campaigns

with their labels de�ned as whether they can be a�ributed to some con-

version events (positive sample) or not (negative sample). �e weighted

average method outperforms the other two options in general and we

adopt it in practice.

5 CONVERSION ATTRIBUTION ADJUSTMENTS
In Section 4, we have introduced our CVR safe prediction framework,

which heavily relies on the Beta-Binomial models used by all leaf nodes.

However, due to some challenges mentioned before, a vanilla empirical

mean is a biased estimation of the true CVR. In this section, we �rst

discuss how to eliminate these biases, then show that to compute the

true value of showing a CPA goal campaign ad, we also need to consider

the probability of previous shown ad being the a�ributed ad. To the best

of our knowledge, this practically important step has been neglected by

previous publications.

5.1 Conversion Adjustment for Delayed Feedback
A�er showing an impression, a click usually happens within minutes.

However, a conversion could lag in days or weeks to happen. Such a

long delay makes it di�cult to use recent impression data in prediction,

since its corresponding conversion data has not completed yet. Blindly

including these recent impression data into empirical estimation could

lead to underestimate of the true CVR. One simple way to correct this

bias is to discard the recent data from usage for a period. However,

without considering recent data is detrimental to systems in dynamical

environment like RTB. An alternative way is to keep using most recent

data, but adding some estimations to compensate for the performance

delay. We take the la�er approach in our system.

For a given campaign, let’s assume its a�ribution window is T days.

�en on day i , we should wait for at least another T days to check

whether there will be conversions in the following T days that can be

a�ributed to impressions happening on day i . �erefore, if we use im-

pression and conversion data in the last n days, where n > T , then only

the impressions happening in the �rst n−T days can get complete a�rib-

uted conversions, but not those belonging to the last T days. Without

careful consideration of this situation will lead to underestimation of

the empirical CVR.

In practice, we �nd that both number of daily impressions and con-

versions have strong day-of-week pa�ern. Assume that an impression

happens on day i , which is the d-th day of the week, d ∈ {0, 1, . . . , 6}.
Let k be the number of elapsed days between the conversion and the

impression it is a�ributed to, k ∈ {0, 1, · · · ,T }. �en, de�ne Pd (k ) as the
impression a�ribution probability to a conversion that happens k days

later, conditional on that there exists a conversion being a�ributed to

this impression. De�ne the fraction of a�ribution as the percentage of

how many conversions we can get from the log on day i

αi
def

=
∑

j : i≤j≤n
PD (i ) (j − i ) =

n−i∑
k=0

PD (i ) (k ),

where D (i ) is the ith day of a week �en α−1i can be used as a multiplier

to correct the total number of conversions a�ributed to impressions on

day i .
To calculate the fraction of a�ribution αi , we need to estimate Pd (k )’s.

One way is to use the empirical method. For i, j such that 1 ≤ i ≤ j ≤ n,
letCi, j be the observed number of conversions on day j being a�ributed
to impressions on day i , then we estimate Pd (k ) as

P̂d (k ) =

∑
i≤n−T
D (i )=d

Ci,i+k∑T
k=0

∑
i≤n−T
D (i )=d

Ci,i+k
.

�e empirical method estimates Pd (k ) separately for d ∈ {0, 1, . . . ,d }
and it does not consider interactions between days of week. We adopt

the following way to estimate Pd (k ) simultaneously. Given the number

of conversions a�ributed to impressions on day i as
∑i+T
j′=i Ci, j′ for all

i = 1, 2, . . . ,n −T , the expected number of conversions on day j is

j∑
i=j−T

*.
,

i+T∑
j′=i

Ci, j′
+/
-
· PD (i ) (j − i ),

for all j = T + 1,T + 2, . . . ,n. On the other hand, the observed number

of conversions on day j is
∑j
i=j−T Ci, j . �us we can formulate the

estimation as a constraint optimization problem to minimize the total

squared errors between daily expected and observed conversions:

min

n∑
j=T+1



j∑
i=j−T

*.
,

i+T∑
j′=i

Ci, j′
+/
-
· Pj−i,D (i ) −

j∑
i=j−T

Ci, j



2

s .t .

T∑
k=0

Pd (k ) = 1 for d = 0, 1, . . . , 6,

0 ≤ Pd (k ) ≤ 1 for k = 0, 1, . . . ,T .
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5.2 Conversion Adjustment for Local Attribution
As a buying platform, we can only do local a�ributions. �ere exists

a discrepancy between local and third-party a�ribution numbers. �e

gap is generally too big to be ignored. If we know exactly which locally

a�ributed conversion is also a third-party a�ributed one, we can easily

build a classi�cation model to directly predict the probability that a local

a�ributed conversion is also a third-party a�ributed one. However, for

privacy and other reasons, third-party only provides us aggregated data

at campaign level on a daily basis.

Since we do not have granular enough data to predict probability for

each conversion event, we �rst divide locally a�ributed conversions into

groups. Each group is de�ned by a combination of factors that a�ect the

third-party a�ribution probability. For example, one group is de�ned

such that the conversion-impression elapsed time is one day and the

user visited the advertiser’s site 3 days ago. Let д1,д2, . . . ,дk be the

prede�ned conversion groups. For each i = 1, 2, . . . ,k , let Pдi be the
probability that a conversion in group дi is also third-party a�ributed.

�en given the number of locally a�ributed conversions in group дi
with conversion time on day j, the expected number of third-party at-

tributed conversions on day j , denoted asCдi , j , is
∑k
i=1

(
Pдi ·Cдi , j

)
. Let

CT ,CT+1, . . . ,Cn be the actual daily numbers of third-party a�ributed

conversions. We can estimate Pдi ’s by minimizing the total squared

errors as:

min

n∑
j=T



k∑
i=1

(
Pдi ·Cдi , j

)
−Cj



2

s .t .

0 ≤ Pдi ≤ 1 for i = 1, 2, . . . ,k .

In practice, the values of Pдi ’s can be used to calculate the expected

number of third-party a�ributed conversions, which can be in turn used

to discount the CVR prediction.

5.3 Bid Price Adjustment
Given the goal amount Gcpa of the CPA campaign and conversion rate

pt at time t , ideally we should bid at the expected value of showing the

impression:

Vplain = f (t ) · pt ·Gcpa,

where f (t ) is the probability that, given the conversion happens, it is

a�ributed to the impression shown at time t . However, this value ignores
an important fact: if the user was already shown an impression from

the same campaign at an earlier time t0, there is a baseline value even if

we don’t show the current impression:

Vbaseline = ft0 (t ) · p
′
t ·Gcpa,

where p′t is the probability that the user will convert a�er time t without
showing the new impression, and ft0 (t ) is the probability that, given that
the conversion happens, it will be a�ributed to the impression shown at

time t0.
Notice that pt di�ers from p′t only in that a new impression will be

shown. For CPA campaigns a conversion requires stronger engagement

from the user; the e�ect of a secondary impression is negligible. Hence

we can use pt as an approximation for p′t , and the incremental value of
the current impression can be calculated as:

∆V = Vplain −Vbaseline

≈ ft (t ) · pt ·Gcpa − ft0 (t ) · pt ·Gcpa

= [1 − ft0 (t )/ft (t )] ·Vplain .

We call 1 − ft0 (t )/ft (t ) the value adjustment factor. Our �nal bid price

is then the incremental value, which is the value adjustment factor

multiplying the CVR estimate from our model that has taken a�ribution

probability into account.

Figure 6: Campaign hour-of-day pattern

What remains is how to estimate the value adjustment factor. For any

point of time x > t , letκ (x ) be the probability density that the conversion
happens at x .Let q be the conditional probability that a conversion that

happens at time x is a�ributed to the impression shown at time t0. We

observed in general that q becomes smaller if x − t0 is larger. In practice

we assume q is a function of x − t0. �en

ft0 (t ) = Eκ [q] =

∫ t0+T

t
q(x − t0) · κ (x ) dx .

�us it’s su�cient to estimate κ (x ) and q(x − t0). For κ (x ), we observed
strong campaign-speci�c hour-of-day pa�erns as illustrated in Figure 6.

For any time x within a prede�ned conversion window [t , t +W ], where

W < T , we approximates κ (x ) as function of the hour of day at time x ,
denoted by hod(x ).

Algorithm 1 describes the steps to estimate the incremental value.

�e basic idea is to discretize the historical data and estimate the hourly

probability mass of κ (x ) and q(x − t0), which are then used to calculate

the �nal estimation for the value adjustment factor.

6 EXPERIMENTS AND EVALUATIONS
In this section, we describe our experimental results that demonstrate

the e�ectiveness of the proposed CVR safe prediction framework and

the conversion a�ribution adjustment models.

6.1 CVR Safe Prediction Framework
6.1.1 Render Feature Combinations to Create Data-Driven Trees. Each

data-driven tree uses a unique subset of features to generate its leaf nodes.

Feature subsets with strong capability to separate conversions from non-

conversions are preferred to be selected. To achieve this, we trained a

GBDT model with 2,000 trees and 562 categorical features. A constraint

was added during the training to make sure no tree has more than 8

internal nodes, which implies that each tree has a maximum depth of 7

and each leaf node is de�ned by no more than 7 unique features. From

the output of the trained GBDT model, feature combinations along with

every path linking to a leaf node from its root node were identi�ed. A�er

removing duplications, 214 feature sets are obtained and each is used to

create a corresponding data-driven tree in our system.

6.1.2 Prediction Accuracy of Data-Driven Trees. We evaluate the ac-

curacy of data-driven trees by comparing the actually observed CVRs

to those predicted by the data-driven trees. We set up 10 di�erent cam-

paigns and logged the �nal (unadjusted) predictions for 7 days for each

impression.
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Algorithm 1 Value Adjustment Factor Estimation

Input: time related parameters:

t0 : time the previous impression was shown;

t : the current time to bid for a new impression;

T : length of a�ribution window (in hours);

W : length of conversion window (in hours).

Input: n hours of historical data.

1: For i, j ∈ {1, 2, 3 . . . ,n}, �nd counts Ci, j , the number of conversions

from hour j that are a�ributed to impressions shown at hour i .
2: Calculate the probability mass of κ (x ) at hour h ≤W :

κ̂ (h) =

∑n
j=T+1

hod(j )=hod(h)

∑j
i=1Ci, j∑n

j=T+1
∑j
i=1Ci, j

/ ���
{
h′ ≤W : hod(h′) = hod(h)

}��� ,

and we set κ̂ (h) = 0 for h > W . Note that we excluded the �rst

T hours of conversions since their a�ributed impressions may be

incomplete.

3: Calculate the probability mass of q(x − t0) at hour h:

q̂(h − t0) =

∑n
j=T+1
j>h−t0

Cj−(h−t0 ), j∑n
j=T+1

∑j
i=1Ci, j

.

4: Calculate a�ribution probabilities:

ˆft0 (t ) =

t0+T∑
h=t

q̂(h − t0) · κ̂ (h), and ˆft (t ) =
t+T∑
h=t

q̂(h − t0) · κ̂ (h).

Output: estimated value adjustment factor

1 −
ˆft0 (t )

ˆft (t )
= 1 −

∑t0+T
h=t q̂(h − t0) · κ̂ (h)∑t+T
h=t q̂(h − t0) · κ̂ (h)

.

Figure 7: Final CVR predictions vs observed CVRs for one cam-
paign. �e coordinates are indexed by the negative logarithm of
the value.

To evaluate the prediction accuracy of data-driven trees at impression-

level, we can simply plot the observed CVRs against predicted CVRs.

Figure 7 shows the result for one campaign, where the x-axis is the �nal
predicted CVR and the y-axis is the observed CVR. We can see from

the plot, the unadjusted CVRs are mostly over-predicting, which is an

evidence that the adjustments explained in Section 5 are necessary.

Figure 8: Predictions become increasingly inaccurate if leaf
nodes are not updated with past-performance feedback loop.

For data-driven trees, frequent updates at each leaf node with most

recent data are crucial to improve their prediction accuracy, especially in

dynamical environment like RTB. Figure 8 illustrates that the prediction

accuracies quickly drop (or the mean absolute percentage errors (MAPE)

go up) if the leaf nodes are not updated with new data.

Table 1 shows that using data-driven trees and machine-learning trees

together signi�cantly improves both the performance and delivery of

a campaign, as compared to using machine-learning trees alone. �e

test was run in production for two weeks with three test campaigns. For

each campaign, the incoming tra�c is randomly split into 50% as control

and 50% as test. �e control split uses only machine-learning trees and

the test split uses both machine-learning trees and data-driven trees.

6.1.3 E�ectiveness ofMachine-Learning Trees. In our prediction frame-

work, machine-learning trees bootstrap a campaign’s delivery at cold-

start time. It also grows up data-driven trees during a campaign’s �ight.

�e best way to measure machine-learning tree’s e�ectiveness is to run

online AB testing. However, data-driven trees cannot grow by them-

selves without resorting to external help. To handle it, in control part of

our experiment, we substitute machine-learning tree’s leaf node with

one node that randomly select 10% of users. It is used to simulate the

baseline scenario where machine-learning tree is not included. In Ta-

ble 2, we compared results from 4 testing campaigns. For all of them, test

parts exceed control parts in terms of both deliveries and performances.

�ere are multiple reasons for it. First, comparing to random exploration,

machine-learning leaf node has higher CVR and results more delivery

by itself. Second, impressions generated by a random exploration leaf

node are more likely to evenly fall into di�erent data-driven tree leaf

nodes instead of being concentrated into a few leaf nodes with high

CVR predictions. �is slows down the leaf node growing process and

hinders the campaign’s overall delivery. Machine-learning trees also

bring signi�cant performance li�, which illustrates that more e�cient

initial exploration can help to boost more higher CVR leaf nodes growth

in data-driven trees.

6.2 Conversion Attribution Adjustment
6.2.1 Adjustment for Delayed Feedback. �ere are three lines in Fig-

ure 9. Each point in the triangle marker line represents the total num-

ber of conversions that can be locally a�ributed to event(s) on day i ,
i = 1, 2, ..., 7. In the Rhombus marker line, each point is the number of

conversions that can be locally a�ributed to event(s) at day i with the

observing time in the end of day 7. Points in the square marker line are

estimated daily a�ributed conversion numbers via adjustment approach

proposed in Subsection 5.1 by assuming that the time to do estimation

is in the end of day 7. Figure 9 shows that a�er the adjustments, the

estimated numbers are much closer to the actual ones, this is due to

the reason that our model has accounted for the a�ributed conversions

that have not been observed at the estimation time. A�er testing on 4
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Campaign

Machine-Learning Tree Machine-Learning + Data-Driven Tree

CVR li� eCPA drop imps li�

CVR eCPA imps CVR eCPA imps

Campaign1 6.96E-06 63.5419 1,174,131 7.06E-06 61.9564 1,293,526 1.52% -2.50% 10.17%

Campaign2 5.38E-06 130.2857 1,300,893 9.66E-06 83.8571 1,448,639 79.60% -35.64% 11.36%

Campaign3 1.49E-03 0.8359 576,431 2.13E-03 0.5987 678,384 42.78% -28.37% 17.69%

Table 1: Online test results from 3 campaigns. It shows performance and delivery improvements a�er adding data-driven trees on top
of machine-learning trees.

Imps li� Convs li� CVR li�

Campaign 1 +10.0% +20.8% +9.7%

Campaign 2 +4.7% +7.5% +2.7%

Campaign 3 +21.3% +31.0% +8.0%

Campaign 4 +1.5% +2.1% +0.5%

Table 2: Delivery and performance li� results from online A/B
test by comparing using the machine-learning leaf node to boot-
strap campaign’s delivery with using a random learning leaf
node.

Figure 9: Comparison of the fully observed, partially observed,
and estimated daily attributed conversion numbers.

Campaign 1 Campaign 2 Campaign 3 Campaign 4

empirical 26.15% 26.25% 25.38% 14.17%

proposed 3.27% 1.96% 4.81% 6.09%

Table 3: MAPE comparison between empirical estimations and
results from proposed optimization based approach.

campaigns for 14 days, as shown in Table 3, estimations with constraint

optimization as proposed in Section 5.1 reduce the MAPE from 22.98%

to 4.03% compared to the empirical estimation based adjustments.

6.2.2 Adjustment for Local A�ribution. �e experiment was set up

as following. First, a testing campaign is selected and previous three

weeks of data is used to formulate the allocation problem as described

in Subsection 5.2. For this campaign, local a�ributed conversions are

divided into 28 groups based on following three categorical variables:

• Elapsed time between the conversion and its local a�ribution.

�is variable has been converted into a categorical one with

seven buckets from day 1 to day 7.

• A binary variable indicates whether the user has visited any web

pages belonging to the same advertiser before the conversion

happens.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

�ird-party A�r. # 48 39 66 24 17 11

Local A�r. # 88 53 90 51 53 22

Est. # using Avg. 53 32 54 31 31 13

Est. # using Model 50 28 53 29 27 13

Error Chg% -8.3% +12.8% +1.5% -8.3% -23.5% 0.0%

Table 4: Model estimated conversion numbers vs. empirical esti-
mated conversion numbers for a testing campaign in 6 days. �e
result shows 2% error rate reduction on average.

• A binary variable denotes whether the conversion has been

locally a�ributed to a click or an impression.

�e model learned di�erent third-party a�ribution probability for dif-

ferent groups. For this testing campaign, the average ratio between

third-party and local a�ributions is 60.67%. And, the probabilities ob-

tained from our model for di�erent groups vary from 21% to 77%. In

Table 4,�ird-party A�r. row represents the number of third-party a�rib-

uted conversions for this campaign at every day. Local A�r. row shows

number of conversions happening and being locally a�ributed every

day. Est. # using Avg. row displays the expected daily third-party a�ri-

bution numbers with the average third-party a�ribution ratio 60.67%.

Est. # using Model row shows the estimated number by using proposed

algorithm in Subsection 5.2. Finally, Error Chg row summarizes the error

di�erences by comparing results between row Est. # using Avg. and
row Est. # using Model. On average, our proposed method reduces the

estimation error by 2% througout the 6 days.

6.2.3 Bid Price Adjustment. Overall, we have observed around 5.6%

improvement on return on investment (ROI) a�er performing one month

A/B testing in our buying platform. In the test, we randomly split

incoming bid requests into control and test groups, where only the test

group bids applies value adjustment factors. Since the test group bids

lower, we also need to measure the a�ribution risk, the discrepancy

between local a�ribution and global a�ribution. High a�ribution risk

would lead to high inaccuracy in local a�ributions and subsequently

low model performances. Ideally, we should directly calculate the rate

of local a�ributions that are not global a�ributions. However, we do not

have third-party a�ribution data at impression level. �us we use the

elapsed time between a conversion and the last impression as a proxy to

the a�ribution risk: the smaller the elapsed time, the more likely local

and global a�ributions are consistent.

Figure 10 shows two examples illustrating how the distribution of

elapsed time may change due to value adjustment factors. �e le� part

shows that a�er applying the value adjustment factor we see more

conversions with larger elapsed time in the test group, while the right

part illustrates the opposite situation. Higher a�ribution risk exists for

the le� part. Table 5 compares the performance between the control

and test groups. In addition to eCPA, we also compare delivery and

a�ribution risk as well to have a complete picture. As we can see, a�er

applying the value adjustment factors, we greatly reduced the inventory

cost with the expense of very li�le delivery drop. Furthermore, the

a�ribution risk actually becomes smaller.
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Figure 10: Examples of distribution change in elapsed time

Test Period eCPA Drop Delivery Drop A�ri Risk Drop

1st Week 5.06% 3.94% 5.42%

2nd Week 9.74% 1.68% 11.67%

3rd Week 8.70% 2.41% 9.03%

4th Week 9.26% 2.97% 5.47%

Table 5: Test results for bid price adjustment

7 CONCLUSIONS
Recently, more performance based digital advertising campaigns are

choosing CPA as their goals. However, there is far less literature fo-

cusing on the di�erences between CVR and CTR predictions. Is CVR

prediction really a natural extension of CTR prediction? In this paper,

we o�er an extensive analysis of the unique challenges faced by CVR

predictions in the RTB environment. We introduce our safe CVR pre-

diction framework which has been deployed at Yahoo! advertisement

buying platform, with a particular focus on overcoming the hurdle of

over predictions. Over predictions easily occur in high variance areas

with rare events, which is a common practice in RTB environment. Un-

like existing literature, which mainly uses cross validations to estimate

the o�ine variance during model training, we rely more on evolving

controlled explorations and real time feedback to more accurately es-

timate prediction variances. Conversion a�ribution adjustments are

proposed and can help further alleviate over-bidding at di�erent levels.

We illustrate both o�ine and online experimental results to demonstrate

the e�ectiveness of the framework.

In conversion predictions at RTB, there are a number of other chal-

lenges. First, generating training data set only from RTBwinning impres-

sions creates a huge selection bias for model training. Second, to simplify

runtime system’s complexity, we need to be able to estimate prediction

variance reliably before deploying online prediction models. �ird, while

new model ge�ing created frequently in the dynamical environment

like RTB, its ability to transfer leanings from old model, especially to

those areas that old model performs well, is crucial to ensure that the

performance of the system continues to improve. We do not elaborate all

these challenges in this paper, because they are not unique to conversion

prediction problems. However, in any practical system, these challenges

must be seriously considered and properly addressed. �e focus on the

current work is not to come up with the optimal solution to each of the

above mentioned challenges, but try to highlight the problems as well

as methods we have taken in practice. By doing so, we are hoping that

there could be more research interests arising from machine learning

community to help solve these real world challenges faced by display

advertising industry.
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