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ABSTRACT
�e online ads trading platform plays a crucial role in connecting
publishers and advertisers and generates tremendous value in fa-
cilitating the convenience of our lives. It has been evolving into a
more and more complicated structure. In this paper, we consider the
problem of maximizing the revenue for the seller side via utilizing
proper reserve price for the auctions in a dynamical way.

Predicting the optimal reserve price for each auction in the re-
peated auction marketplaces is a non-trivial problem. However, we
were able to come up with an e�cient method of improving the
seller revenue by mainly focusing on adjusting the reserve price
for those high-value inventories. Previously, no dedicated work
has been performed from this perspective. Inspired by Paul and
Michael [16], our model �rst identi�es the value of the inventory
by predicting the top bid price bucket using a cascade of classi�ers.
�e cascade is essential in signi�cantly reducing the false positive
rate of a single classi�er. Based on the output of the �rst step, we
build another cluster of classi�ers to predict the price separations
between the top two bids. We showed that although the high-value
auctions are only a small portion of all the tra�c, successfully iden-
tifying them and se�ing correct reserve price would result in a
signi�cant revenue li�. Moreover, our optimization is compatible
with all other reserve price models in the system and does not im-
pact their performance. In other words, when combined with other
models, the enhancement on exchange revenue will be aggregated.
Simulations on randomly sampled Yahoo ads exchange (YAXR) data
showed stable and expected li� a�er applying our model.
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1 INTRODUCTION
Online advertising have been increasingly important for the market
participants. In a report by Mckinsey [3], the digital ads market-
place has seen a strong growth and digital ads sale will reach $231
billion by 2019. Before the emerging of ad exchange, there are many
intermediaries in the value chain between publishers and adver-
tisers each taking a slice of ad market share. Both the advertisers
and publishers spend signi�cant time working on where and how
to buy and sell so that impressions go to the right audience. �e
ad exchange solves these problems and simpli�es the process of
serving users, advertisers and publishers in a much more e�cient
way.

Yahoo’s BRXD (Yahoo display ads exchange) is one of the major
trading platforms that serves numerous advertisers and publish-
ers. It enables the potential buyer to reach hundreds of millions of
users across the world at a single platform, from which a pool of
specialized targeting audiences is chosen according to the buyer’s
individualized campaign goals. �e centralized trading structure en-
ables small buyers who have limited budget to reach a large variety
of users that would not be possible without a platform. In general,
the advertising inventory is bought and sold on a per-impression
basis by running a real-time auction. �e system has evolved into
a stage such that it is programmed to be able to run millions of
auctions, serve the corresponding ads, record the payment, �ght
with fraud, … all such kinds of procedures within one single second.
In this paper, we are focused on a method to determine how bidders
are charged at impression level.

When calculating the transaction prices, the industry generally
uses the so called popular standard second price auction design with
a reserve price: a valid top bidder (the winner) will pay the second
bidder’s price or the reserve price, whichever is higher. �e cur-
rent BRXD has a very low global reserve price (a few cents) for all
auctions, and are not supportive for dynamic scenarios. One chal-
lenge is that it is di�cult to model bidder behavior and its evolution
as auctions are running on various types of inventories. On one
hand, over-predicting is quite dangerous since it would result in
blocking of all good bids and publisher su�ers from the opportunity
cost. On the other hand, extremely conservative reserve price is
useless since second price is already served as good price support.
As a platform, Yahoo has substantial chunk of inventories owned
by itself, thus a seller revenue improvement also bene�ts Yahoo’s
revenue performance directly.

1.1 Second price auction
�e online marketplace of ads trading is similar to the traditional
item auctions in terms of winning rule. �ere are extensive studies
in the auction designs in the context of traditional economic regime.



Driven by the goal to maximize revenue, one may be wondering
why the publisher can resist the temptation to charge the winner
the top price instead of second price.

One of the major �ndings of auction theory is the celebrated
Revenue equivalence theorem. Early equivalence results focused
on a comparison of revenue in the most common auctions. �e �rst
such proof, for the case of two buyers and uniformly distributed
values was by Vickrey [15] in 1961. Later Riley & Samuelson [14]
proved a much more general result. (�ite independently and
soon a�er, this was also derived by Myerson [11] in 1981). �e
revenue equivalence theorem states that any allocation mechanism
or auction that satis�es the main assumptions of the benchmark
model will lead to the same expected revenue for the seller. �e
main assumptions includes bidders are risk-neutral, their valuation
for the inventory is independently and identically distributed (i.i.d)
and the payments must depend on bids.

It is a well-known result that in �rst price auction, where the
player with the highest bid simply pays whatever it bids, a Nash
equilibrium is that each player bids such that everybody bids the
expected value of second highest bid. �is result is also based on the
main assumptions. In the real-time ads bidding environment, second
price auction awards an impression to the ad with the highest bid,
but records the revenue of the impression as the second highest
bid. It is optimal for the bidders to bid at its own valuation of
the impression under the same assumptions. For both auction
mechanisms, the impressions are allocated to the same bidders with
the same expected revenue, this is the famous revenue equivalence
theorem in auction theory. From the bidders point of view, the
second price auction is de�nitely more a�ractive than �rst price
auction at �rst glance. However, the above main assumptions are
not always true in realistic ads trading platform (actually it is almost
never true for Yahoo’s exchange). For instance, some bidders shared
very similar bidding formula for certain inventories, it is hard to
verify whether their bids are independent. Moreover, there are
many types of bidders with di�erent priorities, some put deliver
rate over CPM (cost per thousand impression) goal and are willing
to overbid; whereas some bidders are short of budget and prefer
shading their bids. No one can guarantee that the new equilibrium
will ensure a dominant strategy of truth bidding, see [4, 5].

�e idea of reserve price (also called �oor price) is to set up a
lowest price for each auction. Instead of paying the second bid price,
the winner will pay the higher of second bid and reserve price, as if
the seller place a bid at the reserve price. �is mechanism prevailed
the online bidding market since it essentially provides a protection
of transaction prices for the publishers. Se�ing a good reserve
price for the inventory is an interesting question. If it is too high
(greater than �rst bid), the inventory will be le� unsold and incurs
opportunity cost. However, if the reserve price is too low (lower
than the second bid), it fails to protect the publisher from auctions
with low second bid and high �rst bid prices. Ideally the reserve
price should be between the top two bids:

Second bid < Reserve price ≤ Top bid.

Besides the static reserve price, publishers can also set a variable
price with a minimum and maximum, which enables an ad to win
at lower prices for less valuable inventory and higher prices for
higher value inventory.

1.2 Past work and our method
Under the second price auction (also referred as Vickrey auction)
scheme, reserve price is critical to maximize revenue (we consider
seller side revenue throughout this paper), this is proved by Myer-
son in 1981 in his classic Nobel prize winning work [11]. Actually
Myerson showed that if the valuations are drawn independently
and identically from a distribution satisfying a regularity assump-
tion, the optimal auction takes the form of a second price auction
with a reserve price. Furthermore, if the bidders are risk neutral,
Riley and Samuelson [14] con�rmed that the second price auction
yields the same expected revenue as the �rst price auction.

We noticed some recent works [2, 6, 10] on the evolution of
bidder’s strategy under repeated auctions. People have di�erent
approaches to formulate and solve the optimization related prob-
lems. One of the pioneer work [9] formulate the optimal revenue
problem as a learning problem and present a full theoretical analy-
sis on it. [7] aims to achieve almost optimal expected revenue for
arbitrary bidder valuation distribution. �e key idea in which is
to associate each bidder with another that has the same a�ribute,
with the second bidder’s valuation acting as a random reserve price
for the �rst. [12] studied lazy and eager versions of reserve prices,
the idea in which is similar to another version of the so� reserve
price. �e optimization problem for the buyer side has been well
studied, [17] investigates the repeated version of Shubik’s dollar
auctions and discussed e�ect of di�erent player types.

It seems at �rst sight that having a reserve price will de�nitely
help improving the publisher yield in second price auctions. �is is
not always true, for instance, the impact of so� reserve prices in
advertisers is studied in [18], it “puts advertisers in an unfavorable
position and could damage the eco-system”. In the same paper, the
authors also evaluate the performance of bidding strategy. In [5],
the authors �nd that proper adjustment of the reserve price is key in
achieving pro�table for the publisher to try selling all impressions
in the exchange before utilizing the alternative channel. Our e�orts
in �nding the optimal reserve price in order to optimize the seller
revenue is in this background, we come up with an e�cient model
that are completely di�erent from those in previous literatures that
works great for our platform.

Since the top two bids vary from auction to auction, a constant
reserve price across all inventory types will not be granule enough.
An easy way to add �uctuations is to perform manual adjustments
to the reserve price based on certain features. When the top two bid
prices exhibit high correlation with time, the manual way would
somewhat improve the publisher revenue. Nonetheless, it is in
general a low e�cient way to have manpower involved in auctions
that usually complete in several mini-second. A more e�cient way
is to set the reserve price for each auction automatically.

Before we come up with this data-driven method, we have al-
ready implemented a parametric model that works pre�y well in our
video platform [1] but not as expected in the display marketplace.
In [1], the authors use a game theory based parametric method
that is very e�ective in computing the reserve price for sparse and
high ranged auctions, such as the video marketplaces, where the
bid price can be several dozens of dollars and number of bidders for
each auction is small. �e parametric model [1] assumes the bids
follow some certain distributions, and historical bids data is used
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to �t the parameters. Under the benchmark assumptions a closed
form solution can be derived by solving a di�erential equation. As
we have discussed above, the benchmark assumptions is in doubt
and it is hard to evaluate how much impact it could bring to the
accuracy of the model. �us the true distribution of the bidder’s
valuation is very di�cult to obtain. For BRXD, bids are much more
dense and pricing range is narrower than video marketplace. One
problem we found is that the parametric model is hard to achieve
statistical signi�cant revenue li� anymore.

Since the display marketplace has a higher capacity and are more
competitive than video marketplace, there are all kinds of players
that contribute a lot more noises. We started by not assuming any
known type of distributions for the bids, but just assume that the
top two bids are relatively stable for certain type of inventories. �is
is a fundamental di�erence from the parametric approach and is
in a more data driven spirit. Noticed that the optimal reserve price
only depends on the top two bids, we will only focused on study
the top bid and the gap between the top two bids, eliminating the
requirement that all bids are independently identically distributed.

To further reduce the impact of noise, we only recommend an
e�ective reserve price for those inventories that are predicted to be
high value by our model, and leave the other ones’ e�ective reserve
price (see Section 2.1) unchanged. We say that an inventory is of
high value if its potential top bid is greater than some threshold. �e
motivation for the choice of operating only on high value inventory
is that we can achieve very good AUC with the features in our hand,
and the implementation is relatively easy. Since the revenue margin
narrows down when the top two bids are close, we also build a
cluster of classi�ers to estimates the price separation between the
top two bids. For instance, if the price separation is small, the ROI
(risk over return) for implementing an aggressive reserve price will
be very low. We use the predicted separation as an indicator to
determine whether an aggressive reserve price should be enforced
or not.

2 FEATURES AND INVENTORY
CLASSIFICATION BUCKETS

2.1 Multiple Reserve Prices
In online auction design, the reserve price is set before the bids
come, any bids below the reserve will be blocked before enter into
the ranking algorithm. We call this type of reserve price hard. For a
comprehensive ads exchange platform, there can be multiple types
of hard reserve price, such as systemwide reserve prices, uniform
reserve price, deal reserve price, etc.

�e uniform reserve price is the minimum clearing price for cer-
tain ad dimensions that mainly depending on ad size or site. Deal
reserve price is associated with deal seat, these are pre-negotiated
before campaign set up. Usually the lowest one is the system wide
reserve price, roughly a few cents. In the exchange, we put require-
ments in response rate and other KPIs for DSP. In order to secure
their spots in the system, some DSPs are submi�ing extremely low
bid for a large amount of auctions that they are not interested at all.
�e existence of system wide reserve can help reduce the number of
bids considered for certain auctions and latency performance. �e
�nal actual e�ective reserve price is in general the maximal among

Table 1: A list of inventory characteristics that determines
the intrinsic value of a inventory.

Publisher info ad section, site - top level domain (TLD), layout,
ad size, supply, ssp host, ad position, etc

User info

age, gender, device type, geo info, app info,
browser, colo (SSP host location), page view,
previous clearing price, # of visit, conversion,
impressions, clicks, previous winning statistics,
search query(click), etc

Buyer info group of buyer (DSP group identi�cation),
winning demand seat (lagged per user), etc

Other date, hour of day, day of week (dow), etc

all above static reserve prices that are quite conservative and are
updated in a relatively long period based on platform statistics.

Some platforms also use so� reserve price, these type of reserve
does not block any bids, but just provides a support for the trans-
action price. It will not incur any opportunity cost if the winner
bids below the so� reserve. Actually, when underbidding (top bid
is lower than reserve) happens, the auction continues as if there
is no reserve price. It is also common to use a combination of so�
and hard reserve prices, if the highest bid is above the hard reserve
price but below the so� reserve price the auction is run on �rst
price and the winners pay the exact amount they bid. One of the
advantages of so� reserve prices is that it won’t bring opportunity
cost when underbidding, however it it hard to predict the bidder
behavior. Long termly speaking, bidders may �nd they can win
auctions at low price since underbidding does not result in losing
auctions. One possible e�ect what goes against seller’s interest is
that bidders keep shading their bids and push the average clearing
price to lower levels.

In this paper, we will discuss how to �nd the optimal hard reserve
prices at impression level. We start by collecting data from the
exchange and user pro�le.

2.2 Features
We believe the value of an inventory depends both on its intrinsic
characteristics and the buyers. From the raw data we �ltered out
some information that are ranked low for the price di�erentiation
and le� with Table 1.

Some of the characteristics in Table 1 have multiple features, such
as in the previous win statistics for a user. �e user stat includes
previous maximum, average, total count of previous prices, also the
running average can be over a group of numbers. One advantage of
our model is that it does not rely on information about the losing
bids. �is gives more �exibility of the model. If we only have DSP
data, we can still run the model.

We categorize some features such as section id, site id and ad
positions. Some feature are generated by grouping or binding and
put into buckets. To name a few, we put thousands of buyer seats
into 10 group of DSP buyers as AdNetwork, AgencyTradingDesk,
DSP, DSPPowered, PersonalizedRetargeter, Adx, Gemini, Sidekick,
YamPlus and notag. �e age is grouped according to the following
buckets: 0-17, 18-20, 21-24, 25-34, 35-44, 45-54, 55-64, 65+.
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(a) High-value identi�cation (b) Price separation detection

Figure 1: Rankings of feature importance according to high-
value and price separation classi�ers.

�e dow and date may help us re�ect some periodic trends
(weekly, quarterly, etc). We also cleaned the outlier bids that are
higher than $41 (roughly 0.1% percentile) before feed the model.

A typical feature ranking is listed in Figure 1 for the two family
of classi�ers. From which we can see that the very top feature
groups are highly correlated but with some internal di�erence. �is
is reasonable since the highest bid and the huge bids gap are both
random variables over the same bidding pool, bidders share a lot of
common information from the bid request which determines the
intrinsic value of the inventory. �e di�erentiation of bid prices
are more relying on the bidder’s interpretation and goals.

3 MODEL
One challenge in calculating the dynamic optimal reserve price
is the opportunity cost. Let us assume there is no resell, consider
a simple auction with top bid T = $5 (cpm, same for below) and
second bid S = $2 respectively. When reserve price r is below $2,
the impression will be sold at $2; if 2 ≤ r ≤ 5 the winner will
pay r ; once r > 5 there will be no sell and the seller su�ers an
inventory loss. We can easily see that the ideal r should be between
T and S and the higher the be�er. However, this linear dependency
between the revenue and r ends by a jump at T (see the thick black
curve in Figure 2). Start from a conservative r , in the pursue of
maximal revenue, r is pushed to be close to T . Since T can be over
predicted (false positive) while the true top bid T is actually lower,
an aggressive r may result in revenue dropping to zero for the
particular auction. So the practical decision process will involve
balancing of prediction accuracy and opportunity cost, and tuning
between risk and expected revenue.

In our model, the calculation of r is based on our prediction
of discretized T and their gap T − S . We essentially build several
families of classi�ers which are pre-trained using historical data.
Each classi�er is a cluster of regular machine learning models that
are dedicated for �xed feature set and dimensions of the response
column. Although there are multiple buckets a�er discretizing the
winning priceT , we are only interested in those high value buckets,
thus the identi�cation of high-value inventory is a binary decision.
We also convert the gap T − S to a binary value (1 for signi�cant 0
for not signi�cant) by comparing it with a threshold. Further, we

Figure 2: With top two bids given, the seller revenue func-
tion at di�erent reserve price: bold segments

will not calculate new reserve price for inventories that does not
have signi�cant gap between the top two prices.

Price separation prediction. �e �rst family of classi�ers are
separation classi�ers. We are aiming of identifying the price separa-
tions between the �rst bid price and second bid price. �e model
will only calculate the reserve price for auctions that are labeled
positive by separation classi�er.

Winning bucket prediction. �e second family of classi�ers are
prediction classi�ers. Our new e�ective reserve price is calculated
based on the output of these classi�ers. In the model, we discretize
the winning price into di�erent buckets, and the output will be
the bucket ID that winning bid belongs to. Based on which we
build the high value detection classi�ers which collects votes from
this prediction classi�ers. �e �nal calculation of our reserve price
depends on this bucket size.

�e two step model includes building of the single layer clas-
si�ers and the cascading algorithm. �e cascading algorithm is
inspired by Paul Viola and Michael Johns ’s classic work [16] in
image processing, whose method achieves both high e�ciency and
low false positive rate.

3.1 Single Classi�er Performance
In the cascade procedures, we build strong classi�ers in each stage.
We pick a subset of features and train classi�ers hj (weak learners)
with the speci�c feature set, then we use boosting [8] (developed
by Freund and Schapire in 1990s) to combine these weak learners.
�e feature set varies for di�erent learners. �e boosting process
essentially selects a set of good learners which nevertheless have
signi�cant variety. It is old but works very e�ective in our case, the
idea of the algorithm is to iteratively assign appropriate weights
on each training examples (actually more weight on those training
examples that are misclassi�ed by the current weak hypothesis
just produced and less weights on those training examples that
are correctly classi�ed so that the learner can focus on the hard to
classify examples in the next iteration). Basic steps of this algorithm
is as follows:

Let T be the number of loops, at stage t , we assign weightWt (·)

to the training example i . �e goal of the learning algorithm is to
produce a hypothesis ht (·) such that the error at current stage is
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Table 2: Pseudo code for performing boosting procedure.

1 Let T classi�ers be h1, h2, · · · , hT
2 Training data (x1, y1), · · · , (xn, yn ), yi ∈ {+1, −1}
3 Initialize t = 1,Wt (i) = 1

n , ∀i
4 For t = 1, 2, · · · , T :
5 use distributionWt to obtain classi�er ht
6 calculate the error ϵt and coe�cient αt
7 update the weights for next iteration asWt+1(i) =Wt (i)e−αt yi ht (xi )
8 normalizeWt+1(i) so that it is a probability distribution, i.e., sum to be 1
9 Calculate the �nal output H (x )

(a) Training AUC = 0.909 (b) Test AUC = 0.886

Figure 3: ROC curve for high value identi�cation classi�ers.

minimized:

ϵt =
n∑
i=1

Wt (i)1{ht (xi ),yi } .

Where (xi ,yi ) are the training data, 1{·} is the indicator function,
it equals to 1 if the argument in bracket is true, 0 otherwise. ϵt
is the probability of error of classi�er ht (·), with respect to the
distribution of weights Wt (·). Since the weights are sum to be 1,
thus this error is always in [0, 1].

Upon �nishing of all the iterations (see Table 2), we combine the
classi�cation rules ht , t = 1, 2, ...,T and obtain a strong classi�er

H (x) = siдn
( T∑
i=1

αtht (x)
)
,

siдn(v) is the sign function, it returns 1 if v > 0, −1 otherwise.
�e coe�cients αt are generated according to the errors as αt =
1
2 ln( 1−ϵtϵt ). For any given x , H (x) will return a binary outcome
depends on the sign of the weighted sum.

Another reason we choose boosting is that the training error
approaches 0 exponentially in the number of rounds T .

�e performance of single classi�ers for either high value iden-
ti�cation and top prices separation are pre�y good (see Figure 3
and 4 for the worst classi�ers), especially for the high value identi-
�cation classi�ers, we have test AUC above 0.88. One may argue
that AUC performance does not directly translate to revenue be-
cause we do not know enough about the potential loss on the false
positive samples. �is is a serious concern and we did keep an
eye on the projected revenue a�er �nishing training and testing of
our classi�ers, the detailed revenue impact results can be found in
Section 4.

(a) Training AUC = 0.785 (b) Test AUC = 0.753

Figure 4: ROC curve for price separation detection classi-
�ers.

3.2 Cascading Algorithm
As of now we have a bunch of classi�ers for both high value detec-
tion and price separation. �e goal of cascading [13] is to reduce
the false positive rate of a prediction algorithm by combining a
series of classi�ers. We followed the basic idea in [16] with our
own features and classi�cation models. In order for a sample to
be predicted as positive, all the classi�ers in the cascading must
predict it to be positive, otherwise it will be predicted as negative
sample. In the training process, “a positive result from current
classi�er triggers the evaluation of the next classi�er which has
also been adjusted to achieve high detection rate. A positive re-
sult from the next classi�er triggers a third classi�er and so on”.
A negative outcome from any point leads to a termination of the
chain and labelled as negative immediately. Subsequent classi�ers
are trained using the examples that pass through all the previous
stages. And it is more and more di�cult for the later classi�ers to
predict. �e process is illustrated below, a series of classi�ers are
applied to each sample that passes all previous classi�ers. Instead of
pu�ing simpler classi�ers in the beginning, we choose smaller but
important feature set for the classi�ers at earlier stage so that they
can eliminates a large number of negative samples in a relatively
short time. Fewer and fewer samples survive a�er several stages
of processing, and are handed over to more complicated classi�ers.
See 3 for pseudocode.

For a trained cascade of N classi�ers, both the detection rate
(D =

∏N
i=1 di ) and false positive (F =

∏N
i=1 fi ) rate declined almost

exponentially. Our main goal is to reduce the false positive rate
(corresponding to the market share) to certain level while maintain
as much detection rate (corresponding to revenue) as possible. �e
single classi�ers must maintain a relative high detection rate so
that the goal is achieved. For a 10 stage cascade with each classi�er
has the same detection rate 0.95 and false positive rate 0.52, the
overall detection rate will be 0.9510 ≈ 60% while the false positive
rate will be 0.5210 ≈ 0.14%.

�e training process of single classi�er is aiming to minimize
errors, not to achieve high detection rates at expense of large false
positive rates. A straightforward trade o� is to adjust the threshold
of the decision rule produced by AdaBoost. In general, lower thresh-
old yields classi�er with more false positives and higher detection
rate; higher threshold yields classi�er with fewer false positives
and a lower detection rate.
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Table 3: Pseudo code for cascading algorithm.

1 Fi = fpr of combined classi�er a�er i rounds
2 Di = tpr of combined classi�er a�er i rounds
3 f = maximal acceptable fpr, d = minimal acceptable tpr
4 FTGT = target fpr
5 P = positive examples, N = negative examples
6 Initialize F0 = 1, D0 = 1, i = 0
7 while Fi > FTGT :
8 i + +, Ci = 0, Fi = Fi−1
9 while Fi > f ∗ Fi−1 :
10 Ci + +
11 train a classi�er with Ci features using P , N
12 calculate Fi and Di
13 decrease threshold for i th classi�er s.t Di ≥ d ∗ Di−1
14 empty N
15 if Fi > FTGT :
16 apply classi�er on true negative samples and put false prediction into N

In the implementation of the algorithm, there are some parame-
ters need to be tuned carefully. Our �nal algorithm will be able to
combine the following factors together and optimize the running
time while achieving the detection rate and false positive rate goal,
we have more parameters to handle than Viola and Jones [16]:

• Number of stages
• Number of features of each stage
• �reshold for each stage
• �e cuto� threshold for high value
• �e cuto� threshold for signi�cant price separation

In the implementation, we manually set up the bounds for maxi-
mal accepted fpr (false positive rate) and minimum accepted detec-
tion rate or tpr (true positive rate). �e reason we involve a manual
process is that to �nd an optimum combination of the above num-
bers is extremely hard, it does not worth pu�ing the computation
resource. Each layer of cascade is trained by AdaBoost with increas-
ing number of features until the detection and false positive rates
are met for that stage. �en both rates are con�rmed by testing
on a validation data set. We also evaluate the overall false positive
rate a�er �nishing training and testing one level, if the bound is
not yet met, then another layer is added to the cascade. We put
the false detections on the true negative set into the training set of
subsequent classi�ers. �e two cuto� thresholds also have a direct
impact on seller revenue, we run a �nite grid search for the optimal
values, the results are shown in Section 4.

Note that in line 13 of Table 3, updating threshold also impacts
Fj , so there is a risk to have a endless loop. In practice, this is not a
problem to us since we have a realistic FTGT with our cascading
classi�ers.

4 SIMULATION RESULTS AND CONCLUSIONS
One simple and fast way of implementing this model for testing
is to enforce the predicted �oor prices in selling rule for a portion
of the tra�c. For a online A|B test, we update the selling rule in
the keys that have the following six dimensions: hour, gob (group
of buyers), siteid, adsize, adpos, state. In our system, more than
80% of the tra�c condensed on about 1200 keys. We noticed that
on those keys, high-value inventories are highly condensed, and
these 1200 keys consists of about 60% of the total high-value tra�c.
�e revenue li� is around 3.5% using our trained classi�ers in the
cascade model. When underbid happens, we actually route part

Table 4: Simulation Results on 10% Random Data Sample.

E�ected Auctions High-value Auctions Low-value Auctions Total
Current Revenue $30,626 $85,753 $116, 379
New Revenue $40,316 $85,647 $125, 963
Un-e�ected Auctions - - $160, 761

Global Revenue Li� 3.5%

of the blocked tra�c to other platforms for reselling. �e revenue
from blocked tra�c is provided by the third party with delay, so
we do not include this part of revenue in our simulation results.

In Table 4, we show one simulation results on a random 10% sam-
ple and are able to achieve around $1000 li� on the e�ected auctions
(the revenue on the un-e�ected auctions le� unchanged), which
converts to a 3.5% global li�. �e portion of high-value inventories
in the marketplace is relative small. For instance, auctions with
top bid above $10 is about 5%, but it contributes 40% total revenue.
Although the revenue li� is around 3.5% for the marketplace, it
is pre�y stable over a long period with �uctuations around 0.3%.
Given the size of our exchange revenue on display ads, it translates
to an extra two dozens of million dollars in a yearly basis. Currently,
we are slowly push the model to the production with small tra�c,
as of now we have used only three level of cascading to reach this,
and we implement our model in an extremely conservative way.
Usually the higher false positive results in higher resell rate, in
order to maintain certain marketshare level we put a �rm constrain
on the fpr. As a consequence, we sacri�ce the detection rate as
much as possible to meet this goal even though we can further
grow our sell revenue by abandoning this constrain.

Future concerns about this system may include studying of the
long term behavior of bidders, it is possible that some bidders will
shade their bids a�er noticing that they are paying a higher prices
for this high-value inventories. However, a�er bid shadings, bidders
may lose some auctions and potentially boost the shaded bids to a
higher level. It is hard to predict the consequence of this mechanism,
but it will de�nitely put some e�ects on the total revenue we can
draw from this model.

Another note we would like to add is that there is still large
potential for the cascading model to achieve be�er revenue per-
formance. Due to engineering limitations, we haven’t make fully
use of Yahoo’s user pro�le data in this model. Some important user
features that we used in ads targeting are absent, such as the user
segment, content taxonomy, beacon events, etc. By adding those
feature, we may build more accurate classi�ers.
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