
Mini-Batch AUC Optimization
San Gultekin

Columbia University

New York, NY, US

sg3108@columbia.edu

Avishek Saha
∗

Amazon

Palo Alto, CA, US

avisaha@a9.com

Adwait Ratnaparkhi

Roku Inc.

Los Gatos, CA, US

adwait_ratnaparkhi@yahoo.com

John Paisley

Columbia University

New York, NY, US

jpaisley@columbia.edu

ABSTRACT
Area under the receiver operating characteristics curve (AUC) is

an important metric for a wide range of machine learning prob-

lems; including the well-known click through rate prediction for

online sponsored product ads. Scalable methods for optimizing

AUC have recently been proposed; however, handling very large

datasets remains an open challenge. This paper proposes a novel

approach to AUC maximization, based on sampling mini-batches

of positive/negative instance pairs and computing U-statistics to

approximate a global risk minimization problem. The resulting algo-

rithm is simple, fast, and learning-rate free. Extensive experiments

show the practical utility of the proposed method.

ACM Reference Format:
San Gultekin, Avishek Saha, Adwait Ratnaparkhi, and John Paisley. 2018.

Mini-Batch AUC Optimization. In Proceedings of ACM SigKDD Conference
Workshop (AdKDD). ACM, New York, NY, USA, Article 4, 6 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Given a set of positive and negative inputs, the bipartite ranking

problem is concerned with building a scoring system, such that the

positives are ranked higher than the negatives. The receiver oper-

ating characteristics (ROC) curve plots the ratio of true positives

(detection) to false positives (false alarm) as a function of this thresh-

old, and provides information about the behavior of the system.

The area under the ROC curve (AUC) is a threshold-independent

metric which measures the fraction of times a positive instance

is ranked higher than the negative one. Therefore, it is a natural

measure for the bipartite ranking accuracy.

Bipartite ranking performance is an importantmetric for datasets

with imbalanced labels; e.g. where one is given a dataset with binary

labels in which the ratio of positive to negative samples is very

low. This means a classifier which predicts all incoming instances

to be negative will have very high prediction accuracy. On the

∗
This work is done when the author was affiliated with Yahoo! Inc.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

AdKDD, August 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

other hand, it will have an AUC of zero. This is worse than random

guessing, which would give 0.5, and so the AUC values are more

informative. For this reason, the AUC metric is heavily used for

website ad click prediction problems [15], where only a very small

fraction of web history contains ads clicked by visitors.

Given that AUC is the primary performance it is useful to devise

algorithms that directly optimize this metric during the training

phase. AUC optimization has been studied within the context of

well-known machine learning methods, such as support vector

machines [2], boosting [7], and decision trees [6]. However, most

of these traditional approaches do not scale well as the size of the

dataset grows, since AUC is defined over positive/negative pairs,
which has a quadratic growth.

Recent research in this direction increasingly focuses on convex

surrogate loss functions to represent the AUC. This enables one

to use stochastic gradient methods to efficiently learn a ranking

function [17]. The first work in this direction is Zhao et al. [18],

where an online method based on proxy hinge loss is proposed.

Later, Gao et al. [8] use the pairwise squared loss function, which

eliminates the need for buffering previous instances. Ding et al.

[5] propose adaptive gradient/subgradient methods which can also

handle sparse inputs, while Hu et al. [12, 13] consider the nonlin-

ear AUC maximization problem using kernel and multiple-kernel

methods. Most recently, Ding et al. [4] focus on scalable kernel

methods.

While these approaches can significantly increase scalability, for

very large datasets their sequential nature can still be problematic.

AUC maximization method which can utilize mini-batch process-

ing is thus desirable. In this paper we propose a novel algorithm

for fast AUC optimization. Our approach, called Mini-Batch AUC

Optimization (MBA) is based on a convex relaxation of the AUC

function. However instead of using stochastic gradients, it uses first

and second order U-statistics of pairwise differences. U-processes

for ranking problems have previously been explored by Clemencon

et al. [3]. However, scalable mini-batch algorithms using U-statistics

have not been developed. The nearest work of Ding et al. [4] uses

similar mini-batch techniques, but for gradient descent. The pro-

posed method comes with theoretical guarantees, and the number

of samples required for good performance does not have a qua-

dratic dependence on the size of dataset. Our experiments show

the practical utility and performance improvement of MBA.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

AdKDD, August 2018, London, United Kingdom San Gultekin, Avishek Saha, Adwait Ratnaparkhi, and John Paisley

2 BACKGROUND
Given a dataset from an input space X and outputs space Y =

{±1}, let P be the unknown distribution which generates these

observation pairs. Given a score function f : X → R the bipartite

ranking accuracy of such function is naturally measured by AUC

AUC = Ex +∼P+
x −∼P−

[
1{ f (x+) − f (x−) > 0}

]
. (1)

This expectation is the probability that a positive instance is ranked

higher than negative instance.However, optimizing AUC gives rise

to an NP-hard problem since the objective function in Eq. (1) is

a sum of indicators and the number of pairs grows quadratically

with the training data. To sidestep this difficulty, a surrogate loss

function ϕ (·) can be chosen: Replacing 1
[
f (x+) − f (x−) > 0

]
with

the pairwise convex surrogate loss ϕ (x+,x−) = ϕ (f (x+) − f (x−)),
the aim is to minimize the ϕ-risk [16]

Rϕ (f) = Ex +∼P+
x −∼P−

[
ϕ (f (x+) − f (x−))

]
. (2)

This is the Bayes risk of the scoring function [1]. There are many

possible choices for surrogate function; some common choices are

the pairwise squared loss (PSL), pairwise hinge loss (PHL), pairwise

exponential loss (PEL), and pairwise logistic loss (PLL) [9]:

ϕPSL (t) = (1 − t)2 , ϕPHL (t) = max (0, 1 − t) , (3)

ϕPEL (t) = exp (−t) , ϕPLL (t) = log (1 + exp (−t)) ,

where t := f (x+i)− f (x
−
j) is the pairwise scoring difference. Among

the recent works on AUC optimization, Zhao et al. [18] and Khalid

et al. [14] use PHL, whereas Gao et al. [8] and Ding et al. [5] focus

on PSL.

If we further constrain the scoring function to be linear in input

features
1
, i.e. f (x) = w⊤x ; the ϕ-risk becomes

Rϕ (f) = Ex +∼P+
x −∼P−

[(
1 −w⊤ (x+i − x

−
j)

)
2

]

= 1 − 2w⊤E
[
(x+i − x

−
j)
]

+w⊤E
[
(x+i − x

−
j) (x

+
i − x

−
j)
⊤
]
w

= 1 − 2w⊤µ +w⊤Σw, (4)

where we definexi j := (x+i −x
−
j), and µ = E[xi j] and Σ = E[xi jx

⊤
i j]

are the first and second moments of xi j . We finally define the

solution to the ϕ-risk minimization problem as

w⋆ = argmin

w

1

2

w⊤Σw −w⊤µ, (5)

where we multiply by 1/2 for notation reasons. Note that µ and

Σ characterize the first and second order statistics of the pairwise

differences. This is important because the quality of bipartite rank-

ing does not directly depend on the positive and negative features,

but the differences between them. This observation forms the basis

of our mini-batch algorithm. Finally, by definition Σ is positive

semi-definite and when it is positive definite, there is a uniquew⋆

that satisfies Eq. (5).

1
The extension to any feature-transformed space is trivial.

3 MINI-BATCH AUC OPTIMIZATION
Using the pairwise squared loss function we obtain a convex opti-

mization problem in place of the original NP-hard problem. How-

ever, Eq. (5) is still difficult since computing the first and second

order statistics rely on the knowledge of the data generating distri-

butionP. In practical settings, we are only given a set of positive and

negative instances sampled from P, written S+ = {x+
1
, . . . ,x+N+ },

S− = {x−
1
, . . . ,x−N− }. We therefore substitute the following empiri-

cal risk

R̂ϕ (f) =
1

2N+N−

N+∑
i=1

N−∑
j=1

ϕ (f (x+i) − f (x−j)), (6)

which can be more easily optimized. The term N := N+N− cor-

responds to the total number of pairs in the data. Similar to the

ϕ-risk, optimizing the empirical risk yields a convex problem, but

the number of pairs grows quadratic in the number of data points.

Therefore, even for moderate datasets, minimizing the empirical

risk in Eq. (6) becomes intractable.

We substitute the PSL and functional form of linear classifier

into the empirical risk to obtain

R̂ϕ (w) = −w⊤

1

N+N−

N+∑
i=1

N−∑
j=1

(x+i − x
−
j)

(7)

+
1

2

w⊤

1

N+N−

N+∑
i=1

N−∑
j=1

(x+i − x
−
j) (x

+
i − x

−
j)
⊤

w

and define

µN =
1

N+N−

N+∑
i=1

N−∑
j=1

(x+i − x
−
j)

ΣN =
1

N+N−

N+∑
i=1

N−∑
j=1

(x+i − x
−
j) (x

+
i − x

−
j)
⊤. (8)

The variables in Eq. (8) are sample approximations to the first and

second moments of the pairwise differences, which are substituted

for µ and Σ in Eq. (5). Overall, the optimization problem to be solved

is

w⋆ = argmin

w

1

2

w⊤ΣNw −w
⊤µN + REL (w), (9)

where REL (w) := λ1 ∥w ∥1 + (1/2)λ2 ∥w ∥
2

2
is the elastic net regular-

izer [19], which we add to prevent overfitting. Note that, unlike

Eq. (5), there is a unique optimum since the elastic net penalty

makes the objective strictly convex. In addition, this regularizer

encourages solution which combines small ℓ2 norm with sparsity.

By substituting appropriate values for λ1 and λ2 we also recover

ridge and lasso regression. In this paper, we report results for all

three cases.

Since it is impractical to use all N samples, we propose to use

mini-batches to obtain estimates of the moments. This is a simple

process which only requires the computation of U-statistics. Note

that, given a parameter θ and symmetric measurable function h
which satisfies θ = h(X1, . . . ,Xm), the corresponding U-statistic is

Mini-Batch AUC Optimization AdKDD, August 2018, London, United Kingdom

given by

Un =

(
n

m

)−1 ∑
Cn,m

h(X1, . . . ,Xn), (10)

whereCn,m is the set of all length-m combinations with increasing

indices.

3.1 The MBA algorithm
We now describe the proposed MBA algorithm. Let T be the total

number of rounds. At round t we sample B positive and B negative

samples from the entire population with replacement. Let S+t and

S−t be the arrays of sample indices and let St be the array of pairs

stored as tuples of the form (S+t (i),S
−
t (i))—note that we do not

form the Cartesian product. The expressions for U-statistics of the

first and second moments simplify from Eq. (10) as

µt :=
1

B

∑
(i, j)∈St

(x+i − x
−
j)

Σt :=
1

B

∑
(i, j)∈St

(x+i − x
−
j) (x

+
i − x

−
j)
⊤. (11)

Finally let S = BT denote the total number of pairs sampled by our

algorithm. We also introduce the notation S1:T for the entire array

of pairs sampled during all rounds. The overall moment approxi-

mations are therefore

µS :=
1

BT

∑
(i, j)∈S1:T

(x+i − x
−
j)

ΣS :=
1

BT

∑
(i, j)∈S1:T

(x+i − x
−
j) (x

+
i − x

−
j)
⊤, (12)

and the optimization problem constructed by MBA is

w⋆
S = argmin

w

1

2

w⊤ΣSw −w
⊤µS + REL (w). (13)

This is the function MBA aims to construct and solve, which itself

is an approximation to the global risk minimization problem in Eq.

(5). On the other hand, stochastic gradient-based approaches make

local gradient approximations to the global function and seek a

solution that way. As we will show in the experiments, this is an

important difference and MBA can find better solutions since (i) it

constructs a global problem first, and (ii) it is learning rate free. We

summarize the proposed MBA in Algorithm 1.

Mini-batch optimizations are heavily employed in machine learn-

ing, including training of deep neural networks [10] and scalable

Bayesian inference [11]. The main benefit of using mini-batches

is it is significantly faster compared to the sequential approach.

Online methods for optimizing AUC, however, require a sequential

processing, as the parameters are updated per input. This is the

main reason MBA offers a significant improvement in speed. In ad-

dition to this MBA offers several other advantages. Since sampling

pairs and computing U-statistics is an isolated process, MBA can

easily be distributed across machines, which can work in an asyn-

chronous manner. Therefore MBA is suitable for cluster computing.

Secondly, streaming and/or nonstationary data processing can be

incorporated into the MBA framework, as it can process streams as

blocks and give larger weights to more recent ones.

Algorithm 1 Mini-Batch AUC Optimization (MBA)

1: Require: B, T , λ1, λ2
2: Input: X+, X−

3: Output:w⋆

4: Initialize µS = 0 and ΣS = 0.
5: for t = 1, . . . ,T do
6: Construct index set S+t of size B sampling positive examples

uniformly with replacement.

7: Construct index setS−t of size B sampling negative examples

uniformly with replacement.

8: Construct St (i) = (S+t (i),S
−
t (i)), i = 1, . . . ,B.

9: µS ← µS +
1

BT
∑

(i, j)∈St (x
+
i − x

−
j)

10: ΣS ← ΣS +
1

BT
∑

(i, j)∈St (x
+
i − x

−
j) (x

+
i − x

−
j)
⊤

11: end for
12: w⋆ = argmin

w
1

2
w⊤ΣSw⊤ −w⊤µS + λ1 ∥w ∥1 +

λ2
2
∥w ∥2

2

3.2 Theoretical Analysis
Solving the regularized empirical risk minimization problem in Eq.

(9) requires processing N pairwise samples. As this number grows

quadratically with the number of positive and negative samples,

it is often not possible to do this exactly. The proposed MBA ad-

dresses this problem by approximating the N -pair problem with

an S-pair one, where S samples are collected in mini-batches and

the total number of processed samples is much less than N . This

results in the problem in Eq. (13). We now provide a bound that

the solution with S samples is close to the truth with S ≪ N ,

where the closeness is naturally measured by Euclidean distance

d (wN −wS) = ∥wN −wS ∥
2

2
.

We now introduce ℓ2-norm bounds on data and weight vectors,

and for any given input we assume that ∥x ∥2
2
≤ Rx .

2
Next, define

the upper bound on weights such that max{∥wN ∥
2

2
, ∥wS ∥

2

2
} ≤ Rw .

Note here that Rw < ∞ is guaranteed by the ℓ2 regularization of

elastic net. We have the following result.

Theorem 1: Let w⋆
S be the solution returned by MBA using S

samples. For ϵ > 0, if

S ≥ max

{
log(4d/p)

[48R2w ∥ΣN ∥2 + 16ϵRw]Rx

3ϵ2
,

log(4/p)
48Rw ∥ΣN ∥2 + 16ϵ

√
RxRw

3ϵ2

}
then ∥wN −wS ∥2 ≤ δ with probability at least 1 − p.

The proof is deferred to the full-length version of this paper. The-

orem 1 shows that the number of samples S required to guarantee

∥wN − wS ∥2 < δ with high probability does not depend on the

total number of pairs N = N+N− provided. Instead the sample size

grows logarithmically with the feature size. This result is useful

in that, even though the total number of pairs in the data is too

large, randomly sampling a small fraction guarantees a solution

that is close to the true solution. We mention that, while this re-

sult holds for linear input spaces, it readily extends to the finite

dimensional nonlinear transforms; as all these transformations are

mappings from d dimensions to F dimensions, given such fixed

transformation, the result holds where we replace d by F .

2
This is a mild assumption since training data is typically normalized.

AdKDD, August 2018, London, United Kingdom San Gultekin, Avishek Saha, Adwait Ratnaparkhi, and John Paisley

Table 1: Summary statistics of datasets used in experiments.
For each dataset we show the train/test sample size, feature
size, and the ratio of negative samples to positive samples in
the training set.

Dataset # Samp. # Feat. T− / T+

a1a 1.6K / 30.9K 123 3.06

a9a 32.5K / 16.2K 123 3.15

amazon 750 / 750 5,000 2.33

bank 20.6K / 20.6K 100 7.88

codrna 29.8K / 29.8K 8 2.00

german 500 / 500 24 2.33

ijcnn 50K / 92K 22 9.30

madelon 2,000 / 600 500 1.00

mnist 60K / 10K 780 2.30

mushrooms 4K / 4K 112 0.93

phishing 5.5K / 5.5K 68 0.79

svmguide3 642 / 642 21 2.80

usps 7.2K / 2K 256 2.61

w1a 2.5K / 47.2K 300 33.40

w7a 25K / 25K 300 32.40

avazu app 12.6M / 2M 10,000 8.33

avazu site 23.6M / 2.6M 10,000 4.06

criteo 45.8M / 6M 10,000 2.92

4 EXPERIMENTS
In this section we conduct two types of experiments to demonstrate

the performance of MBA. In the first part we use 15 frequently used

benchmark datasets from the UCI
3
and LIBSVM

4
repositories. In

the second part we consider large scale click through rate (CTR)

prediction with two publicly available commercial-size datasets

with tens of millions of samples. We summarize all datasets in

Table 1. We note that the large datasets used (Avazu and Criteo)

are an order of magnitude larger than the ones used in previous

studies.

For comparison we use the following algorithms: MBA-ℓ2, MBA-

ℓ1, MBA-EL, which represent the three variants of our mini-batch

AUC optimization method using ridge, lasso, and elastic net re-

spectively. OLR is simply the online logistic regression and SOLR

is the sparse regression algorithm presented in [15]. OAM is the

first proposed online AUCmaximization algorithm using stochastic

gradients [18] which uses PHL. On the other hand, AdaAUC is the

adaptive gradient AUC maximization algorithm in Ding et al. [5]

based on PSL.

We also implement two mini-batch stochastic gradient algo-

rithms for large scale CTR prediction problems: MB-PHL is a mini-

batch gradient descent algorithm which uses PHL. A variant of

this approach is also proposed in the recent work of Ding et al. [4].

Finally MB-PSL is a mini-batch gradient method that uses PSL.

4.1 UCI and LIBSVM Benchmark Data
Table 2 shows the AUC values obtained by six competing algorithms

on 15 benchmark datasets. Here the results are reported along

with standard deviations. In addition, we conduct a pairwise t-test

3
archive.ics.uci.edu/ml/

4
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

with 95% significance level, as proposed and used by Gao et al. [8].

To perform this test, we compare each algorithm in the last four

columns to the two MBA algorithms in the first two columns. If

MBA performs significantly better/worse we represent this with

a filled/empty circle. Table 2 shows that there is a clear benefit in

using the proposed MBA algorithm, whereas the recent AdaAUC

algorithm is the second best competitor. The mini-batch processing

phase of MBA is learning-rate free and this brings an important

advantage. AdaAUC adapts the gradient steps, while we used the

learning rate O (1/
√
t) for all other stochastic gradient algorithms,

which performed well with this choice. However, though MBA does

not need this parameter, it still performs significantly better than

AdaAUC in 9/15 cases. It is also worth noting that MBA-ℓ1 obtains

100% AUC for the mushrooms data, and for the svmguide3 dataset

MBA is at least 9% better than the others.

Another important performance measure is the ability to rank as

a function of sample size. We show comparisons for this in Figure 1.

We see that the stochastic gradient based methods keep improving

as the sample size increases, whereas MBA has a relatively steady

performance after having a sample size that is 50-60% percent of

the original sample size (not the number of pairs). This indicates

that for these benchmark datasets MBA can already construct a

good approximation of the global problem at this point. This result

is not surprising given Theorem 1, as good performance is inde-

pendent of the number of pairs or instances, and only related to

the dimensionality of the optimization problem to be solved. In

the first panel of Figure 1 the best performer is logistic regression

although the difference is rather small. In the second plot, MBA-ℓ2
gives the best result, although AdaAUC is good as well. For the last

dataset, both MBA methods have a clear advantage, which shows

that optimizing the global cost function is important.

4.2 Large-scale Web Click Data
For this set of experiments we shuffle and split the entire dataset

into chunks of 100 (Avazu App) and 200 (Avazu Site and Criteo).

We then make a single pass over these chunks with randomized

sampling and report the results. For these datasets the variation

across different runs is very small, as the inputs are very uniform.

Therefore we do not show the confidence intervals in the bar charts,

but note that all results are statistically significant. For the click

through rate problem, a 0.1% improvement is considered significant,

whereas an improvement of 0.5% results in notable revenue gain. In

Figure 2 we show the AUC performance of seven algorithms. For the

Avazu App data, MBA-ℓ2 gives the best results while for Avazu Site

and Criteo all MBA algorithms give similar results. Comparing the

proposed MBA with the best non-MBA algorithm, the performance

improvements are 1.20%, 0.43% and 0.54%.

The mini-batch gradient descent algorithms do not perform as

well, especially when the regularization parameter is small, and

they get better as this parameter increases. For these experiments

the step size is O (1/
√
t), and while logistic regression has good

performance with this choice, optimizing pairwise losses seems

less robust. As the regularization increases the variation in the

gradients decreases, which helps improve the AUC scores. We also

experiment with a small constant step size, and this yields similar

archive.ics.uci.edu/ml/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Mini-Batch AUC Optimization AdKDD, August 2018, London, United Kingdom

Table 2: Comparison of algorithms on 15 benchmark datasets from UCI and LIBSVM repositories. The filled/empty circle
symbols indicate one of the MBA algorithms is (statistically) significantly better/worse.

Dataset MBA-ℓ2 MBA-ℓ1 OLR SOLR OAM AdaAUC

a1a 88.98 ± 0.14 88.67 ± 0.15 88.64 ± 0.27 88.04 ± 0.14 87.61 ± 0.45 88.51 ± 0.34

a9a 89.97 ± 0.01 89.97 ± 0.02 90.17 ± 0.03 89.88 ± 0.03 89.30 ± 0.22 89.99 ± 0.04

amazon 77.12 ± 0.44 71.35 ± 2.50 69.90 ± 2.21 71.87 ± 0.74 60.23 ± 3.90 74.97 ± 0.89

bank 93.22 ± 0.06 93.22 ± 0.03 82.89 ± 0.21 80.23 ± 0.33 81.51 ± 0.49 89.46 ± 0.12

codrna 97.68 ± 0.00 97.63 ± 0.01 95.69 ± 0.19 92.36 ± 0.85 97.31 ± 0.12 94.34 ± 0.40

german 80.34 ± 0.80 80.41 ± 0.64 76.39 ± 1.69 75.07 ± 1.22 74.59 ± 1.79 77.83 ± 1.29

ijcnn 90.53 ± 0.05 90.40 ± 0.07 89.50 ± 0.53 88.93 ± 0.48 88.52 ± 1.76 90.59 ± 0.28

madelon 62.39 ± 0.44 62.34 ± 0.51 61.97 ± 0.69 61.81 ± 0.48 60.64 ± 0.44 61.82 ± 1.58

mnist 95.81 ± 0.02 95.77 ± 0.02 95.63 ± 0.27 95.49 ± 0.12 94.82 ± 0.23 95.47 ± 0.09

mushrooms 100.00 ± 0.00 100.00 ± 0.00 99.88 ± 0.03 99.73 ± 0.07 99.62 ± 0.28 99.98 ± 0.00

phishing 98.32 ± 0.01 98.32 ± 0.05 98.49 ± 0.01 98.38 ± 0.03 98.08 ± 0.27 98.36 ± 0.02

svmguide3 81.16 ± 0.80 82.05 ± 0.66 63.80 ± 0.81 57.65 ± 2.98 66.97 ± 3.45 69.14 ± 1.95

usps 95.89 ± 0.04 95.83 ± 0.06 95.82 ± 0.15 95.71 ± 0.07 94.65 ± 0.53 95.74 ± 0.13

w1a 92.28 ± 0.23 91.21 ± 0.36 84.81 ± 1.34 79.84 ± 1.15 87.83 ± 1.59 90.70 ± 0.67

w7a 96.27 ± 0.07 96.17 ± 0.08 93.05 ± 0.29 89.27 ± 0.82 93.92 ± 0.55 95.09 ± 0.26

Win/Tie/Loss - - 11/3/1 14/1/0 15/0/0 11/4/0

20 40 60 80 100
Batch ratio (%)

88.8

89

89.2

89.4

89.6

89.8

90

90.2

AU
C

 (%
)

a9a

20 40 60 80 100
Batch ratio (%)

50

55

60

65

70

75

80

AU
C

 (%
)

german

20 40 60 80 100
Batch ratio (%)

50

55

60

65

70

75

80

85

AU
C

 (%
)

svmguide3

OLR
SOLR
OAM
AdaAUC
MBA L2
MBA L1

Figure 1: AUC performance of six algorithms as a function of sample size for a9a, german, and svmguide3 selected from
LIBSVM.

Avazu Site Dataset

1e-10/1e-6 1e-9/1e-5 1e-8/1e-4 1e-7/1e-3 1e-6/1e-2
L1/L2

50

55

60

65

70

75

80

AU
C

 (%
)

Avazu App Dataset

1e-10/1e-6 1e-9/1e-5 1e-8/1e-4 1e-7/1e-3 1e-6/1e-2
L1/L2

50

55

60

65

70

75

80

AU
C

 (%
)

Criteo Dataset

1e-10/1e-6 1e-9/1e-5 1e-8/1e-4 1e-7/1e-3 1e-6/1e-2
L1/L2

50

55

60

65

70

75

80

AU
C

 (%
)

OLR
SOLR MBA-L1

MBA-L2

MBA-EL

MB-PHL
MB-PSL

Figure 2: AUC achieved by all algorithms on the Avazu App, Avazu Site, and Criteo datasets. Here the performance is plotted
as a function of regularization parameters. The elastic net uses one half of ℓ1-penalty for both ℓ1 and ℓ2 regularization.

AdKDD, August 2018, London, United Kingdom San Gultekin, Avishek Saha, Adwait Ratnaparkhi, and John Paisley

Avazu App Avazu Site Criteo
0

5

10

15

20

25

30

35

40

R
un

 ti
m

e
(m

in
)

MBA-L1
MBA-L2

MBA-EL

MB-PHL
MB-PSL

Figure 3: Runtime comparison of MBA with MB-PSL and
MB-PHL. As the latter two only require a gradient compu-
tation they are faster than MBA, but with significantly re-
duced performance. On the other handMBA can process ten
million samples under an hour, which shows the scalability
of this approach.

results. On the other hand MBA does not require this parameter,

which is an important advantage.

Another important concern is the running time. Here, we do

not make a relative comparison, instead we state how much time it

takes to find the result. This is because, comparing the running time

to logistic regression is not very informative; if a sequential logistic

regression is implemented in Python script, then the mini-batch

algorithm is roughly 10 times faster, as sequential processing is

slow. However, if an optimized package is used, then it can be 100

times faster than MBA, as the underlying code is optimized. For this

reason we show the running time of the vanilla implementation of

MBA in Figure 3. As it can be seen, even for the Criteo dataset, which

contains the largest number of instances, the runtime is under an

hour. As we briefly mentioned in Section 3, the mini-batch portion

of MBA can be distributed without loss of accuracy, therefore using

cluster computing, MBA can easily scale to billion-sample datasets,

which are several orders of magnitude larger than the datasets that

can be handled by sequential methods.

5 CONCLUSION
This paper has introduced a fast algorithm to optimize the AUC

metric. Our proposed approach, called MBA, uses the specific struc-

ture of the squared pairwise surrogate loss function. In particular,

it is shown that one can approximate the global risk minimization

problem simply by approximating the first and second moments of

pairwise differences of positive and negative inputs. This suggests

an efficient mini-batch scheme, where the moments are estimated

by U-statistics. MBA comes with theoretical guarantees, and im-

portantly the number of samples required for good performance is

independent of the number of pairs present, which is typically a

very large number. Our experiments demonstrate the advantages of

MBA in terms of speed and performance. We think MBA would be

particularly useful for applications where AUC is the prime metric,

and the data size is massive and parallel processing is necessary.

REFERENCES
[1] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. 2006. Convexity,

classification, and risk bounds. J. Amer. Statist. Assoc. (2006).
[2] Ulf Brefeld and Tobias Scheffer. 2005. AUC maximizing support vector learning.

In ICML Workshop on ROC Analysis in Machine Learning.
[3] Stephan Clemencon, Gabor Lugosi, and Nicolas Vayatis. 2008. Ranking and

empirical minimization of U-statistics. The Annals of Statistics (2008).
[4] Yi Ding, Chenghao Liu, Peilin Zhao, and Steven C.H. Hoi. 2017. Large Scale

Kernel Methods for Online AUC Maximization. In International Conference on
Data Mining (ICDM).

[5] Yi Ding, Peilin Zhao, Steven C. H. Hoi, and Yew Soon Ong. 2015. An Adaptive

Gradient Method for Online AUC Maximization. In Association for Advancement
of Artificial Intelligence (AAAI).

[6] Cesar Ferri, Peter Flach, and Jose Hernandez-Orallo. 2012. Learning Decision

Trees Using the Area Under the ROC Curve. In International Conference on
Machine Learning (ICML).

[7] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. 2003. An Efficient

Boosting Algorithm for Combining Preferences. Journal of Machine Learning
Research (2003).

[8] Wei Gao, Rong Jin, Shenghuo Zhu, and Zhi-Hua Zhou. 2013. One-Pass AUC

Optimization. In International Conference on Machine Learning (ICML).
[9] Wei Gao and Zhi-Hua Zhou. 2015. On the Consistency of AUC Pairwise Opti-

mization. In International Joint Conference on Artificial Intelligence (IJCAI).
[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT

Press.

[11] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. 2013. Sto-

chastic Variational Inference. Journal of Machine Learning Research 14, 1 (May

2013), 1303–1347.

[12] Junjie Hu, Haikin Yang, Michael Lyu, Irwin King, and Anthony So. 2015. Kernel-

ized Online Imbalanced Learning with Fixed Budgets. In Association for Advance-
ment of Artificial Intelligence (AAAI).

[13] Junjie Hu, Haikin Yang, Michael Lyu, Irwin King, and Anthony So. 2016. Online

Nonlinear AUC Maximization for Imbalanced Data Sets. IEEE Transactions on
Neural Networks and Learning Systems (2016).

[14] Majdi Khalid, Indrakshi Ray, and Hamidreza Chitsaz. 2016. Confidence-Weighted

Bipartite Ranking. In Advanced Data Mining and Applications.
[15] H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner,

Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat

Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos,

and Jeremy Kubica. 2013. Ad click prediction: a view from the trenches. In

Conference on Knowledge Discovery and Data Mining (KDD).
[16] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2012. Foundations

of machine learning. MIT Press.

[17] Tong Zhang. 2004. Solving Large Scale Linear Prediction Problems using Sto-

chastic Gradient Descent Algorithms. In International Conference on Machine
Learning (ICML).

[18] Peilin Zhao, Steven C. H. Hoi, Rong Jin, and Tianbao Yang. 2011. Online AUC

Maximization. In International Conference on Machine Learning (ICML).
[19] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the

elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology
(2005).

	Abstract
	1 Introduction
	2 Background
	3 Mini-Batch AUC Optimization
	3.1 The MBA algorithm
	3.2 Theoretical Analysis

	4 Experiments
	4.1 UCI and LIBSVM Benchmark Data
	4.2 Large-scale Web Click Data

	5 Conclusion
	References

