
Deep Policy Optimization for E-commerce Sponsored Search
Ranking Strategy

Li He
Alibaba Group

hl121322@alibaba-inc.com

Liang Wang
Alibaba Group

liangbo.wl@alibaba-inc.com

Kaipeng Liu
Alibaba Group

zhiping.lkp@taobao.com

Weinan Zhang
Shanghai Jiao Tong University

wnzhang@sjtu.edu.cn

ABSTRACT
In the E-commerce platform, the sponsored search engine not only
takes the role of revenue contributor, but also contributes to the
long-term growth of the platform by improving user experiences
and facilitating advertisers’ commercial goals. The key to the satis-
factory of the platform, the user and the advertiser is the decision
of the list of advertisements to show and the charging prices for the
advertisers. In the sponsored search platform, these decisions are
made according to a ranking function. In the E-commerce platform,
advertisements showing positions under different queries from dif-
ferent users may be associated with advertisement candidates of
different bid price distributions and click probability distributions,
which requires the ranking functions to be optimized adaptively
to the traffic characteristics. In this work, we proposed a generic
framework to optimize the ranking functions by deep reinforcement
learning methods. Experimental results on a large-scale sponsored
search platform (Alibaba sponsored search engine) confirm the
effectiveness of the proposed method.

KEYWORDS
Sponsored search, ranking strategy, reinforcement learning

1 INTRODUCTION
Sponsored search is a multi-billion dollar business model which has
been widely used in the industrial area [5, 11]. In the commonly em-
ployed pay-per-click model, advertisers are charged for users’ clicks
on their advertisements. The sponsored search platform ranks the
advertisements by a ranking function and selects the top ranked
ones to present to the users. The prices charged from the advertisers
of these presented advertisements are computed by the general-
ized second price (GSP) auction mechanism [8]. Traditionally, the
ranking function is set to be the advertisements’ expected revenue
to the platform, computed as the product between the advertisers’
bidding price and the predicted click-through-rate (CTR) of the
user.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WOODSTOCK’97, July 1997, El Paso, Texas USA
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Following this expected revenue based ranking function design,
most of the existing methods focus on designing elaborate models
to predict the CTR [13, 30]. In this work, instead of designing a CTR
prediction model, we try an alternative way to model the ranking
function design as a policy optimization problem. Specifically, the
proposed method is designed to work for the sponsored search
engine of E-commerce platforms like Taobao or Amazon, on which
the primary search intention for users are browser and compare
between products to help them make the final decision. Hence, the
interaction between the users and the platform are sequentially
in nature. In this paper, we use the reinforcement learning [26]
approach to learn the ranking function parameters as the action
(policy) of the learning agent. On the E-commerce platform, we
can get the full stack user behavior data including the browsing,
click and purchase behaviors. Hence, the rewards of reinforcement
learning can be defined according to the benefits of the platform
(the revenue), the users (their clickness on the advertisements) and
the advertisers (their sales from showing the advertisements).

Since the reinforcement learning method optimize the agents’
policy through an explore and exploit strategy, in the existing lit-
erature, it is mostly used in games and robotics applications like
[17, 24] and [14] where the exploration can be done in a simu-
lated or artificial environment. When utilizing the algorithms in
advertising platforms, we need to consider the cost for the explo-
ration. In this paper, we solve this problem by building a simulated
learning environment. The simulated environment stores the re-
play information for each advertisement showing chance, enabling
the simulation of the advertisement selection decision and user
response under different ranking functions. The user response is
computed by reward shaping methods [20]. However, the learnt
ranking function may not be optimal due to the data distribution
gap between the simulated environment and the online platform.
To bridge this gap, we further apply an online policy optimization
module to tune the learnt ranking function.
Contributions. In this work, we present our work of learning the
ranking function for E-commerce sponsored search platform by pol-
icy optimization methods. Our main contributions are summarized
as follows:

• We first introduce a policy optimization framework to learn
the ranking function based on the full observation of the
user behavior on the E-commerce platforms;

• We propose to initialize the ranking function by conduct-
ing reinforcement learning in a simulated sponsored search
environment. In this way, the reinforcement learning can

https://doi.org/10.475/123_4

explore adequately without hurting the performance of the
commercial platform;

• We further present an online policy optimization module
to optimize the ranking function adaptively to online data
distribution.

2 RELATEDWORKS
The auction mechanism has been widely used in Internet compa-
nies like Google, Yahoo [8] and Alibaba, and extensively studied
in the research area: Bejamin et al. in [8] investigate the proper-
ties of generalized second price (GSP) and compare it with the
VCG [27] mechanism in terms of the equilibrium behavior. In [16],
the authors formulate the advertisement allocation problem as a
matching problem with budget constraints, and provide theoretical
proof that the algorithm can achieve a higher competitive ratio
than the greedy algorithm. To solve the ineffectiveness in next-price
auction, the authors in [1] designs a truth-telling keyword auction
mechanism. In [18] followed by [9], the reserved price problem
is studied, including its welfare effects and its relation to equilib-
rium selection criteria. A field analysis on setting reserve prices in
sponsored search platforms of Internet companies is presented in
[21]. Existing work generally focused on the revenue and efficiency
of the auction mechanism and treat the user click-through-rate in
a “single-parameter” setting [23]. In our E-commerce platform, in
consideration of long term return, instead of maximizing the plat-
form revenue only, we also add the user experience and advertiser
utility terms into the ranking function. And since we have the full
observation of users’ browsing, clicking and purchasing behavior,
we can optimize towards the realistic benefits of the platform, users
and advertisers.

Recently, policy optimization methods exemplified by reinforce-
ment learning are able to work in the environment with high-
dimensional observations by feeding large-scale experience data
and training with powerful computational machines [14], and make
breakthrough inmany different areas. However, most of the existing
applications are conducted on simulated non-profitable platforms,
where the experience data are easy to acquire and there is no restrict
to try any agent policies and training schemes [24, 29]. For online
advertising with reinforcement learning, the authors in [2] first
propose to tune sponsored search keyword bid price in an MDP
framework, where the state space is represented by the auction
information, the advertisement campaign’s remaining budgets and
life-time, while the actions refer to the bid price to set. Then in [3],
the authors formulate the sequential bid decision making process
in the real-time bidding display advertising. The method is based
on assumptions that the winning rate depends only on the bid price
and the actual clicks can be well estimated by the predicted CTR.
Hence, enabling the best bidding strategy can be computed in an
offline fashion. The work most similar to us is [4], which studies
the impression allocation problems using reinforcement learning
methods in E-commerce platform. However, they make the “single-
parameter” assumption in CTR estimation and they only concern
the allocation of the impressions whereas in our sponsored search
scenario, we also need to optimize the pricing of the impressions.
In our work, we model the ranking function as policy and optimize
it by conducting reinforcement learning on the offline simulated

Figure 1: System flow chart.

data, followed by an online model update procedure to make the
model consistent with the online data distribution.

2.1 System Overview
As shown in Fig. 1, the whole system is composed of three modules:
the offline sponsored search environment simulation module, the
offline reinforcement learning module and the online optimization
module. The environment simulation module is used to simulate
the effect caused by changing the ranking function parameters,
including re-ranking the advertisement candidates, showing the
new top-ranked advertisement, and generating users’ response
with respect to such changes. To allow adequate exploration, the
offline reinforcement learning module collects training data by
deploying randomly generated ranking functions on the simulated
environment. An actor-critic deep reinforcement learner [15] is
then trained on top of these training data. Thereafter, to bridge
the gap between the offline simulated data and the online user-
advertiser-platform interaction, we build an online learning module
to update the model by the online serving results.

3 METHOD
3.1 Ranking Function Learning as Policy

Optimization
We define the ranking function prototype here for two reasons.
One is to introduce what the ranking function looks like because it
determines how to select advertisement from candidates. The other
is to specify how we make platform performance goals tunable
through this function. The following ranking function is used to
compute the rank score for advertisement ad

ϕ(s,a,ad) = fa1 (CTR) · bid︸ ︷︷ ︸
platform

+a2 · fa3 (CTR,CVR)︸ ︷︷ ︸
user

+ a4 · fa5 (CVR,price)︸ ︷︷ ︸
advertiser

(1)

where s represents the search context including the search query,
user demographic information and status of advertisement candi-
dates for the advertisement showing chance. Since the traffic status
including the bidding price distribution and user engagement on
different search context may be different, it is preferable to optimize
the ranking function adaptively. bid and price are the bid price and
product price set by the advertiser for the advertisement ad on the

current query. CTR and CVR of ad are predicted by the platform.
fai (i ∈ {1, 3, 5}) performs nonlinear monotonic projection onCTR
andCVR, and scalar a2,a3 are used to balance the weights between
the three terms. Because our sponsored search platform charges the
advertisers by ‘click’, the first term fa1 (CTR) ·bid can be seen as the
expected revenue of the platform. We refer the users’ preference to
the presented advertisements as their response ratio (CTR and CVR).
Hence, the second term indicates the engagement of the users. The
third term computes the expected return (expected user purchase
amount) of the advertiser by showing the advertisement, which
measures the gain of the advertisers. Compared with the ranking
function proposed in [12], which is generally used by Google and
Yahoo, our ranking function Eq. (1) involves more parameters and
commercial factors to consider, which can be used to optimize for
more comprehensive commercial goals.

The ranking function is parameterized by a in consideration of
the following issues: first, we charge the advertisers according to
second price auction mechanism, which is lower than the bid price;
second, the three terms may not be the same in numeric scale. The
ranking function optimization problem can be formulated as to
predict the best parameter a given the search context s as

π (s) = argmax
a

R(ϕ(s,a)) (2)

where R(ϕ(s,a)) is the reward given the ranking function ϕ(s,a).
The reward can be defined as the sum of purchase amount, number
of click and platform revenue or any weighted combinations of
the three terms during a certain period after the ranking function
is operated, depending on the platform performance goal. In this
work, we formulate the learning of the ranking function as a policy
optimization problem with the state defined as s and the action as
a. On the E-commerce platform, after posing a query, a user would
sequentially browse the search results, click to read the product
details and compare them to make purchase decision. The state
s would continuously changed according to the existing user be-
havior and the advertisement showing position changes, and the
ranking function should also be changed accordingly to maximize
the cumulated reward. The reinforcement learning methods are
designed to solve the sequential decision making problem in an
explore and exploit manner, which is suitable to solve the ranking
function learning problem. However, the performance of the re-
inforcement learning is guaranteed by adequate exploration, and
the exploration may bring uncertainty in the ranking functions’
behavior and have performance cost. In this work, we minimize
the exploration cost by conducting the reinforcement learning in a
simulated sponsored search environment, then update the policy
online by an evolution strategy based online policy optimization.
In the following sections, we will introduce the detail algorithms
of the method.

3.2 Environment Simulation Module
In this work, the environment simulation is performed by replay-
ing the existing advertisement serving processes and making them
adjustable in terms of ranking function setting. For each online
advertisement showing chance, we store the bidding information
and predicted CTR, CVR of all the associated advertisement can-
didates. According to Eq. (1), the ranking orders and click prices

Figure 2: Illustration of the Actor and Critic network archi-
tectures used in our work.

for these advertisement candidates can be computed out of these
replay information. The reward for showing an advertisement is
simulated by the reward shaping approach [20] as the user response
(like clicking the advertisement or purchasing the product). For
example, if our goal is to get more platform revenue and user clicks,
the intermediate reward can be computed as

r (st ,at) = CTR · click_price + λ ·CTR (3)

where λ is a manually tunable parameter to balance between the
expectation of more user engagement (click behavior) or more plat-
form revenue. The current state st is defined as the search context
including the query related features, user behavior features and
current advertisement position etc. The action at is the ranking
function parameter in Eq. (1). To simulate the state transition to
st+1, the user behavior features can be updated by adding the ex-
pected user response calculated out of the predicted CTR and CVR.
The advertisement positions is updated as the next advertisement
showing position.

3.3 Offline Reinforcement Learning for
Ranking Function Initialization

Learning from the simulated environment introduced above gives
rise to many special requirements for the learning algorithm. First
of all, the simulation method above could only generate temporally
independent state-action pairs. This is because the state-action
sequence of user-platform interaction is tangled. The current user
behavior is correlated with the previously presented advertisements
and occurred user responses. Hence, the reinforcement learning
method should support off-policy learning [7]. Moreover, since the
action spaceA is continuous (refer to Eq. (2)), it is practical to define
the deterministic policy function [25]. Taking these requirements
into consideration, we use the Deep Deterministic Policy Gradient
(DDPG) learning method in [15] . The method supports off-policy
learning, and combines the learning power of deep neural networks
with the deterministic policy function property in Actor-Critic
architecture.

The architectures of our DDPG model is shown in Fig. 2. We
represent all the features of st as ID features, and use a shared em-
bedding layer to convert each of these ID features into a fixed-length

dense vector and concatenate them to form the feature represen-
tation of st . For the policy network, we use clip method as [17] to
clip the output into a valid range to avoid over-learning. For the
value network, we add a dueling network architecture [28] before
the output layer which divides the value function (Q(s,a)) into the
sum of a state value function (V (s)) and a state-dependent action
advantage function (A(s,a)), such that Q(s,a) = V (s) +A(s,a). Ac-
cording to the insight of [28], the dueling architecture makes the
learning of the value network efficient by identifying the highly
rewarded states and the states where the selected actions do not
affect the rewards much. To train the DDPG model, we employ
the asynchronous training strategy [19] using the (s,a, r , s ′) tuples
generated by simulation system .

3.4 Online Policy Optimization for Ranking
Function Updating

The offline simulated environment is still inconsistent with the
real online environment due to the dynamic data distribution and
sequential correlation between the continuous user behavior. This
inconsistency poses the online updating requirement for the learned
ranking function. However, directly using the asynchronous train-
ing framework in Section 3.3 is not proper due to the special-
ity of the online updating: (1) the data distribution is different,
where the online rewards are sparse and discrete; (2) there are
latency in reward collection. Regarding to these specialities, we
introduce the evolution strategy [22] to update the parameters of
the policy model. We perform the following steps to online up-
date the policy networks πθπ (st): (i) stochastically perturb the
parameters θπ by a Gaussian noise generator with zero mean
and variance σ 2. Denote the set of n perturbed parameters as
Θπ ,ϵ = {θπ + ϵ1,θπ + ϵ2, ...,θπ + ϵn }. (ii) Hash the the online
traffic into bins according to dimensions like user ID and IP ad-
dress. For each parameter θπ ,i ∈ Θπ ,ϵ , we deploy a policy network
πθπ ,i (st) on a traffic bin and get the reward according to Eq. (3)
as the weighted sum of platform revenue and the click number
in this bin Ri = total_click_price + λ · click_number . However, in
reality, the number of advertisement showing should not be ex-
actly the same for each bin. We compute the relative value of the
reward by dividing it with the number of served advertisements
as Ri = Ri

served_ad_number . (iii) Update the parameter θπ by the
weighted sum of the perturbations as

θ ′π = θπ + η
1
nσ

n∑
i=1

Riϵi (4)

where η is the learning rate.
The evolution strategy based method has several merits under

our scenario. First of all, it is derivative-free. Since the rewards
are discrete, it is hard to compute the gradient from the reward
to the policy network parameters. Secondly, by fixing the seed of
the random number generator, we just need to communicate the
reward (a scalar) between the policy networks in local traffic bins
and the central parameter servers. Thirdly, the method does not
have intermediate reward requirement due to the homogeneity
of these online traffic bins. Thus it can be deployed to optimize
conversion related performance.

4 EXPERIMENTAL RESULTS
We conduct experiments on an E-commerce sponsored search plat-
form, which serves several billions of advertisements to hundreds
of millions of users per-day. There are about tens of millions of
advertisements covering diverse categories.

To fully study the effectiveness of the proposed ranking strat-
egy optimization method, both analytical experiments on offline
data and empirical experiments by deploying the learned ranking
strategy online are carried out. On the platform, the search results
are presented in a streaming fashion, and the advertisements are
allowed to be shown on fixed positions within the streamed content.
Since the search results are tangled with the advertisements, besides
the platform revenue, one important issue we need to deal with
is the user experience. In the experiments, we set the immediate
reward r to be

r = click_price · is_click + λ · is_click (5)

where click_price is the amount we charge the advertisers accord-
ing to generalized second price auction, and is_click is a binary
number indicating whether the advertisement is clicked (1) or not
(0). λ is manually set according to the average click_price to bal-
ance between the platform revenue goal and the user experience
goal. But because we test our model on a small percentage of traffic
online (2% traffic), the purchase amount is highly varied according
to our observation. In the current experiments, we do not show the
purchase optimized results and leave it as a future work when we
ramp up our test traffic amount.

4.1 Experiments on Offline Data
In the offline experiments, we study the convergence property of
the proposed method and the effect of using different architectures
and different hyper parameters on the speed of convergence.We em-
ploy an analytical method to verify whether the proposed method
can converge to the ‘right’ ranking function. In the experiment, a
simple state representation (only query + advertisement position) is
utilized such that from the simulated data, it is computational feasi-
ble to perform brute force search to find the best parameters of the
ranking function. The brute force method proceeds by uniformly
sampling the ranking function parameters in a at a fixed step size
for each replay sample, computing the rewards (refer Eq. (5)), and
finding the best parameter a∗ from these samples according to the
aggregated rewards. For training the reinforcement learning model,
we encode both the query IDs and advertisement position IDs into
8-dimension embedding vectors. As a result, our embedding layer
consists of a 16-dimension feature vector. For the critic hidden layer,
we utilize two full-connection units, each of which has 500 nodes,
and ELU [6] as the activation function. We use the same settings
for the actor hidden layer except using 100 nodes in each layer. At
the training stage, we use an exponential decaying learning rate
for network parameter. We set the initialized value to 1.0e-4 and
decay it by 0.96 for each 1M steps. The target network learning
rate (τ) and regularization loss penalty factor are set to be 0.01 and
1.0e-5 respectively. The λ is set to be the average of the click_price
calculated out of the data log. Experimental results are presented
in Fig. 3. The performance of the proposed method is measured by
the squared error between the learnt ranking function parameters

0 10 20 30 40 50

training batches (Million)

0.10

0.15

0.20

0.25

0.30

M
S
E
 l
o
ss

dueling

without dueling

0 10 20 30 40 50

training batches (Million)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

w
e
ig

h
te

d
 M

S
E
 l
o
ss

dueling

without dueling

Figure 3: Comparison of the convergence speed of train-
ing by utilizing different network architectures. Averaged
squared error (left) and advertisement showing number
weighted squared error (right) differences between strategy
parameters of DDPG and the searched results. ‘(without) du-
eling’ is the trained result (not) using the dueling network.

Table 1: Hyperparameter setup of Fig. 4.

ID Learning rate Regularization Batch size
decay exponential decay 1.0e-5 50k
low 1.0e-5 1.0e-5 50k
high 1.0e-4 1.0e-5 50k
batch size exponential decay 1.0e-5 10k
regular exponential decay 1.0e-3 50k

and the ‘best’ parameters found by brute force method. From the
results, we can see, the proposed method could converge gradually
to the best ranking function as the training process goes on. In
Fig. 3, we also compare the results of using the dueling architecture
(annotated by ‘dueling’ in the figure) and not (‘without dueling’) to
confirm the performance improvement brought by the dueling ar-
chitecture. It can be seen that, the dueling architecture improves the
convergence speed dramatically. The intuition behind the results
is the dueling architecture could help remove the reward variance
of the same action under different states by V (s), and guide the
action-value network A(s,a) to focus more on differentiating be-
tween different actions. As a result, the policy network learning is
accelerated.

In Fig. 4, we evaluate the influences of different hyper param-
eters for training the model, including the learning rate, regular-
ization penalties and batch sizes. The parameter setup is listed in
Table 1. As can be observed, (1) larger batch size (compare ‘decay’
and ‘batch size’) and lower regularization penalty (compare ‘decay’
and ‘regular’) make the learning method converge more closely
to the optimal solution. This is because there is strong variance
in the rewards. Larger batch size helps to reduce the variance in
the batched training data, and lower regularization penalty allows
a larger searching space for variables; (2) decaying learning rate
(‘decay’ , ‘low’ and ‘high’) makes the learning method converge
more smoothly and quickly. A decayed learning rate inherits the
merit of higher learning rate by accelerating the convergence at
the beginning of training, and benefits from the lower learning rate
to smooth the learning in later training rounds.

It should be noted that, when deploying the model online, we
would use far more features to encode the sequentially changed

0 10 20 30 40 50

training batches (Million)

0.10

0.15

0.20

0.25

0.30

M
S
E
 l
o
ss

decay

batch size

regular

0 10 20 30 40 50

training batches (Million)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

w
e
ig

h
te

d
 M

S
E
 l
o
ss

decay

batch size

regular

(a) Effects of batch size and regularization

0 10 20 30 40 50

training batches (Million)

0.10

0.15

0.20

0.25

0.30

M
S
E
 l
o
ss

decay

low

high

0 10 20 30 40 50

training batches (Million)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

w
e
ig

h
te

d
 M

S
E
 l
o
ss

decay

low

high

(b) Effects of different learning rates

Figure 4: Comparison of the convergence speed of training
by using different hyper parameters. The hyper parameter
description is shown in Table 1.

search context instead of just two simple features as in above ana-
lytical case. Hence, it is computational infeasible to use brute-force
method to find a mapping between the high-dimensional search
context space to the continuous action space (ranking function
parameters).

4.2 Online Serving Experiments
In this section, we present the experimental results of conducting
a bucket experiment on Alibaba sponsored search engine. The
sponsored search platform charges the advertisers for the click on
their advertisements according to GSP auction mechanism. We split
a small percentage (about 2%) of traffic from the whole online traffic
by hashing the user IDs, IP addresses, etc., and deploy the learned
ranking function online for advertisement selection and pricing.
The following business metric are measured to see the improvement
brought by the proposed method. (1) Revenue-Per-Mille (RPM): the
revenue generated per thousand impressions; (2) Price-Per-Click
(PPC): the average price per-click determined by the auction; (3)
Click-through-rate (CTR). We employ the three business metrics
because we are optimizing towards the platform revenue and user
experience as in Eq. (5). RPM is determined by the product of CTR
and PPC. From the change of CTR and PPC, we can also induce the
improvements of the advertisers’ saling efficiency, i.e. increase in
CTR and decrease in PPC means the advertisers can attract more
customers by less spending on advertisement serving.

In this work, a new ranking function is proposed by adding the
terms reflecting the user engagement and the advertisers’ gain, and
a offline reinforcement learning method is presented for optimiz-
ing the ranking funciton. In the online experiments, we want to
verify the performance improvement brought by the new ranking
function and the improvement from the reinforcement learning
method. To evaluate the effectiveness of the new ranking function,

we compare the proposed ranking function with the one proposed
by Lahaie and McAfee [12]. The ranking function in [12] has been
used by many companies and proved to be efficient in online adver-
tising auctions. In the experiment, we use this ranking function as
the baseline and set its parameter (the exponential term) by brute
force searching in the same manner as Section 4.1. For the proposed
method, we use both the ranking functions learned by the brute
force method in Section 4.1 and the ranking function learned by
the reinforcement learning method. It should be noted that, in this
experiment, we use the full set of features introduced in Section 3.3
as state features for reinforcement learning, instead of the simple
representation employed in Section 4.1. The comparison results on
two continuous days’ data are shown in Table 2. As is observed,
compared to the method [12], our ranking function learned by the
brute force method is capable of delivering 2.5% of RPM growth
with 1.1% of CTR increase and 1.4% of PPC increase. This is because
the proposed function has more parameters to tune and possesses
more space for performance improvement. For the ranking function
learned by offline reinforcement learning method, we observe a
2.5% RPM growth which is arisen majorly from the CTR increase
(2.0% of CTR gain). We interpret the difference between the rein-
forcement learning method and ’brute force’ method by the fact
that the reinforcement learning method dose not converge to the
exact value of brute force method, and it use a more elaborate set
of features to represent states. From the business side, we can find
that the new ranking function can improve more user engagement
by attracting more user clickness on the presented advertisements.
For the platform, the increase of RPM brings in more efficiency in
platform profit, and for the advertisers, the RPM growth is driven
by the CTR increase with little increase in PPC (for the learned
ranking function), this means, the advertisers only need to pay a
little more money to attract more potential buyers.

Section 3.4 introduces the online evolution strategy method
for optimizing the policy networks based on online data. In this
experiment, we evaluate the online performance changes in seven
continuous days to confirm the performance increases brought
by online learning method. We still use the method of McAfee
[12] as baseline. To explore strategy actions in πθπ (s), we add a
gaussian noise G(0,δ2) with mean 0 and variance σ 2 = 0.05 to
the parameters θπ of πθπ (s). We split the traffic of the test bucket
into 100 splits and apply each perturbed policy networks to one of
them. The buckets and the user feedback history are collected from
the data logs to compute the updates with learning rate η = 0.05
in Eq. (4). The average performance of the test bucket are shown
in Fig. 5. As can be seen, all the three business metrics improve
during the days. Compared with the baseline ranking function
[12] (whose parameter stays unchanged during the days), the RPM
grows from 2.5% to 4.5%, CTR grows from 2.1% to 2.9%, indicating
the effectiveness of the online updating method. We also find the
PPC grows because there is no constraints added on it. In the future
work, we will try to add constraints on PPC to generate more return
for advertisers.

5 CONCLUSIONS
As a commercial sponsored search platform, besides the intermedi-
ate platform revenue, the users’ engagement and the advertisers’

Table 2: Experimental results comparing the performance of
the ranking function, the brute force searched ranking func-
tion and the one learned by reinforcement learning method
in Section.

Metrics (%) ∆rpm ∆ctr ∆ppc
McAfee [12] 0.00 0.00 0.00
brute force 2.55 1.12 1.45
offline learning 2.52 2.08 0.26

1 2 3 4 5 6 7 8
updating time (day)

0

1

2

3

4

5

ch
a
n
g
e
s

o
f

m
e
tr

ic
s

(%
)

∆rpm

∆ctr

∆ppc

Figure 5: Experimental results illustrating the business
metric changes during the online update of the proposed
method in Section 3.4.

return are also important to the long-term profit of the commercial
platform. In this work, we design a new ranking function by incor-
porating these factors together. However, these additional terms
increase the complexity of the ranking function. So, we propose a
reinforcement learning framework to optimize the ranking function.
To allow adequate exploration without hurting the performance
of the commercial platform, we propose to initialize the ranking
function by an offline learning procedure conducted in a simulated
sponsored search environment, followed by an online learning mod-
ule which updates the model adaptively to online data distribution.
Experimental results confirms the effectiveness of the proposed
method.

In the future, we will focus on the following direction: Sequential
user behavior simulation. The environment simulation method in-
troduced in Section 3.2 is limited to one time advertisement serving
without considering the correlation between sequential user behav-
iors. We plan to try generative models like GAN [10] to model the
continuous user behaviors.

REFERENCES
[1] Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. 2006. Truthful auctions for

pricing search keywords. In Proceedings of the 7th ACM conference on Electronic
commerce.

[2] Kareem Amin, Michael Kearns, Peter Key, and Anton Schwaighofer. 2012. Budget
optimization for sponsored search: Censored learning in MDPs. UAI (2012).

[3] Han Cai, Kan Ren, Weinan Zhang, Kleanthis Malialis, Jun Wang, Yong Yu, and
Defeng Guo. 2017. Real-Time Bidding by Reinforcement Learning in Display
Advertising. In Proceedings of WSDM. 661–670.

[4] Qingpeng Cai, Aris Filos-Ratsikas, Pingzhong Tang, and Yiwei Zhang. 2017. A
deep reinforcement learning framework for allocating buyer impressions in
e-commerce websites. arXiv preprint arXiv:1708.07607 (2017).

[5] Deepayan Chakrabarti, Deepak Agarwal, and Vanja Josifovski. 2008. Contextual
advertising by combining relevance with click feedback. In Proceedings of WWW.
417–426.

[6] Djork-ArnÃľ Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
Accurate Deep Network Learning by Exponential Linear Units (ELUs). Computer
Science (2015).

[7] Thomas Degris, Martha White, and Richard Sutton. 2012. Off-Policy Actor-Critic.
In Proceedings of International Conference on Machine Learning.

[8] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet
Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars
Worth of Keywords. American Economic Review 97, 1 (2007), 242–259.

[9] Benjamin Edelman and Michael Schwarz. 2010. Optimal auction design and
equilibrium selection in sponsored search auctions. The American Economic
Review 100, 2 (2010), 597–602.

[10] Ian Goodfellow, Jean Pouget-Abadie, and Mehdi Mirza et. al. 2014. Generative
adversarial nets. In Proceedings of NIPS. 2672–2680.

[11] Cheng Haibin and Erick Cantu-Paz. 2010. Personalized click prediction in spon-
sored search. In Proceedings of WSDM.

[12] Sébastien Lahaie and R Preston McAfee. 2011. Efficient Ranking in Sponsored
Search. (2011), 254–265.

[13] Wei Li, Xuerui Wang, Ruofei Zhang, Ying Cui, Jianchang Mao, and Rong Jin.
2010. Exploitation and exploration in a performance based contextual advertising
system. In Proceedings of the ACM SIGKDD. 27–36.

[14] Yuxi Li. 2017. Deep Reinforcement Learning: An Overview. arXiv preprint
arXiv:1701.07274 (2017).

[15] Timothy P. Lillicrap, Jonathan J. Hunt, and Alexander Pritzel et. al. 2015. Contin-
uous Control with Deep Reinforcement Learning. In Proceedings of ICLR. 1–14.

[16] AranyakMehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. 2007. Adwords
and Generalized Online Matching. J. ACM 54, 5 (2007).

[17] Volodymyr Mnih, Koray Kavukcuoglu, and David Silver et al. 2015. Human-level
control through deep reinforcement learning. Nature 7540 (2015), 529–533.

[18] Roger Myerson. 1981. Optimal Auction Design. Mathematics of Operations
Research 6, 1 (1981), 58–73.

[19] Arun Nair, Praveen Srinivasan, and Sam Blackwell et. al. 2015. Massively Parallel
Methods for Deep Reinforcement Learning. (2015).

[20] Andrew Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under
reward transformations: Theory and application to reward shaping. In Proceedings
of International Conference on Machine Learning, Vol. 99.

[21] Michael Ostrovsky and Michael Schwarz. 2011. Reserve prices in internet adver-
tising auctions: A field experiment. (2011).

[22] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. 2017. Evolution
strategies as a scalable alternative to reinforcement learning. arXiv preprint
arXiv:1703.03864 (2017).

[23] Weiran Shen and Pingzhong Tang. 2017. Practical versus Optimal Mechanisms. In
Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems.
78–86.

[24] D. Silver, A. Huang, and C. J. Maddison et. al. [n. d.]. Mastering the Game of Go
with Deep Neural Networks and Tree Search. Nature 529, 7587 ([n. d.]), 484–489.

[25] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms. In Proceedings
of ICML. 387–395.

[26] Richard Sutton and Andrew Barto. 1998. Reinforcement Learning: An Introduction.
Cambridge: MIT Press.

[27] William Vickrey. 1961. Counterspeculation, auctions, and competitive sealed
tenders. The Journal of finance 16, 1 (1961), 8–37.

[28] Ziyu Wang, Tom Schaul, and Matteo et. al. Hessel. 2015. Dueling network
architectures for deep reinforcement learning. (2015), 1995–2003.

[29] Y. Wu and Y. Tian. 2017. Training Agent for First-person Shooter Game with
Actor-Critic Curriculum Learning. In Proceedings of ICLR. 1–8.

[30] H. Yu, C. Hsieh, and C. Lin K. Chang. 2012. Large linear classification when data
cannot fit in memory. ACM Transactions on Knowledge Discovery from Data 4
(2012), 23–30.

	Abstract
	1 Introduction
	2 Related Works
	2.1 System Overview

	3 Method
	3.1 Ranking Function Learning as Policy Optimization
	3.2 Environment Simulation Module
	3.3 Offline Reinforcement Learning for Ranking Function Initialization
	3.4 Online Policy Optimization for Ranking Function Updating

	4 Experimental Results
	4.1 Experiments on Offline Data
	4.2 Online Serving Experiments

	5 Conclusions
	References

