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ABSTRACT
The importance of Facebook advertising has risen dramatically
in recent years, with the platform accounting for almost 20% of
the global online ad spend in 2017. An important consideration
in advertising is incrementality: how much of the change in an
experimental metric is an advertising campaign responsible for. To
measure incrementality, Facebook provide lift studies. As Facebook
lift studies differ from standard A/B tests, the online experimenta-
tion literature does not describe how to calculate parameters such
as power and minimum sample size. Facebook also offer multi-cell
lift tests, which can be used to compare campaigns that don’t have
statistically identical audiences. In this case, there is no literature
describing how to measure the significance of the difference in
incrementality between cells, or how to estimate the power or min-
imum sample size. We fill these gaps in the literature by providing
the statistical power and required sample size calculation for Face-
book lift studies. We then generalise the statistical significance,
power, and required sample size calculation to multi-cell lift studies.
We represent our results theoretically in terms of the distributions
of test metrics and in practical terms relating to the metrics used
by practitioners, making all of our code publicly available.
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1 INTRODUCTION
In 2017, advertisers spent $204bn online [10], with a large share
($40bn) spent targeting Facebook’s 2.13bn monthly active users [5].
To maximise their return on investment, advertisers continuously
test and optimise their campaigns. It is increasingly common to
use controlled experiments to maximise the incrementality of an
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Existing literature on Lift studies Multi-cell lift studies
Test statistic [4] ✗

Statistical significance [4] ✗

Power / Required sample size ✗ ✗

Table 1: Existing literature on calculating the test statistic
(lift/incrementality), its statistical significance, test power,
and the required sample size for Facebook lift studies and
multi-cell lift studies. The only literature available is the
white paper by Gordon et al. [4].

advertising campaign. In the most common variant — known as
A/B, or split testing — the target population is divided into two
groups, a test group, where members are shown adverts, and a con-
trol group, where members are not shown adverts. The difference
in a metric of interest (e.g. total sales or number of app installs) be-
tween the test group and control group is the incrementality of the
campaign. Facebook offers advertisers the opportunity to measure
the incrementality of their campaigns via lift studies.

Despite the importance of Facebook advertising, there is a lack of
literature or documentation describing how to design experiments.
The deficiencies are summarised in Table 1.1 We address this issue
by first describing how Facebook calculate incrementality and using
this to derive measures of statistical significance, the test power
and the minimum sample size for Facebook lift studies.

A Facebook lift study is similar to an A/B test with two important
differences. Firstly, the control group is scaled so that the size of the
test and control groups are the same. This changes the variance of
the metric of interest in the control group.2 Secondly, not everyone
in the test group is shown an advert. This happens because the
advertiser can lose every bid for a particular user, or when a bid is
won, the advert appears off the screen. Members of the test group
who are shown the advert at least once during the test period are
referred to as the reached audience, and those who have not seen
the advert during the test period are referred to as the unreached au-
dience. The activity of the unreached audience introduces variance
that is not present in a standard A/B test, which must be factored
in when calculating the power and required sample size.

Facebook has a mechanism that takes the scaled control group
and the unreached audience into account when reporting on the
incrementality and its associated statistical significance [4] (see
Section 2), but they do not cover the statistical power or required
sample size. We introduce these calculations in this paper.

Facebook also support multi-cell lift studies, where the target
population is split into multiple cells each with a control and test
1On their experimentation website [6], Facebook state that “To build a study with more
rigorous calculations, or for more information on Conversion or Brand Lift, please
reach out to your Facebook Account Representative.”
2If the control group is scaled up, the variance increases. Likewise the variance de-
creases if the control group is scaled down.

https://doi.org/10.475/123_4
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Cell A:
50/50 Test/Control Split

Cell B:
70/30 Test/Control Split

Control 

Test 

Population

Figure 1: A Facebook multi-cell lift study. The population
(100 boxes), is randomly divided into multiple cells. Differ-
ent campaigns with differing test-control splits can be run
in each cell.

group of their own, as illustrated in Figure 1. These can be used
to compare two marketing strategies where the target audience
exhibits a selection bias [8]. An example is comparing campaigns
that vary the bid size based on customer lifecycle, which result in
a different user composition between the cells. In this case we are
interested in measuring the difference between incrementalities
attained by the campaigns.

While Facebook reports the incrementality of each individual
cell in a multi-cell lift study, they do not report if the incrementality
difference is statistically significant, nor advise on the statistical
power or sample size required to design the experiment. A common
pitfall is to apply the standard sample size calculation for a lift study
to a multi-cell lift study. As there are more test/control groups in a
multi-cell experiment, the variance of the test metric will be larger,
even when the groups have the same size. Furthermore, changes
in marketing strategies are likely to lead to changes in audience
composition meaning that test group metrics from multiple cells
are not directly comparable via standard t-tests. Permutation tests
are also not possible in this setting as Facebook do not provide data
regarding the control-test split.

We resolve these problems by introducing a framework to cal-
culate the power and minimum sample size for lift studies and
multi-cell lift studies on Facebook. Our framework takes into ac-
count control group scaling and the effect of the unreached audi-
ence. We present our calculations both theoretically and in practical
terms. Our theoretical results relate to the distribution of the test
metrics, while in practical terms, we present results in the metrics
used by advertising practitioners (e.g. lift or proportion of reached
audience).

To summarise, our contributions are:

(1) We derive the statistical power and required sample size
for Facebook lift studies, bridging the gap between the on-
line controlled experimental literature and the reality on
measuring incrementality on Facebook.

(2) We generalise the results to multi-cell lift studies, where
incrementalities under different strategies are compared
against each other.

(3) Wemake our result useful to advertising practitioners by pre-
senting our statistical power and minimum required sample
size calculations in terms of expected lift, reach percentage,

and the ratio between test/control groups, as well as making
the code used in the paper publicly available.3

In the remainder of the paper we derive the distribution of the
test metric and hence the test power and minimum sample size
required in a Facebook lift study in Section 2. We then generalise
the results to multi-cell lift studies in Section 3. Finally, we show
a number of empirical results illustrating the correctness of the
derived distributions and the difference in the required sample sizes
in single-cell/multi-cell lift studies in Section 4.

2 FACEBOOK LIFT STUDIES
We first describe a lift study, concentrating on how Facebook de-
rives the incrementality and lift (relative incrementality) of the
metric of interest in Section 2.1. We then base our derivation of the
distribution of lift as a test statistic (Section 2.2), as well as calcu-
lations on the test power and required samples size (Section 2.3)
on their work. We will use conversions, defined as the number of
transactions from users in the lift study, as our metric of interest,
but our calculations are applicable to other metrics which can be
described with a Poisson process.4

2.1 How does Facebook calculate
incrementality and lift?

Facebook manages the test-control splitting and is therefore able
to measure the conversions in each group. Facebook reports three
results: (1) the number of conversions in the test group CT , (2) the
number of conversions in the control groupCC and (3) the number
of conversions from the reached audience in the test group RT . The
sizes of the test and control groups are also reported enabling the
control group to be scaled to match the total audience of the test
group. We base our calculations on the conversions in the control
group, which is scaled so that the audience size matches that in the
test group:

CS = sCC , (1)

where s is the ratio of the test to control group sizes

s =
NT
NC
. (2)

The conversions in the test and scaled control groups contain
contributions from both the reached R and unreachedU audiences

CT = RT +UT , CS = RS +US , (3)

and these are illustrated in Figure 2. Since the conversion rates in
both unreached audiences are assumed to be the same

US = UT . (4)

Reach r is defined as the fraction of people in the test group who
saw an advert

r =
NTR
NT
, (5)

3https://github.com/liuchbryan/fb_lift_study_design
4For metrics which cannot be described with a Poisson process, our framework, which
supports the use of a simulated distribution generated from arithmetic operations of
samples drawn from Poisson distributions, can still be applied by swapping in different
base distributions.

https://github.com/liuchbryan/fb_lift_study_design
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Figure 2: The Facebook incrementality calculation. CT and
CS represent the metric attained by the test and scaled con-
trol groups respectively. RT and RS represent the contribu-
tion by the reached audience in the test and scaled control
groups respectively.UT andUS represent the contribution of
the unreached audience in the test and scaled control groups
respectively.

where NTR is the size of the reached audience and NT is the total
audience size of the test group. We assume that the reach would be
the same in both test and control groups, hence

r =
NCR
NC
, (6)

where NCR is the size of the audience who would have been shown
an advert in the control group. In the control group the conversion
rates are the same in the unreached and reached audiences and so

r =
RC
CC
=

RS
CS
. (7)

The incrementality is the difference in conversions between
the test and scaled control groups and originates solely from the
reached audiences

I = CT −CS = RT − RS . (8)

The test statistic is lift (L) defined as incrementality divided by
the number of reached conversions in the scaled control

L =
CT −CS

RS
, (9)

which can be calculated in terms of CT , CC and RT as

L =
CT − s CC

s CC −CT + RT
. (10)

Facebook’s Null Hypothesis Significance Test determines if there
is a non-zero lift at 90% confidence level (two-tailed). In our calcu-
lations, we focus on the alternate hypothesis that a campaign is
incremental at 5% significance level (one-tailed).5 Formally

H0 : E(L) = 0, H1 : E(L) > 0 , (11)

where H0 is the null and H1 the alternate hypothesis.

5While the calculations around test power and required sample size is nearly identical
in both formulations, we are assuming an advert will not have a negative incrementality.
This is most often the case when we run control experiments to measure an advert’s
incrementality.

2.2 Derivation of the lift distributions
To obtain the power and required sample size for a lift study, it is
necessary to understand the distributions of the test statistic under
the null and alternate hypotheses. Here we derive the distribution
of the test statistic L, which is not available in the literature.6 We
begin by observing that RS is defined to be a scalar multiple of CS
by Equation (7), and hence L can be written as

L =
CT
RS

− CS
RS
=
CT
RS

− 1
r
, (12)

where r is the reach. We assume CT follows a Poisson distribution
with rate λT , and RS is CC , an independent Poisson random vari-
able with rate λC , scaled by a factor of rs (i.e. RS = rs · CC , by
Equations (7) and (1)). The probability mass functions (PMF) of CT
and RS is then given as:

fCT (x) = e−λT
λxT
x !
, x ∈ N; (13)

fRS (x) = fCC

( x
rs

)
= e−λC

λ
(x/r s)
C
(x/rs)! , x ∈ {0, rs, 2rs, ...} = rsN,

(14)

where Equation (14) is a standard result on transformation of uni-
variate random variables.

The cumulative mass function (CMF) of L is

FL(l) = P(L ≤ l) = P
(
CT
RS

− 1
r
≤ l

)
= P

(
CT
RS

≤ l +
1
r

)
(15)

≈ P
(
CT ≤

(
l +

1
r

)
RS

)
, (16)

where we use approximately equal in the expression as the proba-
bility distribution of CT /RS is not well defined.7 The CMF has the
form

FL(l) ≈
∑

i ∈r sN

⌊(l+1/r )i ⌋∑
j=0

fCT (j) fRS (i) . (17)

The outer summation is difficult to implement as it is defined over
rsN, and rs is unknown a priori. We substitute k = i/(r s) so that the
outer summation sums over the natural numbers and uses the PMF
of CC instead (see Equation (14)):

FL(l) ≈
∞∑
k=0

⌊(l+1/r )(r s)·k ⌋∑
j=0

fCT (j) fCC (k) (18)

=

∞∑
k=0

⌊(l+1/r )(r s)·k ⌋∑
j=0

e−(λT +λC )
λ
j
T λkC
j!k!

, l ∈ Q. (19)

6We take L as the relative difference between a Poisson variable and the scalar multiple
of a Poisson variable. This rules out the use of the Poisson means test [7], which
compares two standard Poisson variables with potentially different rates.
7RS can be equal to zero, leading to the quotient having an undefined value with
positive probability. In practice, with λC being sufficiently large (say over 30, achieved
by a sufficient number of naturally occurring conversions) we can safely proceed as the
probability of RS equal to zero is negligible (P(RS = 0 | λC = 30) < 10−13 and the
probability decreases with increasing λC ). Alternatively, we can modelCC = 1/r s(RS )
as a zero-truncated Poisson distribution, though with all these random variables
related to each other by some arithmetic operations, this approach will introduce other
complications when deriving the distribution of L.
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The derived distribution can then be used to calculate the critical
value of L, above which H0 should be rejected. The critical value is
necessary for calculating the power and required sample size.

2.3 Power and Minimum Sample Size
Calculation

A prerequisite of any A/B test is a calculation of the expected test
power and the minimum sample size to achieve an acceptable test
power.8 While we have derived the necessary CMF to calculate
power and sample size, we also explore the possibility to proceed
by simulating the distribution for L using a large number of samples.
We show in Section 4.1 that the derived and simulated distributions
are equivalent, and there are computational advantages to using
the simulation approach. The simulation is also applicable if we
assume the variables used in this section follow other distributions.

2.3.1 Power. Test power is the probability that the test will cor-
rectly reject the null hypothesis H0 when the alternate hypothesis
H1 is true (the complement of Type II error). For Facebook lift stud-
ies, test power is dependent on the minimum detectable lift Lm ,
the number of expected conversions in the control group E(CC ),
the scaling factor relating the size of the test group to the control
group s , and the reach r , which depends on many variables, in
particular ad spend.

To calculate the test power we require the distribution for L. This
can be done by using Equation (19). Alternatively, we can obtain
an empirical distribution for L by 1) treating CC and CT as Poisson
random variables with means λC and λT respectively, 2) drawing
samples from CC and CT , and using Equations (7) and (1) to scale
them to obtain samples for RS and CS , and 3) using Equation (9) to
obtain samples for L.

We calculate the means λC and λT by expressing them in terms
of E(CC ), r and expected lift E(L). We can approximate λC with

λC = E(CC ) , (20)

and are then able to calculate λT as

λT = E(CT ) = sλC (1 + r E(L)) , (21)

by rearranging Equation (12) and noting the scaling relationship
between RS and CC using Equations (7) and (1).

The procedure for calculating the test power is two-fold and
is illustrated in Figure 4a. First, the distribution of L is calculated
under H0 in which λT = s λC (i.e. E(L) = 0). Estimates for E(CC )
and r can be taken from previous Facebook advertising results. For
a one-tailed test at the 5% significance level the critical value c is
calculated as the 95th percentile of this distribution:

FL(c |H0 is true) = P(L ≤ c | E(L) = 0) = 0.95 . (22)

Second, the distribution ofL is calculated under a specificH1 : E(L) = Lm
in which λT is as defined in Equation (21). Since the test power
is strongly coupled to Lm (see Figure 4), it is important to have a
reasonable estimate. Estimates for Lm can be taken from previous
Facebook advertising results. If no previous studies are available,
we can estimate Lm from a lightweight pre-study, or related studies

8Typically taken to be 0.8 .

Single-cell Multi-cell
Effect size CC N CC,A N

10% 1,352 54,068 2,745 219,596
5% 5,107 204,271 10,754 860,346
2% 31,571 1,262,848 67,453 5,396,260
1% 124,459 4,978,355 264,745 21,179,569

Table 2: Minimum number of conversions in the control
group CC and total audience size N required to achieve a
power of 80%. For the multi-cell calculation the lift in cell
A was taken to be 5%. To calculate the total audience size, we
divide CC by the conversion rate9 (assumed to be 5%), and
multiply the result by the number of groups (two for single-
cell, and four for two-cell lift studies).

in the literature. The test power 1 − β can then be calculated as the
percentage of this distribution above c:

1 − β = P(L > c | E(L) = Lm ) (23)
= 1 − P(L ≤ c | E(L) = Lm ) = 1 − FL(c |H1 is true) . (24)

2.3.2 Minimum sample size. The minimum sample size required
to give a specified test power p (commonly 80%) can be obtained
from the power simulation by solving for the minimum E(CC ) that
will give a power greater than p using the bisection method [2].
The minimum sample sizes to observe lifts of 1%, 2%, 5% and 10%
are shown in Table 2.

3 MULTI-CELL LIFT STUDIES
Multi-cell lift studies can be used to compare the incrementalities of
multiple marketing strategies with potentially statistically different
audiences. Here we consider the case of two cells, A and B. To
maximise the test power, we assume the cells are of the same size,
with the same test-control split proportions. A common pitfall in
multi-cell studies is to use the test power and minimum sample size
derived in Section 2. As multi-cell studies have more test/control
groups, the variance of the test statistic, which involves arithmetic
operations on all groups, will increase even if the variance within
each group stays the same. In Section 4.2 we demonstrate this and
develop the mechanism for correctly calculating test parameters.

In a multi-cell lift study, Equations (9) and (10) still hold for
individual cells:

LA =
CT ,A −CS,A

RS,A
, LB =

CT ,B −CS,B
RS,B

, (25)

where the additional subscriptsA and B indicate the cells. Facebook
provide advertisers with CT ,A, CC,A, RT ,A, CT ,B , CC,B and RT ,B
so LA and LB can be computed as

LA =
CT ,A − s CC,A

s CC,A −CT ,A + RT ,A
, LB =

CT ,B − s CC,B
s CC,B −CT ,B + RT ,B

.

(26)

Test Statistic. We define the test statistic as the absolute (as op-
posed to relative) difference between the lifts in cells A and B:

D = LB − LA , (27)

9Defined as the number of conversions divided by the total number of users.
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which is directly comparable with the lift in a single-cell study.10
The null and alternative hypotheses are defined to be

H0 : E(D) = 0, H1 : E(D) > 0. (28)

While the distributions for LA and LB can be characterised by
their CMF, it is difficult to obtain the PMF of these distributions.
Accordingly, the distribution of D (e.g. the CMF FD (·) or PMF fD (·))
can not be readily evaluated using a convolution. We believe that
deriving an analytical form for the distribution of D is of little
practical use for test power and sample size calculation as there are
other simpler alternatives such as simulating the distribution.

Under H0 the distribution of D is defined by r , s , E(LA), E(CC,A)
and E(CC,B ). It is reasonable to assume that r and s are the same for
both cells. In general, the audiences are not statistically identical in
cells A and B so thatCC,B = CC,A can not be assumed. However, if
the strategy in B has not previously been tested, there is no good
way of estimating CC,B and so we assume CC,B = CC,A here.

Statistical Significance & Critical Value. As Facebook do not re-
port the difference in lifts between cells (or its significance) in
multi-cell studies, advertisers are free to choose the significance
level α that suits their needs. We use a one-tailed test at 5% for the
calculations shown in Section 4.2 to be consistent with Section 2.

The critical value c is defined to satisfy the following equation:

FD (c |H0 is true) = 1 − α . (29)

This can be obtained by finding the 100(1 − α) percentile of the
samples simulating the distribution of D.

Power. Under H1 we define a minimum detectable difference Dm
such that

E(LB ) = E(LA) + Dm , (30)

and calculate the test power 1 − β by the following equation:

1 − β = 1 − FD (c | E(D) = Dm ) , (31)

Minimum sample size. The minimum sample sizes required to
be able to observe Dm = 1%, 2%, 5%, 10% with a power of 80% were
calculated as described in Section 2.3.2. The equivalent numbers of
conversions in cell A control and total audience sizes are shown in
Table 2.

4 EVALUATION
In this section, empirical results on the distribution of the test
statistic in single-cell lift studies and the calculated power and
sample size in both single-cell andmulti-cell lift studies are provided.
In Section 4.1 we show the correctness of our simulation of L by
comparing it to the analytical form in Equation (19). Finally, in
Section 4.2, we calculate the test power and required sample size
for a range of minimum detectable effects, for both single-cell and
multi-cell lift studies.

10If we define the test statistic as the relative difference, the effect size between cells
will be a percentage of the effect size achieved in the single-cell case. To illustrate, a 1%
relative difference in lifts means we are comparing a 5% lift in cell A and a 5.05% lift in
cell B. To detect such difference with 80% power we require around 106M conversions
in the control group of cell A (one out of four groups in a two-cell lift study), a number
which even the largest companies struggle to meet for experimentation purposes.
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Figure 3: Comparison between the CMF of the lift derived in
Section 2.2 (blue line) and the cumulative histogram of 1,000
samples drawn from the generative process in Section 2.3
(orange bars). Over a large range of the parameters λT , λC ,
r , and s, the two methods produce largely identical distribu-
tions.

4.1 Comparing the derived and simulated
distribution of L

We first confirm that our simulation of L (specified in Equation (19))
is correct by running a number of Kolmogorov-Smirnov (K-S)
tests [3, 9]. This indicates that the simulated distribution can be
safely used as an alternative for the purpose of power and required
sample size calculation.

For each runwe 1) randomly specify the four parameters required
by both methods: λT , λC , the reach r , and the scaling factor s ,
2) generate a number of samples from the simulated distribution,
3) compute the K-S statistic w.r.t. the derived distribution, and
4) evaluate if there are any statistical significance to reject the null
hypothesis that the two distributions are the same. Steps 3) and 4)
are mostly handled by the kstest function in scipy.

We had 500 test runs (four are shown in Figure 3), and 28 of them
have a K-S statistic that results in rejecting the null hypothesis at
a 5% significance level. Taking into account that we are running
multiple comparisons and hence should expect around 25 rejections
given the two distributions are the same, we are satisfied that the
derived and simulated distributions are statistically equivalent.

It is more than 30 times quicker to obtain the 95th percentile of
the distribution of L (i.e. the critical value) using the simulated dis-
tribution than the derived distribution. This is done by comparing
the time taken to:

• (Simulated distribution) Find the value of the 95th percentile
in the 10M samples simulating the distribution, versus
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Figure 4: Simulations for single-cell (a-d) andmulti-cell (e-f)
lift studies. a) Distributions of L under H0 and H1 for 20,000
conversions in the control group, true lift of 5%, reach of
100% and a 50:50 control-test split. c marks the critical value
for a one-tailed test at the 5% significance level. b) Test power
against the number of control conversions for differentmin-
imum detectable lifts. c) Test power against reach percent-
age holding the total audience size constant (CC = 20k).
d) Test power against the fraction of audience in the control
group, holding the total audience size constant (CC = 20k
when the test/control split is 50:50) e) Distributions of the
difference in lift between two cells under H0 and H1 where
the true difference is 5%. f) Test power against the number
of conversions in the control group for different minimum
detectable relative differences in lift.

• (Derived distribution) Find the root of the function FL(l) − 0.95
under the same parameters, using the root-finding algorithm
proposed by Brent [1].

This suggests it is more effective for an advertiser to obtain the test
power using the simulated distribution for the single-cell case.

4.2 Comparison of single-cell and multi-cell
test power and minimum sample size

Finally, we visualise our power and required sample size calcula-
tions, recording the number of conversions (and thus users) required
to detect certain effects in both single-cell and multi-cell lift studies.

Figures 4a & e show the power calculation for the single and
multi-cell cases respectively. To be comparable, the total audience
sizeN is fixed s.t.CC = 20k andCC,A = 10k. The power in themulti-
cell case of 78% (withDm = 5%) is meaningfully lower than the 100%
power achieved in the single-cell case (with Lm = 5%). Figures 4b,
c & d show the variation of single-cell test power with audience
size, reach and control-test split respectively. For a given audience
size the maximum power can be obtained with a reach of 100% and
a 50:50 split between the test and control groups (where s = 1).
Figure 4f is the multi-cell equivalent of Figure 4b. Comparing these
figures shows that for the same number of conversions per control
group, the power achieved is less in the multi-cell case. Furthermore,
this effect is larger for smaller effect sizes.

Table 2 shows that to achieve a test power of 80% over twice as
many conversions are needed per control group in the multi-cell
than in the single-cell case. Since our multi-cell scenario has two
cells, the total audience size needed in the multi-cell is over four
times that of the single-cell case.

5 CONCLUSION
We have described how to design experiments to measure the incre-
mentality of advertising campaigns on Facebook, bridging the gap
between the general literature in online controlled experiments and
industrial practices. We provided the statistical power and required
sample size calculation for Facebook lift studies, and generalised the
statistical significance, power and required sample size calculation
to multi-cell lift studies, which are used by advertisers to compare
campaigns or strategies where the target audience can exhibit a
selection bias. We make our results useful to practitioners by pre-
senting our calculations in terms of common advertising metrics
— expected lift, reach percentage, and ratio between test/control
groups — and publishing all of our code.
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