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ABSTRACT
Building robust online content recommendation systems requires
learning complex interactions between user preferences and con-
tent features. The field has evolved rapidly in recent years from
traditional multi-arm bandit and collaborative filtering techniques,
with new methods employing Deep Learning models to capture
non-linearities. Despite progress, the dynamic nature of online
recommendations still poses great challenges, such as finding the
delicate balance between exploration and exploitation. In this paper
we show how uncertainty estimations can be incorporated by em-
ploying them in an optimistic exploitation/exploration strategy for
more efficient exploration of new recommendations. We provide a
novel hybrid deep neural network model, Deep Density Networks
(DDN), which integrates content-based deep learning models with
a collaborative scheme that is able to robustly model and estimate
uncertainty. Finally, we present online and offline results after incor-
porating DNN into a real world content recommendation system
that serves billions of recommendations per day, and show the
benefit of using DDN in practice.
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1 INTRODUCTION
In order to navigate the vast amounts of content on the internet,
users either rely on search queries, or on content recommendations
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Figure 1: Taboola’s recommendation widget example.

powered by algorithms. Taboola’s content discovery platform lever-
ages computational models to match content to users who are likely
to engage with it. Taboola’s content recommendations are shown
in widgets that are usually placed at the bottom of articles (see
Fig. 1) in various websites across the internet, and serve billions of
recommendations per day, with a user base of hundreds of millions
of active users.

Modeling in recommendation systems can be classified into ei-
ther Collaborative Filtering (CF) or content-based methods. CF
methods use past user-item interactions to predict future ratings [11]
usually realized by Matrix Factorization (MF) [12]. A drawback
to MF approaches is the cold-start (CS) problem. Content-based
approaches mitigate CS by modeling explicitly meta-information
about the items. Hybrid methods that combine both the memoriza-
tion and generalization advantages have also been proposed [5].
We use this kind of hybrid approach, by employing deep neural net-
works (DNNs) to learn item representations and combining those
with contextual features.

In order to improve long-term performance and tackle faster
the CS problem, recommender systems have been modeled in a
multi-arm bandit setting, where the goal is to find an exploitation
and exploration selection strategy that maximizes the long term
reward [10]. One of the basic approaches to deal withmulti-arm ban-
dit problems is the ϵ-greedy algorithm. Upper Confidence Bound
(UCB) [1] and Thompson sampling techniques [16] use uncertainty
estimations in order to perform more efficient exploration of the
feature space, either by explicitly adding the uncertainty to the
estimation or by sampling from the posterior distribution respec-
tively. Estimating uncertainty is crucial in order to utilize these
methods. To deal with this, bayesian neural networks [14] using
distributions over the weights were applied by using either sam-
pling or stochastic variational inference [9, 15]. [3] proposed Bayes
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Figure 2: High level overview of candidation and ranking
architecture.

by Backprop algorithm for the variational posterior estimation and
applied Thompson sampling in a multi-arm bandit setting similarly
to our case. [6] proposed Monte Carlo (MC) dropout, a Bayesian
approximation of model uncertainty achieved by extracting estima-
tions from the different sub-models that have been trained using
dropout. Building upon their previous work, the authors separated
uncertainty into two types, model and data uncertainty, while study-
ing the effect of each uncertainty separately in computer vision
tasks [8]. Similarly, we separate recommendation prediction uncer-
tainty into three types: measurement, data and model uncertainty.
In contrast to [17], we assumed heteroscedastic data uncertainty
which was a more natural choice for recommendation systems.
Our work has parallels to [10] where the authors formulated the
exploration/exploitation trade-off in personalized article recommen-
dation as a contextual bandit problem proposing LinUCB which
adapts the UCB strategy. Our approach extends LinUCB by using a
deep model instead, while explicitly modeling and estimating un-
certainty. Finally, inspired by [7, 13] we model measurement noise
using a Gaussian model and combine it with a Gaussian Mixture
Model (GMM) to form a deep Mixture density network (MDN) [2].

In this paper we introduce a unified hybrid DNN to explicitly
model and estimate measurement, data and model uncertainty and
utilize them to form an optimistic exploitation/exploration selection
strategy that is applied in a real world and large-scale content
recommendation system. We explicitly model recommendations’
content and combine it with context by using a collaborative fusion
scheme. To the best of our knowledge this is the first time that a
hybrid DNN model with uncertainty estimations is employed in a
multi-arm bandit setting for recommender systems.

2 TABOOLA’S RECOMMENDER SYSTEM
OVERVIEW

Taboola’s revenue stream is facilitated by online advertisers, who
pay a fixed amount CPC for each click while the total value is mea-
sured in RPM = CTR ∗CPC ∗ 1000 and CTR is the click probability
of a recommendation. Taboola’s challenge is to estimate CTR in any
given context. Taboola’s recommendation engine needs to provide
recommendations within strict time constraints (< 50ms). As it is
infeasible to rank millions of recommendations in that time frame,
we have partitioned the system into candidation and ranking Fig. 2.
During the candidation, we narrow down the list of possible rec-
ommendations. When we get request for recommendations, they
retrieve the relevant ready-made recommendation list, and perform

an additional ranking of the recommendations based on additional
user features using a DNN, further personalizing recommendations.
This system architecture shows similarities to ([5]).

Due to the dynamic nature of Taboola’s marketplace our al-
gorithm needs to evaluate new recommendations, with tens of
thousands of new possible recommendations every day. To support
this, we split the algorithm into exploration and exploitation mod-
ules. Exploitation aims to choose the recommendations maximizing
RPM, while exploration aims to enrich the dataset. In this paper
we focus on the candidation phase and the corresponding CTR
prediction task, leaving out of the scope the second ranking step.

3 DEEP DENSITY NETWORK
Our deep recommender model is a hybrid content-based and col-
laborative filtering (CF) system (Fig. 3). We use two DNN subnets
to model target and context features. The target subnet gets as
input the content features seen by user together with additional
categorical features which are unseen to the user. The categorical
features are passed through an embedding layer and concatenated
with the content features, followed by fully-connected layers with a
RELU activation function, resulting in the target feature descriptor.
Similarly, the context features are modeled using a DNN, taking as
input context features such as device type where the target is rec-
ommended, resulting in the context feature descriptor. The target
and context feature descriptors are then fused in a collaborative
filtering manner and finally passed through a fully-connected layer
which outputs the parameters of a GMM i.e. (αi , µi and σi ). This
GMM model is employed in order to model data uncertainty as
discussed in sec. 4.1. In addition a Gaussian model is employed
taking as input measurement uncertainty σϵ in order to deconvolve
data and measurement uncertainty as discussed in sec. 4.2.

In order to train ourmodels, we use historical data which consists
of target and context pairs (t , c), where t is the target we recom-
mended in a specific browsing context c accompanied with a binary
variable which indicates if the recommendation was clicked by the
user. A natural choice would be to estimate CTR using a logistic
loss. However, our data contains great variability in terms of CTR
due to various factors which are external to the content itself; As an
example, a widget which contains very large images will be more
likely to capture the user’s attention, which subsequently increases
the probability of a click. Moreover, even inside a certain widget,
the specific location of a recommendation (top left, bottom right)
can have a vast impact on the eventual CTR, which is independent
of the content itself. To account for this, building upon our previous
work [4], we use a calibrated version of the CTR, to diminish the
variability due to different contexts in which a recommendation
was shown. In practice we train our DNN network to predict the
log of the calibrated CTR using Maximum Likelihood Estimation
(MLE), as this allow us to estimate unconstrained scalar values
roughly normally distributed with zero-mean. From hereafter we
will refer to log calibrated CTR simply as CTR.

4 UNCERTAINTY IN RECOMMENDER
SYSTEMS

We separate uncertainty into three different types: data, measure-
ment, and model uncertainties, and study the role of each one in
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Figure 3: A hybrid content-based and collaborative filtering model accounting for data and measurement uncertainties. Both
target and context features are passed through a DNN, then through a fusion sub-network, and finally through a fully-
connected layer that outputs the parameters of a GMM. The number of recommendations r is used for attenuating the loss of
noisy examples.

recommender systems. In addition, we provide a deep unified frame-
work for explicitly modeling and estimating all types and further
exploit them to form an optimistic exploration strategy (sec. 4.4).

4.1 Data Uncertainty
Data uncertainty corresponds to the inherent noise of the observa-
tions; it cannot be reduced even if more data was to be collected and
is categorized into homoscedastic and heteroscedastic. Homoscedas-
tic is constant over all different inputs, and heteroscedastic depends
on the input, i.e. different input values may havemore noisy outputs
than others. A common source of data uncertainty in recommender
system is temporal variability, wherein the CTR of the same content
will change over time. This variance is an inherent property of the
content, and changes with the type of the content; for instance a
trending fashion product will have large temporal variance. An
optimistic exploration strategy (sec. 4.4) can exploit estimations of
this variability by prioritizing content that has larger variance as
it might be trending at any given moment. This extends to non-
temporal random variables that affect CTR and cannot be directly
modeled.

We model data uncertainty by placing a distribution over the
output of the model and learning it as a function of the input. To
support that, we use a GMM with parameters (αi , µi and σi ) to
model our observation: Y :

Y ∼
∑
i
αiN(µi ,σ

2
i ) (1)

4.2 Measurement Uncertainty
Measurement uncertainty corresponds to the uncertainty of the
observed CTR due to the measurement noise introduced by the
binomial recommendation experiment. This type of uncertainty
depends on the number of times r a specific target x = (t , c) pair
was recommended, i.e. target t was recommended in context c .

In the previous section we saw that using a simple MDN model
can estimate data uncertainty by employing a GMM at the last layer
of our network. However, since the observed CTR is affected by the
measurement noise, the estimated data uncertainty encapsulates
also measurement uncertainty. In contrast, using the DDN model
we explicitly model measurement noise and thus we are able to
deconvolve measurement from data uncertainty.

Let Y , Y ∗ and ϵ be three random variables givenX = (t , c). Y cor-
responds to observed CTR, after recommending (t , c) pair, r times.
Y ∗ corresponds to the true/clean CTR without the measurement
noise, i.e. the CTR if we had recommended t infinite times in c . ϵ
corresponds to the binomial noise error distribution.

Y = Y ∗ + ϵ, ϵ ∼ N(0,σ 2
ϵ ), Y ∗ ∼

∑
i
αiN(µi ,σ

2
i ) (2)

We approximate the binomial distribution of themeasurement noise
ϵ via a Gaussian model and model Y ∗ with a GMM. For every Y ∗ |X
we enforce constant σϵ = f (µ, r ), where µ is the expected value
of Y ∗ |X . This way, Y ∗

|= ϵ given X , as σϵ depends only on r and
µ. We can rewrite eq. 2 and deconvolve data and measurement
uncertainties.

Y ∼
∑
i
αiN(µi ,σ

2
i + σ

2
ϵ ) (3)

To this end, the DDN model described in sec. 3 takes σϵ as addi-
tional input and uses a Gaussian model to account for measurement
uncertainty and predicts GMM’s coefficients (αi , µi and σi ), from
which we estimate the expected value and the standard deviation
of Y ∗.

4.3 Model Uncertainty
Model uncertainty accounts for uncertainty in the model parame-
ters. This corresponds to the ignorance of the model and depends
on the data that the model was trained on. For example, if a recom-
mendation system chooses to show mainly sports articles, future
training datasets will contain mostly sports articles. As a result,
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the next trained model will have high model uncertainty for enter-
tainment articles due to the lack of related content in the training
dataset. This feedback loop is common in recommendation systems;
trained model can only learn about areas of the features space that
have been explored by previous models. This type of uncertainty,
in contrast to data uncertainty, can be reduced if exploration is di-
rected into areas of the feature space that were unexplored, making
future models more robust to diverse types of recommendations.
We estimate model uncertainty using the Monte Carlo dropout
method as a bayesian approximation introducted at [6]. Specifically,
we train our DNN model using dropout and during inference we
perform T stochastic forward passes through the network, where
T is a tunable parameter. We collect T estimations ŷi and estimate
model uncertainty as follows:

σ =

√√√
1
T

T∑
i=1

ŷ2i − (
1
T

T∑
i=1

ŷi )2 (4)

4.4 Optimistic strategy
Simple algorithms like ϵ-greedy choose actions indiscriminately
during exploration, with no specific preference for targets that have
higher probability to be successful in exploitation. Uncertainty esti-
mations allow to extend ϵ-greedy and employ the upper confidence
bound (UCB) algorithm for better and adaptive exploration of new
targets. For example, UCB will prioritize targets with titles that
are composed of words that weren’t previously recommended (via
model uncertainty) and targets that have a larger variability in the
CTR of their features (via data uncertainty).

Our marketplace is defined by a very high recommendation
turnover rate, with new content being uploaded every day and old
one becoming obsolete. We allocate ϵ percent of our recommen-
dation traffic to UCB; We estimate both the mean payoff µt and
the standard deviation σ t of each target t and select the target that
achieves the highest score A where a is a tunable parameter.

A = argmax
t

(µt + a · σ t ) (5)

5 EVALUATION
This section contains two sets of results. First, we evaluate the effect
of DDNmodeling and of the various types of uncertainties, showing
intuitive examples. Next, we show the impact of integrating DDN
into Taboola’s online recommendation engine.

5.1 Uncertainty estimations
For the results that follow in this subsection we have trained our
models employing only title as feature vector for the target making
the results human interpretable. In Fig. 4 we show the mean data
uncertainty after bucketizing targets according to the number of
times r they have been recommended. The data uncertainty of the
MDN model depends on r , i.e. low r leads to high data uncertainty.
This is an undesirable correlation; previously trained models chose
to show more times recommendations from specific areas of the
feature space, leading to reduced measurement uncertainty in the
training set for those examples. MDN doesn’t account for measure-
ment noise explicitly, which causes a pollution of data uncertainty
estimates. In contrast, DDN accounts for measurement uncertainty
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Figure 4: Comparison betweenMDN and DDNmodels show-
ing the effect of explicitly modeling measurement noise on
data uncertainty.

Figure 5: Log calibrated CTR distribution for two targets
groups (shopping and sports) with DDN’s data uncertainty
estimation for a random target from each group.

explicitly and is able both to reduce the predicted uncertainty and
the aforementioned correlation significantly. This highlights the
benefit of decorrelating measurement noise from data uncertainty
(see sec. 4.2).

In Fig. 5 and Table 1 we study the nature of data uncertainty in
the context of recommender systems. We first selected two groups
of targets related to shopping and sports where intra-group targets
are semantically close (see Table 1). Further, we depict the CTR
histogram of the two groups together with the distribution induced
by the DDN prediction for one randomly selected target from each
group (Fig. 5). We observe that the shopping group has large vari-
ability in CTR, due to the fact that the specific product that is being
advertised highly affects CTR. In contrast, the sport group have
relatively consistent CTR. We observe that the DDN model is able
to capture and model this target-specific variability and thus have
the ability to exploit it in the optimistic strategy.

As discussed in sec. 4.3, model uncertainty should capture what
the model doesn’t know. In order to validate this, we perform Kernel
Density Estimation (KDE) over the targets’ title feature representa-
tion in the training set, enabling us to quantify the semantic distance
for each target from the training set. This way, targets located far
away from the training examples i.e. belong to areas of the feature
space which were less explored will have low Probability Distribu-
tion Function (PDF) value. In Fig. 6 we depict model uncertainty
estimations for the DDN model after bucketizing targets in the val-
idation set according to their PDF value relative to the training set.
We observe that model uncertainty, is anti-correlated to the PDF
value of the targets, indicating that DDN model indeed estimates
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shopping sports
TOMS For $35 - 41% Off Benfica vs Manchester United Betting
Nike For $72 - 40% Off It’s The Only Way To Watch The Premier League
Magnaflow Performance Mufflers From $68.91 LIVE: Arsenal vs Norwich City
Sun Dolphin Mackinaw 15.6’ Square Back Canoe Premier League Castoffs Starting Over at Age 11
Brooks For $65 - 35% Off Real Madrid Held to Draw With Tottenham
ASICS For $50 - 29% Off Rush for a 32/32 Score. NFL Team + City Match

Table 1: Indicative targets for the two selected groups (shopping and sports)

Figure 6: DDN model uncertainty estimation after bucketiz-
ing targets according to their PDF values calculated using
KDE over the training set. Low PDF value corresponds to big
semantic distance from training set i.e. unexplored areas of
the feature space.
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Figure 7: Distribution of DDNmodel uncertainty estimation
on selected group of targets, before and after employing dur-
ing training the target "BMW X5".

high model uncertainty in less explored areas of the features space,
which is a desirable behaviour in recommender systems.

Another interesting observation (Fig. 7 and Table 2), is how
model uncertainty is being affected by adding to the training set
targets from unexplored areas of the feature space. We selected a
group of targets related to car advertisement with low PDF values
and high model uncertainty. We added one target from the group
("BMWX5") to the training set and retrained the model. We observe
a reduction in the estimated model uncertainty, indicating that pro-
actively exploring targets with high model uncertainty can indeed
lead to model uncertainty reduction.

5.2 Performance evaluation
Data: We use the browsed website (i.e. publisher ) as the user con-
text for the following experiments. In all of the experiments we

car related targets
2011 BMW M3
2005 Jaguar XK-Series XK8 Roadster
2017 BMW X5
Mazda MX-5 Miata
BMW X6
Find a BMW X5 Near You!
The Fastest Car BMW i8

Table 2: Indicative targets for the selected group.

used three months of historical data for training, containing ∼10M
records of target-publisher pairs. The dataset contains ∼1M unique
targets and ∼10K unique publishers. Every offline experiment has
been run on multiple time slots to validate that the results were
statistically significant.

Models: In all models we performed an extension of the ϵ−дreedy
algorithm, where we allocate ϵ percent of the recommendation
traffic to targets that have not been heavily exploited previously by
the recommendation algorithm.

1.REG corresponds to our deep model described in sec. 3, where
the output is just the predicted CTR scalar employing MSE as loss
as opposed to a GMM.

2. MDN is similar to REG, with the GMM layer and the use of
the optimistic strategy introduced in sec. 4.4.

3. DDN is similar to MDN, with the measurement uncertainty
modeling and optimistic strategy secs. 4.2, 4.4 .

In order to have a fair comparison, we tuned the hyper-parameters
(e.g. embedding sizes, number of layers, number of mixtures) for
each model separately; we performed thousands of iterations of
random search, and chose the parameters that yielded the best re-
sults. We have found that this hyper-parameter tuning procedure
was crucial in order to get the best possible results from our models,
both offline and online.

Metrics and evaluation: we use Mean Squared Error (MSE) for
offline evaluation of our models. Due to the dynamic nature of
online recommendations it is essential that we evaluate our models
online within an A/B testing framework, by measuring the average
RPM. In addition, we utilize an online throughput metric which
aims to capture the effectiveness of the exploration module; this
metric counts the number of new targets that were discovered
by the exploration mechanism at a certain given day by being
shown significantly for the first time. We expect that exploration
models which are better at exploring the feature space will learn to
recommend more from this pool of new targets. Similarly, we have
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Model REG MDN DDN
RPM lift 0% 1.2% 2.9%

Table 3: A comparison of the online RPM lift between the
different models

Dataset MDN DDN Improvement
D1 0.2681 0.25368 5.3%
D2 0.25046 0.24367 2.7 %

Table 4: MSE CTR estimation and relative improvement of
DDN over MDN in the MSE when trained over two datasets
that differ by the amount of measurement noise.

a 0 0.5 1 1.5
RPM lift 0% -0.05% -0.2% -0.3%

Target throughput lift 0% 6.5% 9.1% 11.7%
Advertiser throughput lift 0% 2.1% 3.7% 5.1%

Table 5: RPM lift, targets and advertisers throughput as a
function of different values of a.

a metric for advertisers throughput. In addition to RPM dynamics,
maintaining high throughput levels is essential to ensure advertiser
satisfaction levels.

5.2.1 Experimental results. Model comparison: in Table 3 we
compare the three aforementioned models in terms of online RPM.
We observe that both MDN and DDN outperform REG by 1.2%
and 2.9% respectively. Although the improvements may seem small
numerically, they have a large product impact as they translate to
significantly higher revenue. In addition, it’s noteworthy that REG
is a highly optimized and tuned model which is our current state-of-
the-art model making it a very competitive baseline to win. These
results verify once again that the loss attenuation achieved during
training has enabled the model to converge to better parameters,
generalizing better to unseen examples. Furthermore we observe
thatDDN outperformsMDN by 1.7%, indicating that deconvolving
measurement noise from the data uncertainty leads to further gains.

Measurement noise: in Table 4 we compare theMDN and DDN
models by training them on D1 and D2 datasets. D1 contains more
noisy data points with relatively small amount of empirical data,
while D2 contains examples with higher empirical statistical signif-
icance. We observe that DDN improves on MDN performance by
2.7% when using D1 for training, and by 5.3% when using D2. This
validates that integrating measurement noise into our modeling
is crucial when the training data contains very noisy samples, by
attenuating the impact of measurement noise on the loss function.

RPM lift vs. targets throughput:we analyzed the effect of the
parameter a found in eq. 5 by employing data uncertainty. From a
theoretical standpoint, increasing this value is supposed to prioritize
higher information gain at the expense of RPM, by choosing targets
with higher uncertainty. This trade-off is worthwhile in the long
term. In Table 5 we observe that there is an inverse correlation
between RPM and throughput which is triggered by different values

of a, with targets and advertisers throughput increasing by 11.7%
and 5.1% respectively when setting a = 1.5. Choosing the right
trade-off depends on the application and the business KPIs. For our
case we chose a = 0.5, resulting in a good throughput gain with a
small RPM cost.

6 CONCLUSIONS
We have introduced Deep Density Network (DDN), a hybrid uni-
fied DNN model that estimates uncertainty. DDN is able to model
non-linearities and capture complex target-context relations, in-
corporating higher level representations of data sources such as
contextual and textual input. We presented the various types of
uncertainties that might arise in recommendation systems, and in-
vestigated the effect of integrating them into the recommendation
model. We have shown the added value of using DNN in a multi-
arm bandit setting, yielding an adaptive selection strategy that
balances exploitation and exploration and maximizes the long term
reward. We presented results validating DDN’s improved noise han-
dling capabilities, leading to 5.3% improvement on a noisy dataset.
Furthermore, DDN outperformed both REG and MDN models in
online experiments, leading to RPM improvements of 2.9% and 1.7%
respectively. Finally, by employing DDN’s uncertainty estimation
and optimistic strategy, we improved our exploration strategy, de-
picting 6.5% and 2.1% increase of targets and advertisers throughput
respectively with only 0.05% RPM decrease.
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