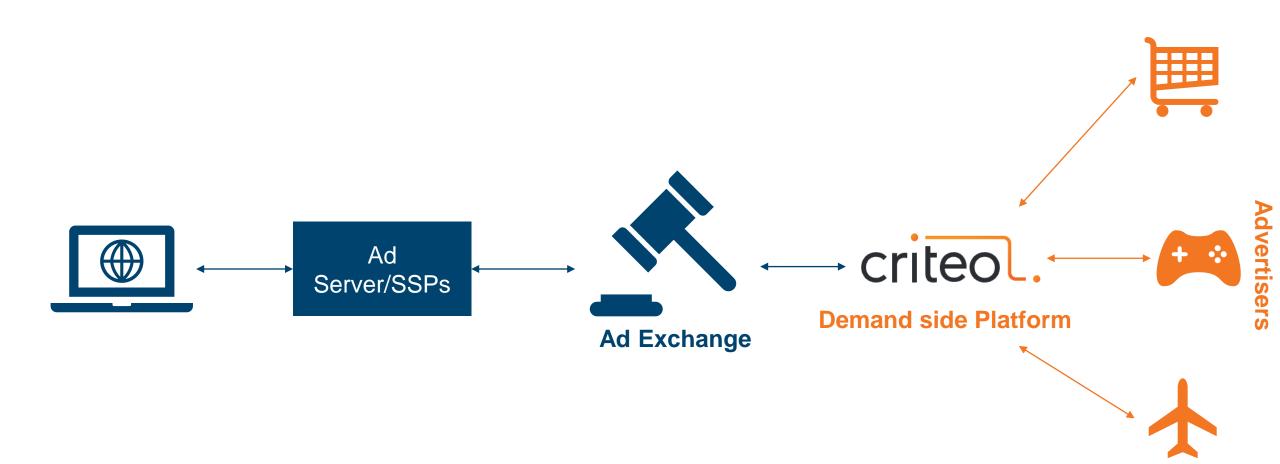
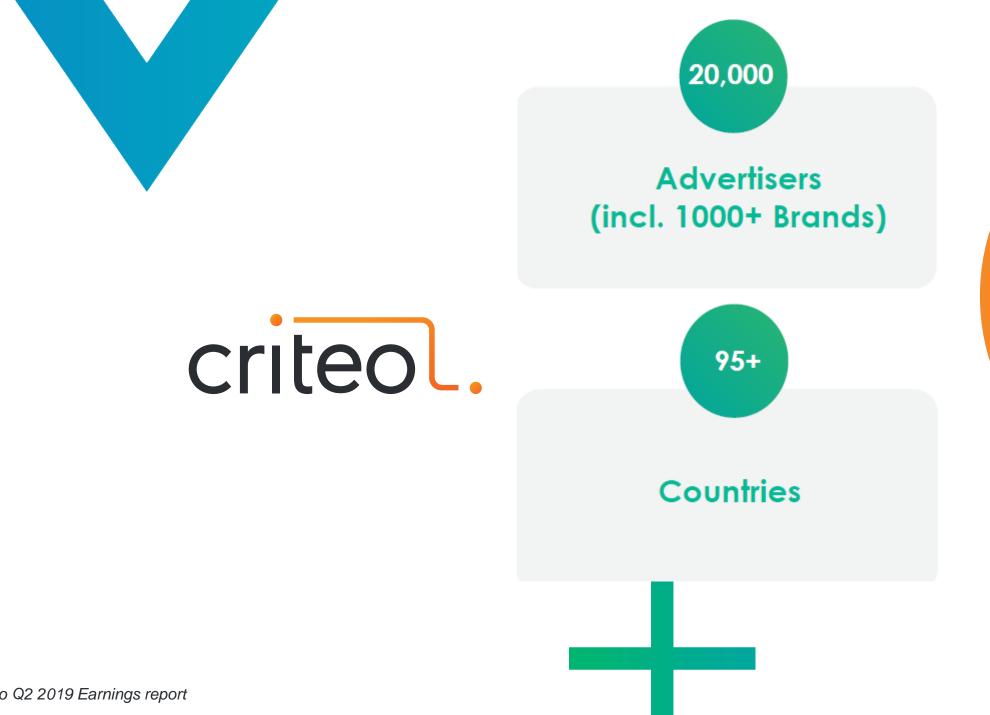


On the causality of advertising

Vincenzo D'Elia, v.delia@criteo.com

AdKDD'19





	Awareness	Consideration	Conversion
Marketing Goals	Generate interest in your products or services	Get people to consider your products or services	Encourage interested people to purchase
Ad Objectives	Brand Awareness Video Views	Traffic: Web, App App Installs	Conversion: Web, App Store Conversions
Optimization	Reach Views	Visits Installs	Purchase (Conversions)

Demand side: Advertisers

- Integration
- Set a bid (CPC, CPA) and/or a budget
- Set an objective (views, clicks, conversions, ...)

Supply side: Ad exchanges

- Criteo Integrates with SSPs
- We participate in real time on a CPM basis

Demand side: Advertisers

"Second price" property: higher CPA → higher payment → higher volume

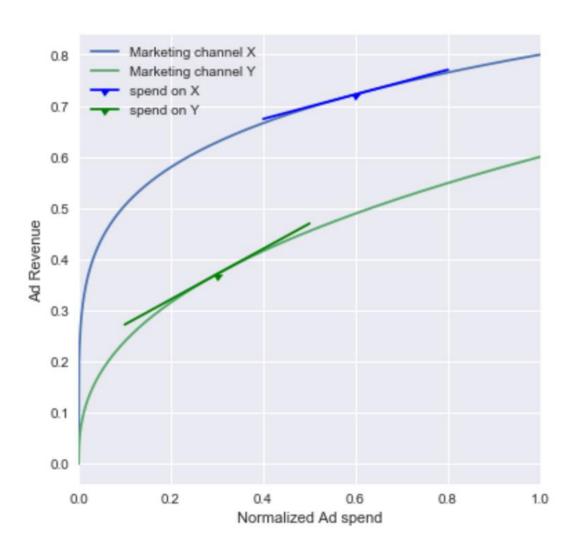
Supply side: Ad exchanges

- Second price auctions (with/without reserve prices, dynamic floors, etc.)
- First price auctions
- Header bidding (multiple sub-auctions resolved by a single "meta-auction")

•

We show and track ads

Budget management



Budget allocation

Align marginal ROIs

How many Actions?

What is the revenue of the Ad campaign?

What should we predict?

Advertiser's dashboard

users

visits

conversions

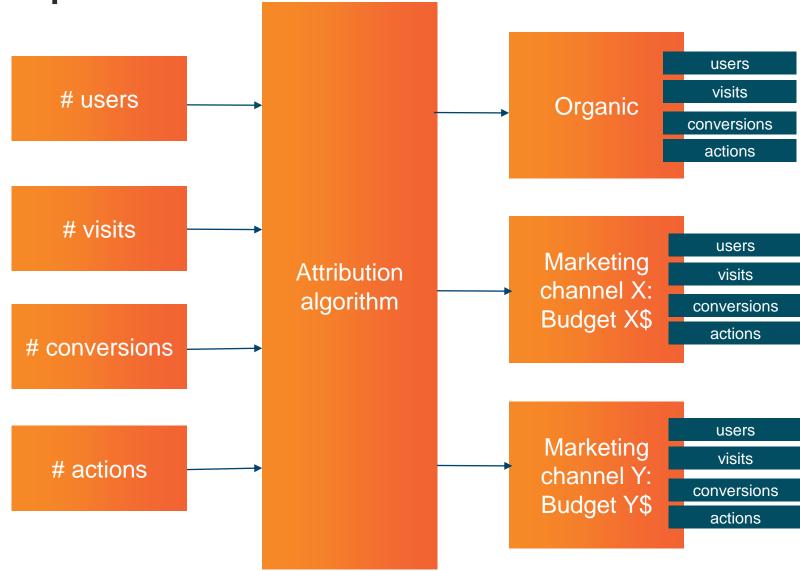
actions

Organic

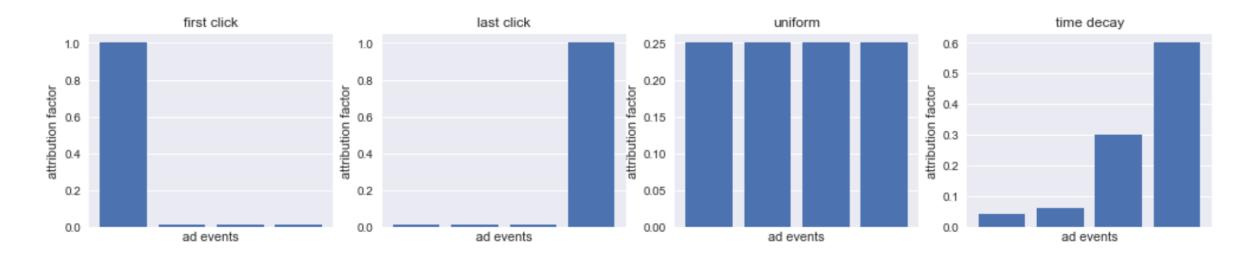
Marketing channel X: Budget X\$

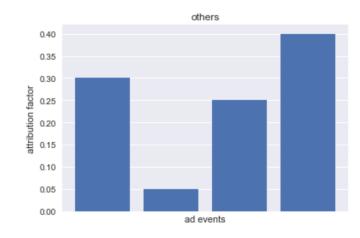
Marketing channel Y: Budget Y\$

The attribution problem



Advertisers' attribution models – rule based





Other rules, based on

- Position (i.e. first and last clicks get 40% each, the rest is uniform)
- Matching to other events (e.g. add to cart)

Advertisers' attribution models – algorithmic

- Incremental value effect
 - Probability of conversion as a function of ad exposure
 - Use the model to compute incremental value of each ad.

- Game theory
 - Shapley values (assign credit to individual channels who cooperate to generate a conversion)
 - Multiple payment schemes proposed

What are the models for an attribution-aware bidder?

Advertiser's dashboard

users

visits

conversions

actions

Organic

Marketing channel X: Budget X\$

Marketing channel Y: Budget Y\$

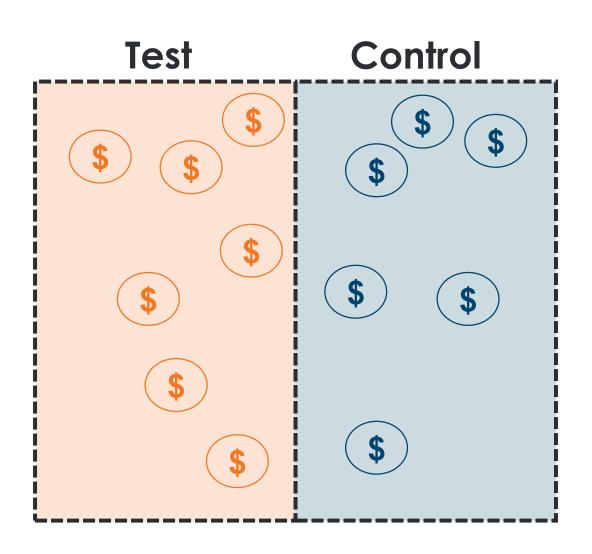
Use a control population!

users # visits # conversions # actions

Organic Control 20% ignore first days Marketing channel X: Budget X\$ Control 20% ignore first days Marketing channel Y: Budget Y\$

Incrementality testing for a DSP

- It is client-wise
- Test users get the normal treatment
- For a Control user, every time we would show an ad for the client under iABT
 - We log all information
 - We participate with another client



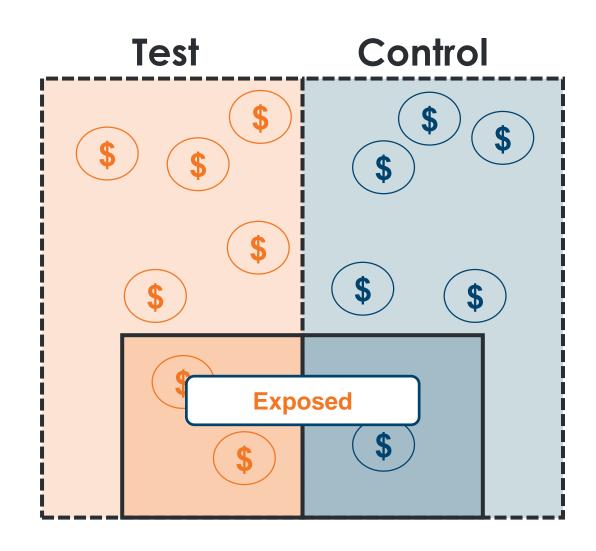
Uplift measurement - exposed

Exposed Users who had seen an ad vs users who would have seen an ad (for a specific client)

It is a counterfactual measurement.

$$Uplift = \frac{Sales_{Test} - Sales_{Control}}{Sales_{Control}}$$

Computed on exposed population (!?!)

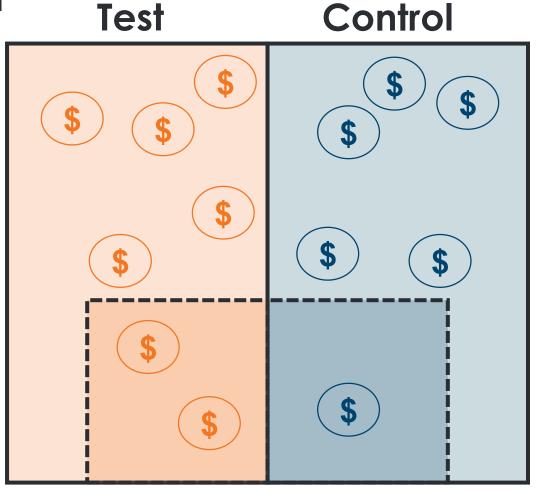


Uplift measurement – Intent to treat

Intent to treat We consider all users which could have been treated (e.g. all retargetable users)

$$Uplift = \frac{Sales_{Test} - Sales_{Control}}{Sales_{Control}}$$

Computed on retargetable users



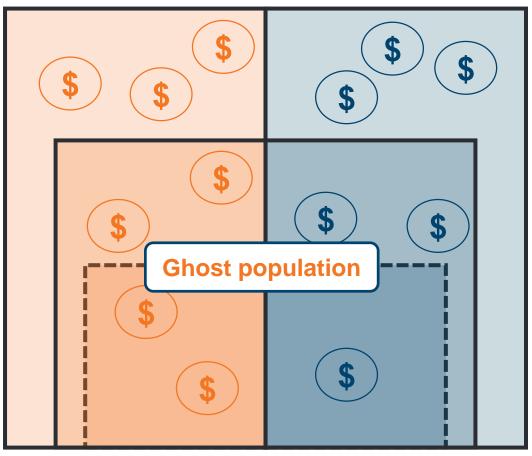
Uplift measurement – Ghost population

Test Control

Ghost population subset of users that we see on ad exchanges, for which we participate (or would participate) for that client

$$Uplift = \frac{Sales_{Test} - Sales_{Control}}{Sales_{Control}}$$

Computed on ghost population

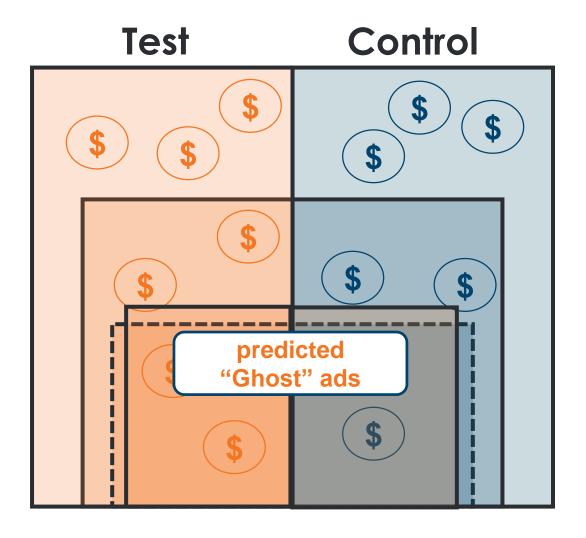


Approximating control-exposed

Predicted "Ghost" Ads: use simulated auctions on the ad exchange.

Use it both on test and control to predict exposed users.

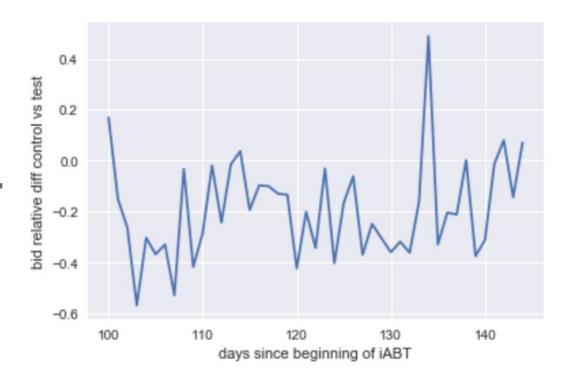
"Ghost" exposed: assume sales in Ghost not exposed are the same in Test and Control.

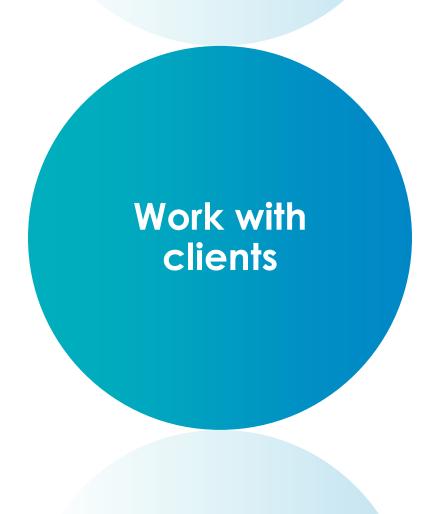


Beware of filters!

The bidder changes the status of users

The probability that we participate for a client in iABT is not the same between test and control





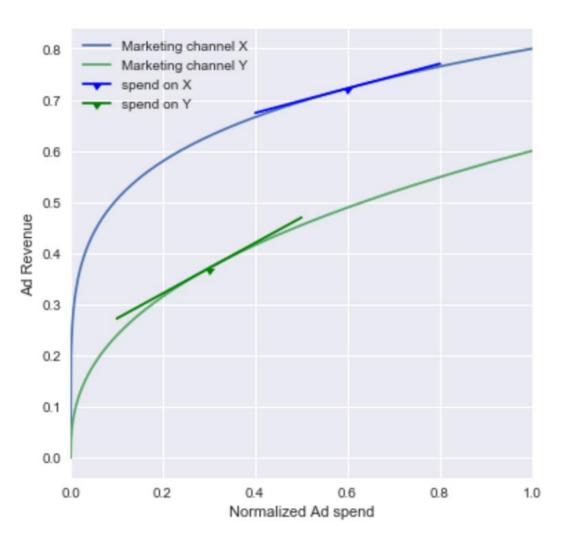
Transparency

- Share raw data
- All experiences and measurement must be reproducible by both

Interpretability

- Who are the incremental buyers?
- Where do I generate a new sale?
- How effective is web inventory wrt app inventory?

Budget management - bis



- iABT are expensive
- iROI very noisy
 - Measure average iROI is ok
 - Measuring marginal iROI much more challenging
- Measurement is challenging for small advertisers

How does an incremental attribution system look like?

References

Garrett Johnson, Randal A. Lewis and Elmar Nubbemeyer, 2017. Ghost Ads: Improving the Economics of Measuring Online Ad Effectiveness. Simon Business School Working Paper No. FR 15-21.

Eustache Diemert, Julien Meynet, Pierre Galland, Damien Lefortier, 2017. Attribution Modeling Increases Efficiency of Bidding in Display Advertising. AdKDD TargetAd workshop at KDD'17. https://arxiv.org/abs/1707.06409v2

Randall A. Lewis and Jeffrey Wong, 2018. Incrementality Bidding & Attribution, 2018. Available at SSRN: https://ssrn.com/abstract=3129350.

Raghav Singal, Omar Besbes, Antoine Desir, Vineet Goyal, and Garud Iyengar, 2019. Shapley Meets Uniform: An Axiomatic Framework for Attribution in Online Advertising. *Proceedings of the 2019World WideWeb Conference (WWW '19)*. https://doi.org/10.1145/3308558.3313731

+

Thank you

criteol.