Taobao Display Advertising Some recent tech advances

Jian Xu Alibaba Group

AGENDA

- 1. Taobao Display Advertising
- 2. Matching
- 3. Prediction
- 4. Strategies

Taobao Display Advertising

* Data source: https://www.alibabagroup.com/en/ir/presentations/Investor_Day_2018_Taobao.pdf

Banner Ads

Feed Ads Guess What You Like

Feed Ads Weitao

Feed Ads

Top Selected

Matching

Classical Matching Methods

User->Tag, Tag->Ad matching

Typical model: item-based collaborative filtering [1]

Difficult to do full corpus matching

[1] G Linden, B Smith, J York. Amazon.com Recommendations: Item-to-Item Collaborative Filtering, IEEE Internet Computing, 2003 [2] P Covington, J Adams, E Sargin. Deep Neural Networks for YouTube Recommendation. RecSys 2016

Vector-space matching

Typical model: Inner-product based candidate generation [2]

Difficult to accommodate advanced models

Tree-based Deep Match - Motivation

DilemmaAdvanced models —> large TFull corpus computation —> large N

Idea Full corpus matching != Full corpus computation

A tree index can facilitate efficient matching

Like the human intuition: interest is hierarchically organized e.g., baby creams -> baby bath&skin care -> baby

Tree-based Deep Match - Core Ingredients

may Complexity: $O(logN \cdot K)$ $P^{(j)}(n \mid u) = ---$

$$\frac{X_{n_c \in \{n's \text{ children}\}} P^{(j+1)}(n_c \mid u)}{\alpha^{(j)}}$$

Train *user-node preference model* to fit the max-heap probability distribution Sampling + Layer-wise modeling

Tree-based Deep Match - Accommodating Arbitrary Model

An example:

Tree-based Deep Match - Joint Optimization

Tree structure is crucial to the performance

- It is the index for matching
- Decides the non-leaf node sample distribution
- Decides the model performance upper-bound

Learn tree structure and user-node preference model jointly

$$\mathcal{L}(\theta,\pi) = -\sum_{i=1}^{n} \sum_{j=0}^{l_{max}} \log \hat{p}\left(b_j(\pi(c^{(i)})) | u^{(i)}; \theta, \pi\right)$$

Model parameters

Item->leaf assignment

Ancestor at level j

Training set $\{(u^{(i)}, c^{(i)})\}_{i=1}^{n}$

Solve $\min_{\pi} \mathcal{L}(\theta, \pi)$ and $\min_{\theta} \mathcal{L}(\theta, \pi)$ alternately

Examples of good and bad item -> leaf assignments

Tree-based Deep Match - Experiments

Dataset*

	UserBehavior
# of users	969,529
# of items	4,162,024
# of categories	9,439
# of records	100,020,395

Method	F1 Score	F1 Score Lift
Item-CF	0.0230	0.00%
Youtube product-DNN	0.0336	46.09%
TDM-AII	0.0634	175.65%

Performance evaluation against existing methods**

Performance evaluation with TDM variations

nod	F1 Score	F1 Score Lift
I-Base(DNN)	0.0340	0.00%
I-Base+Attention	0.0395	16.18%
I-Base+JointLearning	0.0373	9.71%
1-AII	0.0634	86.47%

TDM-ALL: TDM-Base + Attention + JointLearning

Tree-based Deep Match - Summary

Where we were

Our thoughts

To effectively and efficiently find Top-K candidates from LARGE corpus

And the adventure

Advanced Models + Full corpus matching depend on Max-heap like tree index

Beam search based matching Arbitrary advanced models Tree structure joint optimization

TDM is open-sourced with X-Deep Learning. (https://github.com/alibaba/x-deeplearning)

Prediction

Deep CTR Prediction - Overview

Group-wise Embedding Network A Deep Learning Practice

Deep Interest Network (KDD18)

Local Activation

Deep Interest Evolution Network (AAAI19)

Interest Evolution + Local Activation

Multi-channel Interest Memory Network (KDD19)

Long-sequence Interests Modeling

Deep CTR Prediction - First Attempt

Group-wise Embedding Network (GwEN)

Deep CTR Prediction - Deep Interest Network

$$\boldsymbol{v}_U(A) = f(\boldsymbol{v}_A, \boldsymbol{e}_1, \boldsymbol{e}_2, ..., \boldsymbol{e}_H) = \sum_{j=1}^H a(\boldsymbol{e}_j, \boldsymbol{v}_A) \boldsymbol{e}_j = \sum_{j=1}^H w_j \boldsymbol{e}_j,$$

Share similar thoughts with attention mechanism

Deep CTR Prediction - Deep Interest Evolution Network

Deep Interest Evolution Network (DIEN)

Deep CTR Prediction - Architecture Revisited

User Interest Computation at **EVERY** Request

Redundant

Synchronous

Independent User Interest Computation

Incremental

Asynchronous

should not degrade the prediction performance!

user behavior sequence

Deep CTR Prediction - Experiments

Compared with some latest work

GRU4REC [3] - bases on RNN and is the first work using the recurrent cell to model sequential user behaviors.

ARNN - a variation of GRU4Rec which uses attention mechanism to weighted sum over all the hidden states along time for better user sequence representation

RUM [4] - uses an external memory to store user's behavior features. It also utilizes soft-writing and attention reading mechanism to interact with the memory. We use the feature-level RUM to store sequence information

[3] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommendations with recurrent neural networks. ICLR 2016. [4] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha. 2018. Sequential recommendation with user memory networks. WSDM. 2018.

D

Datasets

Dataset	Users	Items ^a	Categories	Instances
Amazon(Book).	75053	358367	1583	150016
Taobao.	987994	4162024	9439	987994

AUC Performance

Model	Taobao (mean ± std)	Amazon (mean ± std)
Embedding&MLP	0.8709 ± 0.00184	0.7367 ± 0.00043
DIN	0.8833 ± 0.00220	0.7419 ± 0.00049
GRU4REC	0.9006 ± 0.00094	0.7411 ± 0.00185
ARNN	0.9066 ± 0.00420	0.7420 ± 0.00029
RUM	0.9018 ± 0.00253	0.7428 ± 0.00041
DIEN	0.9081 ± 0.00221	0.7481 ± 0.00102
MIMN	0.9179 ± 0.00325	0.7593 ± 0.00150

Strategy

Strategies - Overview

Budget Constrained Bidding

Problem formulation

Given budget B, acquire as much value as possible. In RTB, it is to decide the bid b_i for each impression *i* to maximize the winning value.

Optimal Solution [5]

$$b_i^* = v_i / \lambda^*$$

Challenge is the dynamic and unstable environment!

[5] Zhang W, Ren K, Wang J. Optimal real-time bidding frameworks discussion[J]. arXiv preprint arXiv:1602.01007, 2016.

Budget Constrained Bidding

Model-free Reinforcement Learning

- $\mathcal{S}: s_t$ campaign stats at timestep t
- \mathscr{A} : a_t adjusts λ by $\lambda_t = \lambda_{t-1}(1 + a_t)$
- \mathcal{T} : ignored with model-free RL
- r_t : cumulative value between step t 1 and t
- c_t : cumulative cost between step t 1 and t
- $\gamma : \gamma = 1$ in this scenario

Avoiding the Immediate Reward Pitfall

$$r'(s, a) = \max_{e \in E(s, a)} \sum_{t=1}^{T} r_t^{(e)}$$

Episode-level reward observed with (s,a) pair

THEOREM Let $\pi_{r'}^*$ be an optimal policy with the shaped reward r'. If the MDP has a unique initial state, $\pi_{r'}^*$ is also an optimal policy in the original MDP formulation with immediate reward r.

Remaining budget, win-rate, spending rate, rpm, etc

Budget Constrained Bidding

Experiments

Evaluation metric R/R^* The total value of the winning impressions VS theoretically optimal value (with λ^*)

Deviation Compaigne		R/R^*			Improvements of <i>R</i> / <i>R</i> *			
λ Deviation	Campaigns	FLB	BSLB	RLB	DRLB	FLB	BSLB	RLB
[-100%, -80%)	43	0.436	0.525	0.430	0.878	101.38%	67.24%	104.19%
[-80%, -40%)	89	0.434	0.647	0.800	0.884	103.69%	36.63%	10.50%
[-40%, -20%)	66	0.697	0.901	0.927	0.945	35.58%	4.88%	1.94%
[-20%, 0%)	41	0.863	0.936	0.965	0.953	10.43%	1.82%	-1.24%
[0%, 20%)	39	0.825	0.925	0.944	0.950	15.15%	2.70%	0.64%
[20%, 40%)	48	0.491	0.947	0.895	0.948	93.08%	0.11%	5.92%
[40%, 80%)	85	0.391	0.904	0.832	0.928	137.34%	2.65%	11.54%
[80%, 160%)	57	0.307	0.813	0.709	0.924	200.98%	13.65%	30.32%
[160%,∞)	32	0.291	0.668	0.618	0.904	210.65%	35.33%	46.28%
Average		0.526	0.807	0.791	0.924	100.92%	18.33%	16.80%

Performance comparison against SOTAs

FLB: fixed linear bidding $b_i = v_i / \lambda_0$

BSLB: budget smoothed linear bidding $b_i = v_i/(\lambda_0 \cdot \Delta)$

RLB: model-based RL approach to decide bid directly [6]

The effectiveness of the shaped reward

Right Here! Multiple-KPI Constrained Bidding Section 3 of IDLUGHET (EKLUTNA) **EXHIBIT HALL** 7:00pm to 9:30pm on August 6

Multi-Agent Optimal Bidding

Motivation

1. Bid optimization with budget constraint is a typical sequential decision problem

2. Lacking awareness to the bid environment can lead to suboptimal bidding strategies

Problem formulation

N advertisers, let B_i be the budget of advertiser *i*, whose state space is S_i and action space is A_i (e.g., bid or bid adjustment)

$$\pi_i: S_1 \times S_2 \times \ldots \times S_N \to A_i$$

After each round of auctions, reward of advertiser *i* $r_i: S_1 \times S_2 \times \ldots \times S_N \times A_1 \times A_2 \times \ldots \times A_N \to R_i$ and state transition happens (e.g., $B_i^{t+1} = B_i^t - cost_i^t$) $\tau: S_1 \times S_2 \times \ldots \times S_N \times A_1 \times A_2 \times \ldots \times A_N \to S_1 \times S_2 \times \ldots \times S_N$ $\pi_i^* = \arg \max \sum_{t=0}^T \gamma^t r_i^t$ Goal:

Is MARL formulation helpful?

Challenges 1. Millions of bidders 2. Huge overhead in state/action synchronization

Multi-Agent Optimal Bidding

Solution - Distributed Coordinated Multi-Agent Bidding (DCMAB)

Resolve scalability issues

- 1. Group advertisers into clusters. Each cluster is an agent.
- 2. Group users into clusters.
- 3. State is summarized and synced in every T time window.
- 4. Algo: Distributed Coordinated Multi-Agent Bidding (DCMAB)

MDP formulation details

state: spending and GMV of ALL merchant clusters
on ALL consumer clusters
action: selecting and applying a bid adjustment factor a
reward: reward is the GMV obtained by the agents

Multi-Agent Optimal Bidding

Experiments

GMV from different bidding agents

	AgentC1	AgentC2	AgentC3	Total
Manual	231	817	4299	5347
Bandit	281 ± 21	1300 ± 50	4422 ± 171	6003 ± 123
A2C	238 ± 7	872 ± 104	7365 ± 2387	8477 ± 2427
DDPG	1333 ± 1471	7938 ± 2538	7087 ± 4311	16359 ± 1818
DCMAB	1590 ± 891	4763 ± 721	11845 ± 1291	18199±757

Manual: bid with original bids

Bandit: bid based only on impression feature (does not consider budget)

A2C: on-policy actor-critic w/o memory replay. Critic function doesn't take other agents' actions as input

DDPG: off-policy actor-critic with memory replay. Critic function doesn't take other agents' actions as input

Summary

MAT	CH	ING
-----	----	-----

Retrieve the most promising Top K candidates from LARGE corpus

In this talk

Tree-based Deep Match (TDM)

From **Deep Interest Network** to Multi-channel Interest Memory Network

TDM -> FDM

Thousands of activities -> Life-long model Bid Optimization -> Mechanism Optimization

PREDICTION

Predict user response probabilities (e.g., CTR) with accurately

In this talk

STRATEGY

Publisher: Impression allocation Advertiser: Ad delivery strategies

In this talk

Single-agent Bidding Multi-agent Bidding

References

List of publications discussed in this talk

Zhu, Han, et al. Learning Tree-based Deep Model for Recommender Systems. KDD 2018
Zhu, Han, et al. Joint Optimization of Tree-based Index and Deep Model for Recommender Systems. arXiv preprint 2019
Zhou, Guorui, et al. Deep interest network for click-through rate prediction. KDD 2018
Zhou, Guorui, et al. Deep interest evolution network for click-through rate prediction. AAAI 2019
Pi, Qi, et al. Practice on Long Sequential User Behavior Modeling for Click-Through Rate Prediction. KDD 2019
Wu, Di, et al. Budget constrained bidding by model-free reinforcement learning in display advertising.CIKM 2018
Jin, Junqi, et al. Real-time bidding with multi-agent reinforcement learning in display advertising. CIKM 2018

Related work discussed in this talk

G Linden, B Smith, J York. Amazon.com Recommendations: Item-to-Item Collaborative Filtering, IEEE Internet Computing, 2003
 P Covington, J Adams, E Sargin. Deep Neural Networks for YouTube Recommendation. RecSys 2016
 Balázs Hidasi, et al. Session-based recommendations with recurrent neural networks. ICLR 2016.
 Xu Chen, et al. Sequential recommendation with user memory networks. WSDM 2018.
 Zhang W, Ren K, Wang J. Optimal real-time bidding frameworks discussion[J]. arXiv preprint arXiv:1602.01007, 2016.
 Cai, Han, et al. Real-time bidding by reinforcement learning in display advertising. WSDM 2017.

THANK YOU

