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Taobao Display Advertising



600M+ Mobile MAU* 

Alibaba Group

Taobao Alimama
Commercial Advertising 

Solutions

* Data source: https://www.alibabagroup.com/en/ir/presentations/Investor_Day_2018_Taobao.pdf
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User Advertiser
DATA ALGO

MATCHING PREDICTION STRATEGY
Retrieve the most promising Top K 
candidates from LARGE corpus

Tree-based Deep Match
(TDM)

In this talk

Predict user response probabilities  
(e.g., CTR) with accurately

From Deep Interest Network to
Multi-channel Interest Memory Network

In this talk

Publisher: Impression allocation 
Advertiser: Ad delivery strategies 

Single-agent Bidding
Multi-agent Bidding

In this talk

Interests & Intentions Marketing Objectives



Matching



Classical Matching Methods

User->Tag, Tag->Ad matching

Typical model: item-based collaborative filtering [1] 

Difficult to do full corpus matching

Vector-space matching

Typical model: Inner-product based candidate generation [2] 

Difficult to accommodate advanced models

1. Offline Tag->Ad similarity calculation

2. Acquire User->Tag

3. Obtain User->Ad

1. Offline item embedding learning

2. Index building with embeddings

3. Calculate user embedding in real-time, 
and find KNN

[1] G Linden, B Smith, J York. Amazon.com Recommendations: Item-to-Item Collaborative Filtering, IEEE Internet Computing, 2003 

[2] P Covington, J Adams, E Sargin. Deep Neural Networks for YouTube Recommendation. RecSys 2016 



Tree-based Deep Match - Motivation

Advanced models —> large T 
Full corpus computation —> large N

Full corpus matching != Full corpus computation

Like the human intuition: interest is hierarchically organized
A tree index can facilitate efficient matching

T × N ≤ Bound
computational cost on 

a single item
Number of computations System capacity

Dilemma

Idea

Challenges
Revisited

e.g., baby creams -> baby bath&skin care -> baby



Tree-based Deep Match - Core Ingredients

Max-heap like tree structure
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Ideally: Beam search
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User-node preference model learning

Train user-node preference model to fit 
the max-heap probability distributionP( j)(n |u) =

maxnc∈{n′ �s children} P( j+1)(nc |u)
α( j)

O(logN ⋅ K)Complexity:

Top 2 results

P( j)(n |u)

P( j+1)(nc |u)

Sampling + Layer-wise modeling
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Tree-based Deep Match - Accommodating Arbitrary Model

An example: 

DNN with local activation mechanism  
                           & time sequence modeling

Time sequence

Local activation



Tree-based Deep Match - Joint Optimization
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Bad Good
Tree structure is crucial to the performance

- It is the index for matching
- Decides the non-leaf node sample distribution
- Decides the model performance upper-bound

Learn tree structure and user-node preference model jointly

Model parameters
Item->leaf assignment

Training set

Ancestor at level j

Examples of good and bad item -> leaf assignments

Solve and alternately



Method F1 Score F1 Score Lift
Item-CF 0.0230 0.00%
Youtube product-DNN 0.0336 46.09%
TDM-All 0.0634 175.65%

Method F1 Score F1 Score Lift

TDM-Base(DNN) 0.0340 0.00%

TDM-Base+Attention 0.0395 16.18%

TDM-Base+JointLearning 0.0373 9.71%

TDM-All 0.0634 86.47%

Tree-based Deep Match - Experiments

Dataset* Performance evaluation against existing methods** 

Performance evaluation with TDM variations

1 + 1 > 2

* UserBehavior is a subset of Taobao 
user behavior data
** F1 score is calculated based on 
Recall@200 and Precision@200

TDM-ALL: TDM-Base + Attention + JointLearning



Tree-based Deep Match - Summary

Where we were …

To effectively and 
efficiently find Top-K 

candidates from 
LARGE corpus

Our thoughts …  
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And the adventure …

Matching

Model Index

Unit computational cost
Number of computations

System capacity

T × N ≤ Bound Advanced Models + Full corpus matching

Max-heap like tree index

depend on 

Beam search based matching

Arbitrary advanced models

Tree structure joint optimization

+
+

TDM is open-sourced with X-Deep Learning. (https://github.com/alibaba/x-deeplearning)

https://github.com/alibaba/x-deeplearning


Prediction



Deep CTR Prediction - Overview

Click probability?

Group-wise Embedding Network Deep Interest Network (KDD18) Deep Interest 
Evolution Network (AAAI19)

Multi-channel Interest 
Memory Network (KDD19)

A Deep Learning Practice Local Activation Interest Evolution + Local Activation Long-sequence Interests Modeling

Local Activation Local Activation



Deep CTR Prediction - First Attempt

Group-wise Embedding Network (GwEN)

Feature group (field)

1

2

3

4



Deep CTR Prediction - Deep Interest Network

Deep Interest Network (DIN)

Activate

Local Activation Mechanism
Target ad

Share similar thoughts  
with attention mechanism



Deep CTR Prediction - Deep Interest Evolution Network

Deep Interest Evolution Network (DIEN)

Local Activation

Auxiliary loss to supervise 
the representation learning 
of user interest over time

Ad a

Ad b

Interest extraction layer

Interest evolution layer



Deep CTR Prediction - Architecture Revisited

Independent User Interest ComputationUser Interest Computation at EVERY Request
Incremental AsynchronousRedundant Synchronous

Online serving

Offline process

Online serving

Offline process

Local activation —————> online serving efficiency

Long sequence behaviors ————> prediction performance 

Challenges

Improve



Deep CTR Prediction - Multi-channel Interest Memory Network

Multi-channel Interest Memory Network (MIMN)

Section 3 of IDLUGHET (EKLUTNA) 
EXHIBIT HALL

7:00pm to 9:30pm on August 6

Right Here!

Interest channels

Interest induction units

The separation of user interest computation and online serving
 should not degrade the prediction performance!



Deep CTR Prediction - Experiments

Compared with some latest work

GRU4REC [3] - bases on RNN and is the first work 
using the recurrent cell to model sequential user 
behaviors.

ARNN - a variation of GRU4Rec which uses attention 
mechanism to weighted sum over all the hidden states 
along time for better user sequence representation

RUM [4] - uses an external memory to store user’s 
behavior features. It also utilizes soft-writing and attention 
reading mechanism to interact with the memory. We use 
the feature-level RUM to store sequence information

Datasets

AUC Performance

[3] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based recommendations with recurrent neural networks. ICLR 2016.
[4] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan Zha. 2018. Sequential recommendation with user memory networks. WSDM. 2018.
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Selling Method（publisher perspective）/

Ad Delivery Strategy

CPM

CPC

BCB

OCPC

Click contract

MCB

OCPC OCPC-RL MCB MM-MARLRTB-MARL

CIKM’18KDD’19KDD’17

BCB

CIKM’18

2016

Before 2016

2017

2018

2019

Impression

click

conversion(GMV/ROI)

add-cart/favorite

Any objective
Optimization objective

Ad Delivery Method (advertiser perspective)

Imp contract

Strategies - Overview

OCPC: Optimized Cost Per Click 
BCB: Budget-Constrained Bidding 
MCB: Multiple-KPI Constraint Bidding 
MM: Multiple Mechanism

(e.g., bid optimization)



Budget Constrained Bidding

T

$

i

ci

vi

b*i = vi /λ*

[5] Zhang W, Ren K, Wang J. Optimal real-time bidding frameworks discussion[J]. arXiv preprint arXiv:1602.01007, 2016.

b*i = vi /λ*

Problem formulation

Optimal Solution [5]

maximize
bi

∑
i

1[bi > ci] ⋅ vi

subject to ∑
i

1[bi > ci] ⋅ ci ≤ B

impression value

market price

Challenge is the dynamic and unstable environment!

Given budget    , acquire as much value as possible. In RTB, it is to 
decide the bid     for each impression   to maximize the winning value. 

B
ibi

Example of unstable traffic and market price patterns



Agent

Auction Simulation System

s1 …a1 r1 sT aT rT

Agent

s1 …a1 r1 sT aT rT

…

episode1 episodeK

Agent

Auction System

s1 …a1 r1 sT aT rT

Online episode

Offline Training Online Predicting

(A) (B)

Budget Constrained Bidding

Model-free Reinforcement Learning

Avoiding the Immediate Reward Pitfall

𝒮 : st campaign stats at timestep t
𝒜 : at adjusts λ by λt = λt−1(1 + at)
𝒯 : ignored with model-free RL
rt : cummulative value between step t − 1 and t
ct : cummulative cost between step t − 1 and t
γ : γ = 1 in this scenario

r′�(s, a) = max
e∈E(s,a)

T

∑
t=1

r(e)
t

r′�(st, at)

THEOREM Let π*r′� be an optimal policy with the shaped reward r′�.
If the MDP has a unique initial state, π*r′� is also an optimal policy
in the original MDP formulation with immediate reward r .

Remaining budget, win-rate,  
spending rate, rpm, etc

Episode-level reward 
observed with (s,a) pair



Budget Constrained Bidding

Experiments

R /R* The total value of the winning impressions VS theoretically optimal value (with     )λ*Evaluation metric

FLB :   fixed linear bidding bi = vi /λ0
BSLB :   budget smoothed linear bidding  bi = vi /(λ0 ⋅ Δ)
RLB :   model-based RL approach to decide bid directly [6]

The effectiveness of the shaped rewardPerformance comparison against SOTAs

[6] Cai, Han, et al. Real-time bidding by reinforcement learning in display advertising. WSDM 2017.

Multiple-KPI Constrained Bidding
Section 3 of IDLUGHET (EKLUTNA) 

EXHIBIT HALL
7:00pm to 9:30pm on August 6

Right Here!



Multi-Agent Optimal Bidding

Motivation

Problem formulation

1. Bid optimization with budget constraint is a typical sequential decision problem
2. Lacking awareness to the bid environment can lead to suboptimal bidding strategies

Challenges
1. Millions of bidders    

2. Huge overhead in state/action synchronization

     advertisers, let     be the budget of advertiser  , whose state space 
is      and action space is   （e.g., bid or bid adjustment）
N iBi

Si Ai
πi : S1 × S2 × . . . × SN → Ai

ri : S1 × S2 × . . . × SN × A1 × A2 × . . . × AN → Ri

τ : S1 × S2 × . . . × SN × A1 × A2 × . . . × AN → S1 × S2 × . . . × SN

Goal: π*i = arg max
πi

ΣT
t=0γ

trt
i

After each round of auctions, reward of advertiser 

and state transition happens（e.g.,                           ）Bt+1
i = Bt

i − costt
i

i

Is MARL formulation helpful?



Multi-Agent Optimal Bidding

Solution - Distributed Coordinated Multi-Agent Bidding (DCMAB)

Merchant 
Clusters Actions Original 

Merchant Bid Auction Consumer 
Cluster

Merchant Cluster 1

m1,…,mn1

Merchant Cluster 2

mn1+1,…,mn2

Merchant Cluster 3

mn2+1,…,mn

a1 
a2
… 
a|A|

a1
a2 
… 
a|A|

a1 
a2 
… 
a|A|

Bid1

Bid2

Bidn1

…

Bidn1+1

Bidn1+2

Bidn2

…

Bidn2+1

Bidn2+2

Bidn

…

×

×

×

μ1

μ2

μ3 } Consumer Cluster 1

Consumer Cluster 2

1. Group advertisers into clusters. Each cluster is an agent.

3. State is summarized and synced in every T time window.

Resolve scalability issues

4. Algo: Distributed Coordinated Multi-Agent Bidding (DCMAB)

2. Group users into clusters.

state: spending and GMV of ALL merchant clusters 
on ALL consumer clusters
action: selecting and applying a bid adjustment factor a
reward: reward is the GMV obtained by the agents

MDP formulation details



Experiments

Multi-Agent Optimal Bidding

GMV from different bidding agents
Manual: bid with original bids
Bandit: bid based only on impression feature (does not consider budget)
A2C: on-policy actor-critic w/o memory replay. Critic function doesn’t take other  
agents’ actions as input
DDPG: off-policy actor-critic with memory replay. Critic function doesn’t take 
other agents’ actions as input



Summary
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DATA ALGO

MATCHING PREDICTION STRATEGY
Retrieve the most promising Top K 
candidates from LARGE corpus

Tree-based Deep Match
(TDM)

In this talk

Predict user response probabilities  
(e.g., CTR) with accurately

From Deep Interest Network to
Multi-channel Interest Memory Network

In this talk

Publisher: Impression allocation 
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Summary

TDM -> FDM Thousands of activities -> Life-long model Bid Optimization -> Mechanism Optimization
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