From the Clouds to the Trenches

Learning to Manage the Marketplace

Eren Manavoglu, Partner Scientist

Microsoft Advertising, AI & Research

From the Clouds to the Trenches

Or How I Learned to Stop Worrying and Love Counterfactuals

Eren Manavoglu, Partner Scientist

Microsoft Advertising, AI & Research

Overview

Very Brief Intro to Search Advertising Marketplace Objective

Marketplace Optimization

Understanding the Marketplace

Very Brief Intro to Search Advertising Marketplace Objective

Marketplace Optimization

Understanding the Marketplace

Search Advertising

Product Ads

- Advertisers are charged per click
 - Ad platforms typically provide features to optimize for other targets
 - Ads can have "decorations", making slot sizes variable
 - Decorations can be advertiser provided or generated by the platform
 - Different ad products coexist on the same page
 - E.g. Text Ads and Product Ads can compete for the same slots

Beyond Web Search

Shopping Vertical Hotel Widsally Similar Products Ь dresses Related products Related images AI Shoooing Your recent searches: baby dresses @ Plus Sze Dres Black ses for Wome R **Gear all filters** Found these results for "dress BRAND Forever 21 Chaps Boston Proper BLACK FAUX SUEDE P. Sexy and Fashion Wom.. Sexy Black High Heels . Megan (Black) Knee High Ca. Giuseppe Zanotti New B. Venus From \$35.16 From \$20.00 From \$26.99 From \$1475.00 From \$11.50 From \$29.99 Vicki Wayne 1 store 1 store 1 store 1 store 2 stores 1 store 10 more PRICE Up to \$30 \$74.00 ***** (3) \$30-\$50 JCPenney Liz Claiborne 3/4 Grommet Bell Sieeve Shift Dress -\$50-\$80 \$80 - \$800 Over \$800 Smin to Smax COLOR • Shiekh Women's Sam-19.. Shiekh Women's Helen-1. Caged Backless Finders Keepers hot sale woman ladies lea. Black Women's Helen-1 L. From \$9.99 From \$39.99 From \$20.90 From \$23.50 From \$39.99 From \$15.00 1 store 1 store 1 store 1 store 2 stores 1 store • OCCA BON \$32.99 Venus Cocktail Party Venus Women's Lace Detail Long Dress Dresses - White Work Wedding 6 S 22% price drop Formal Casual Costumes NECKLINE CAMPBELL PARK Scoop Save up to \$131 e V Neck Aspen Suites Hotel Pay less for 17 3-star plus Sweetheart TripAdvisor (109) hotels in 4 miles \$179 One-Shoulder -star hotel · Anchorage \$42.00 3+ sites Square "Rooms were spacious, clean and TAKU/CAMPBELL the kitchenette was great." •5 more Gap Women's Softspun Balloon Sleeve Dress True Black V2 3 Petite Size XS SAND LAKE Amenities

Marketplace Objective

Marketplace Optimization

Understanding the Marketplace

NEED TO PICK Blue Sky

• Ultimate objective is to maximize Long-Term Revenue

Revenue = #Users * Queries per User * Ads per Query * Clicks per Ad * Cost Per Click Function of the user and the system
Function of the advertiser and the system

- Can we compute the long-term Revenue [think years]?
 - Need to estimate how our decisions would impact user activity and advertiser spend, over a long horizon.
 - E.g. how would showing more ads affect the user's search activity?
 - Not trivial to model the dependencies accurately
 - Reinforcement Learning provides a framework for a path forward

Down to Earth

- Assumption 1: satisfied users will engage more with the product
 - Short-term user satisfaction can be a proxy for long-term user activity
- Assumption 2: satisfied advertisers will increase spend
 - Short-term advertiser satisfaction can be a proxy for long-term advertiser spend
- Maximize all three short term metrics: Revenue, User Satisfaction and Advertiser Satisfaction
- Frequently formulated as:

max <i>imize</i>	(Short Term) Revenue	
s.t.	(Short Term) User Satisfaction	$\geq K_u$
	(Short Term) Advertiser Satisfaction	$\geq K_a$

Trenches

- How do we measure user satisfaction?
 - User agnostic relevance metrics
 - or implicit user feedback (e.g. click through rate, short dwelltime click rate)
 - or a combination?

How (not) to Pick your Metrics

Adding whitespace does not change the relevance of ads

Pushing down all the other content typically improves click-through rates

Is the page with only ads visible *better* for the user?

Trenches

- How do we measure user satisfaction?
 - User agnostic relevance metrics
 - or implicit user feedback (e.g. click through rate, short dwelltime click rate, *space taken*)
 - or a combination?
- How do we measure advertiser satisfaction?
 - Long Dwelltime Click Through Rate, Conversion Rate, Quality of Match?

One Size Does Not Always Fit All

- User query: "a z office supplies"
- Click and Dwelltime metrics are reasonable
 - No advertiser concern on performance as they measure it
- However Advertiser complains about the brand mismatch
 - Not a concern shared by other advertisers given the ads are performing

Trenches

- How do we measure user satisfaction?
 - User agnostic relevance metrics
 - or implicit user feedback (e.g. click through rate, short dwelltime click rate, *space taken*)
 - or a combination?
- How do we measure advertiser satisfaction?
 - Long Dwelltime Click Through Rate, Conversion Rate, Quality of Match?
- Single metric rarely captures all information
 - No need to artificially limit ourselves to using one metric alone

Trenches

- How do we evaluate our choice of metrics?
 - Run long-term experiments to measure the relation between the proposed proxies and longterm metrics?
 - Challenges:
 - Treatment dilution due to limitations in identifying users
 - Geo-based experiments can be tricky to analyze even with synthetic controls
 - Unexpected events can impact only one region
 - Advertisers target locations, may be tricky to separate advertiser and user response
 - Use user/advertiser complaints to verify your metric choices?

Marketplace Objective

Marketplace Optimization A Counterfactual Story

Understanding the Marketplace

• Rank and allocate ads to optimize the objective:

max <i>imize</i>	(Short Term) Revenue	
s.t.	(Short Term) User Satisfaction	$\geq K_u$
	(Short Term) Advertiser Satisfaction	$\geq K_a$

• Can be solved via the Lagrangian Relaxation:

maximize Revenue + $\lambda_u User Satisfaction + \lambda_a Advertiser Satisfaction$

 Price is determined only after allocation. Replace Revenue (p(click) * price) with Welfare (p(click) * bid)

objective function = Welfare + λ_u User Satisfaction + λ_a Advertiser Satisfaction

A Per Slot Greedy Allocation Algorithm

objective function (rankscore, rs) = Welfare + λ_u User Satisfaction + λ_a Advertiser Satisfaction

Generalized Second Price

Need probability of click, user satisfaction and advertiser satisfaction for that slot. E.g. p(click|slot = i)

 $\begin{array}{l} \mbox{Pricing} \\ \mbox{smallest bid } b' \ \mbox{ such that } rs_1(b' \) \geq rs_2 \end{array}$

A Per Slot Greedy Allocation Algorithm

objective function (rankscore, rs) = Welfare + λ_u User Satisfaction + λ_a Advertiser Satisfaction

A Per Slot Greedy Allocation Algorithm

objective function (rankscore, rs) = Welfare + λ_u User Satisfaction + λ_a Advertiser Satisfaction

Back to the Objective Function

• Need to compute the $\lambda's$

 $Welfare + \lambda_u User Satisfaction + \lambda_a Advertiser Satisfaction$

- λ_u and λ_a can be interpreted as shadow prices:
 - λ_u is the cost of degrading user satisfaction by one unit
 - λ_a is the cost of degrading advertiser satisfaction by one unit
- Estimate using long-term experiments
 - Requires high accuracy. Small differences in the estimate may result in large differences in the outcome.
- Tune $\lambda's$ to meet business constraints and maximize the objective

How to Tune λ 's

• If we could estimate the outcome of setting $\lambda's$ to any value, we could find the values that maximize the objective

				Long Dwelltime	Conversion
	λ_u	λ_a	Revenue	Click Yield	Rate
	1	1	120	0.080	0.010
	1	10	118	0.080	0.020
	1	20	116	0.090	0.030
_					
	100	50	110	0.120	0.025
	100	100	105	0.130	0.027

Maximum Revenue s.t. Long Dwelltime Click Yield > 0.11 Conversion Rate > 0.022

How to Tune $\lambda's$

- If we could estimate the outcome of setting λ's to any value, we could find the values that maximize the objective.
- How to estimate the outcome of different $\lambda' s$?

Output of λ_u , λ_a values that were used to serve the request online

https://www.macys.com/shop/womens-clothing/dresses/Color_normal/Red?id=5449 +

FREE SHIPPING AVAILABLE!

Shop our Collection of Women's Red Dresses at Macvs.com for the Latest Designer Brands & Styles.

Output of new λ_u , λ_a values that were not observed online

How would the user respond?

Red Dresses at JCPenney® | Extra 25% Off + Free Shipping https://www.jopenney.com/reddresses *

 Ad
 Save on Red Dresses at JCPenney. Discover Great Savings Today at JCPenney®.

 jepenney.com has been visited by 1M+ users in the past month

 Free Shipping to Stores - Earn Rewards Points - Bedding - Up to 50% Off - Up to 40% Off Watches

Red Dress Boutique | Discover a New Favorite Dress

 Add
 New Stock Arrives Every Day. Snag these Hot Looks While You Can. Order Here!

 reddressboutique.com has been visited by 10K+ users in the past month

 Always On Trend · Epic Restock · Free Shipping over \$50 · As Seen on Shark Tank

How to Tune $\lambda^\prime s$

- If we could estimate the outcome of setting $\lambda' s$ to any value, we could find the values that maximize the objective.
- How to estimate the outcome of different $\lambda' s$?
 - Simulate the output of the system
 - Requires the ability to replay the end-to-end stack offline
 - Comprehensive logging is critical for high fidelity simulations
 - Simulate the user response
 - Requires estimating counterfactual probabilities
 - User model needs to be accurate for rarely seen ad slates as well

Counterfactual Click Modeling

- Goal: Estimate the *p(click)* for counterfactual allocations
- Model Inputs:
 - Query logs with click/no-click information
 - Post-allocation information
 - Ad position, ad size, other ads, page layout
 - Not available for the online models
- Model Output:

p(click|query, user, ad, do(allocation))

- Need to handle biases that exist in observational data
 - E.g. Utilize Exploration and Propensity Scoring

Alternative to Simulation

- Disadvantages of simulation:
 - Requires replaying the end-to-end stack, can take time
 - Simulating the user response accurately may be challenging
- Idea: Explore different values of $\lambda's$ at run time
 - For some portion of real traffic, sample λ values from a distribution
 - Use importance sampling to compute estimated metrics

$$E_p[f(x)] = \int f(x) \frac{p(x)}{q(x)} q(x) dx = E_q \left[f(x) \frac{p(x)}{q(x)} \right]$$

- Disadvantages:
 - Randomization has short-term cost (can be reduced by joint sampling)
 - Confidence intervals widen as we increase the variance in exploration.

Very Brief Intro to Search Advertising Marketplace Objective

Marketplace Optimization

Understanding the Marketplace

Explaining KPI Movements

What caused the KPI to diverge from the forecast?

- Did supply (user/query) change?
 - Unexpected news events can cause major changes in query distributions.
- Did demand (advertisers) change?
 - Advertisers unseasonably increasing or decreasing their budget can result in unexpected KPI movements.
- Did the system change?
 - Did we introduce a bug?
- Some factors like economy might cause both the supply and the demand to change.

Supply As A Case Study

- Can we quantify how supply changes impact KPIs?
 - E.g. what's the contribution of supply differences in the analysis period vs the reference period on KPIs?
- Idea: Build a synthetic control for the reference period using only supply features

Measuring Advertiser Response

- Typical questions about advertiser reponse:
 - If we were to improve {Conversion Rate, ROI} would the advertisers increase spend?
 - Would the increase (if any) be sufficient to overcome the first order revenue drop?
- Challenges:
 - Number of active advertisers is small, and spend per advertiser is very skewed
 - Not all advertisers have the same objective
 - Advertisers may not respond, or even if they do response times might be variable and long (quarters instead of within session)

Advertiser Experiments

- Approach:
 - Experiment on advertisers who are likely to respond
 - Assume a simple a-priori model for advertiser response (e.g. the more the prices change the likelier the advertisers respond)
 - Estimate first order effect of the treatment per advertiser using simulations
 - Pick the set of advertisers with maximum predictive power
 - Randomly assign the selected advertisers to treatment and control
 - Pairwise stratified randomization works better than IID
 - Find the optimal policy (i.e. which advertisers should get the treatment)
 - Build a better model of advertiser response (using the experiment data)
 - Use the new model to pick the advertisers that would react positively to the experiment

Optimal Policy Identification

• Inputs:

- $\{x_j\}_{j \in J}$: Advertiser features, measured pre-experiment
- $\{t_j\}_{j \in J}$: Treatment indicators
- $\{y_i^{(t_j)}\}_{j \in J}$: Per sample reward, e.g. post-treatment spend per advertiser
- Task:
 - Find policy $\pi: X \to \{0,1\}$ which maximizes $R(\pi) = \frac{1}{n} \sum_{j \in J} y_j^{(\pi(x_j))}$
 - I.e. characterise advertisers for which $y_i^{(1)} > y_i^{(0)}$
- Model: Honest Random Forests
 - Use control and treatment advertisers to build a forest per advertiser using leave-advertiser-out
 - Effect on sample *j* estimated as the difference between treatment and control samples in the same node (after excluding *j*)

Full Population

Very Brief Intro to Search Advertising Marketplace Objective

Marketplace Optimization

Understanding the Marketplace

Looking Ahead

- Reinforcement Learning to directly optimize for the Long-Term
 - Already interesting work happening but under many assumptions
- Advertising Ecosystem is evolving
 - Advertisers are moving to AI/ML for everything: UX design, content generation, budget management and more
 - Modeling causal dependencies will be critical to react optimally
- User Interface is evolving
 - Definition of clicks or engagement needs to adapt