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Bidding in online advertising
A three-sided marketplace

Requests ads, runs 
auctions, wants more 

ad spend

Publisher
Bids for ad opportunities 
across multiple publishers 

to drive their business

Advertiser
Interacts with the ad (or 
not), wants meaningful 

ad experiences

User
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A strategy is an algorithm that real-time bidders use to 
calculate the bid for an ad opportunities. Different strategies
may be needed depending on the context

• First-price auctions
• Dynamic floor pricing
• Marketplace reserve pricing
• Changes to ad campaign setup

Bidding strategies
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We are not proposing a new bidding strategy but a process 
for selecting a few among many strategies. Why can’t we just 
test all combinations online or offline?

• Testing strategies offline introduces errors
• Test a few strategies online
• Too many strategies to test all online
• Too many parameters to test online

Selecting a bidding strategy
Subject of this paper



5 |

Bid the same amount 
all the time

Bid p(Action) * V(Action) Scale mCPC by a 
constant, such as 

historical p(Action)

Bid a random value

Many possible bidding strategies
Some example bidding strategies [21]

[21] Weinan Zhang, Shuai Yuan, Jun Wang, and Xuehua Shen. 2014. Real-time bidding benchmarking with iPinYou dataset, arXiv.  

Fixed Bid
(const)

True Value
(mCPC)

Linear Scaling   
(lin)

Random
(rand)

https://arxiv.org/pdf/1407.7073.pdf
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Modern ad servers support A/B test where a small trickle of 
traffic sees a new bidding behavior

• Requires ad server to implement all strategies
• Too many options means longer tests and larger errors
• Typical A/B test can run for weeks
• How do we know which is best? By which metric?

Run it on a trickle of traffic
Typical A/B testing scenario in online systems



7 |

Fixed Bid
(const)

What amount to bid

Linear
(lin)

Scaling factor

True Value
(mCPC)

No parameters

Random
(rand)

Mean and variance

Should we A/B test all parameters of bidding strategies
Might be nice, but there are too many parameters to test online

[21] Weinan Zhang, Shuai Yuan, Jun Wang, and Xuehua Shen. 2014. Real-time bidding benchmarking with iPinYou dataset, arXiv.  

https://arxiv.org/pdf/1407.7073.pdf
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Sounds like a 
job for multi-
arm bandits
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Reward distribution not known to the learner. It is observed 
only after each pull

• Seek to maximize total long-term value
• Explore-exploit
• Explore more at first
• Exploit more at the end

Traditional multi-arm bandits
Scalar-value setting

Pure Exploration Multi-Armed Bandits (MABs)

⌫1 ⌫2 ⌫3 ⌫4

K arms t1, . . . ,Ku
⌫i scalar-valued reward distribution of arm i with mean µi “ EX„⌫iX

At each round t, choose (or “pull”) an arm It and observe Xt „ ⌫It

Examples of Pure Exploration Goals

Identify arm i that maximizes µi

Given ⌧ P R, identify all arms i with µi • ⌧ (Locatelli et al., 2016)

Katz-Samuels (University of Michigan) Feasible Arm Identification 2 / 26

Pure Exploration Multi-Armed Bandits (MABs)

⌫1 ⌫2 ⌫3 ⌫4

K arms t1, . . . ,Ku
⌫i scalar-valued reward distribution of arm i with mean µi “ EX„⌫iX

At each round t, choose (or “pull”) an arm It and observe Xt „ ⌫It

Examples of Pure Exploration Goals

Identify arm i that maximizes µi

Given ⌧ P R, identify all arms i with µi • ⌧ (Locatelli et al., 2016)

Katz-Samuels (University of Michigan) Feasible Arm Identification 2 / 26

Pure Exploration Multi-Armed Bandits (MABs)

⌫1 ⌫2 ⌫3 ⌫4

K arms t1, . . . ,Ku
⌫i scalar-valued reward distribution of arm i with mean µi “ EX„⌫iX

At each round t, choose (or “pull”) an arm It and observe Xt „ ⌫It

Examples of Pure Exploration Goals

Identify arm i that maximizes µi

Given ⌧ P R, identify all arms i with µi • ⌧ (Locatelli et al., 2016)

Katz-Samuels (University of Michigan) Feasible Arm Identification 2 / 26

Pure Exploration Multi-Armed Bandits (MABs)

⌫1 ⌫2 ⌫3 ⌫4

K arms t1, . . . ,Ku
⌫i scalar-valued reward distribution of arm i with mean µi “ EX„⌫iX

At each round t, choose (or “pull”) an arm It and observe Xt „ ⌫It

Examples of Pure Exploration Goals

Identify arm i that maximizes µi

Given ⌧ P R, identify all arms i with µi • ⌧ (Locatelli et al., 2016)

Katz-Samuels (University of Michigan) Feasible Arm Identification 2 / 26

Pure Exploration Multi-Armed Bandits (MABs)

⌫1 ⌫2 ⌫3 ⌫4

K arms t1, . . . ,Ku
⌫i scalar-valued reward distribution of arm i with mean µi “ EX„⌫iX

At each round t, choose (or “pull”) an arm It and observe Xt „ ⌫It

Examples of Pure Exploration Goals

Identify arm i that maximizes µi

Given ⌧ P R, identify all arms i with µi • ⌧ (Locatelli et al., 2016)

Katz-Samuels (University of Michigan) Feasible Arm Identification 2 / 26

scalar-valued reward distribution

arm pulled at each round, t

reward observed after 
each pull

Notation



10 |

Explore until a fixed, predetermined stopping criteria

• Fixed confidence [1, 3, 10, 12, 14]
• Fixed budget [3, 13] 
• Explore only
• No exploitation

Pure-exploration bandits
See [11, 15]

Find the one arm that maximizes 
after B tries

Pure Exploration Multi-Armed Bandits (MABs)
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⌫i scalar-valued reward distribution of arm i with mean µi “ EX„⌫iX

At each round t, choose (or “pull”) an arm It and observe Xt „ ⌫It

Examples of Pure Exploration Goals

Identify arm i that maximizes µi

Given ⌧ P R, identify all arms i with µi • ⌧ (Locatelli et al., 2016)
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Pure-exploration tasks

Find all arms with mean larger than 
a threshold, with fixed confidence

For references, see full paper.
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Real-world A/B testing is similar to Uniform Allocation (UA) 
pure-exploration bandits

• Allocate a fixed portion of traffic to each treatment
• Do not try to auto-adjust allocation (No Exploit)
• Run until B days (Fixed Budget)
• Or, run until T power (Fixed Confidence)

Real A/B testing, revisited
Never heard of pure-exploration bandits? Maybe you have
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-CPM

Reduce Cost per Impression (CPM)

Prefer bidding strategies 
that are cheaper for 

advertisers

Acceptance criteria for A/B Tests
Determine which treatment is feasible, by meeting all criteria

Increase Click Through Rate (CTR)

Prefer bidding strategies 
that surfaces ads which 

will lead to clicks

+CTR
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Constrained optimization for multi-armed bandits, find the 
best arm which is feasible. 

• Multiple acceptable criteria == feasible polyhedron
• Are arms within the polyhedron or not?
• How to select arms to pull?
• Do we really need ALL the feasible arms?

Feasible arm identification
Bandits which conform to multiple criteria

Feasible polyhedron, which 
arm should we pull next?
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Now, each arm has a vector-valued reward distribution. 

• Vector-valued rewards
• Feasibility == rewards within a polyhedron
• Still fixed budget
• Still explore only, no exploitation

Feasible arm identification
Pure exploration within fixed budget setting  [13]

[13] Julian Katz-Samuels and Clayton Scott. Feasible Arm Identification. In ICML (2018), 2540–2548 
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D-dimensional vector-valued 
reward distribution

arm pulled at each round, t

reward observed after 
each pull

Feasible region, polyhedron

Notation
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Pull arms which are likely to be closest to boundary

• Still uncertain about arms on the boundary
• Tolerance defines fineness of boundary
• Bounds depend on distance of all arms to boundary

MD-APT
Given a fixed tolerance and budget, find all feasible arms.

See [13] for details on algorithm and convergence bounds

Background: MD-APT

Algorithm 1 MD-APT: Multi-dimensional Anytime Parameter-Free Thresh-

olding algorithm

1: Input: tolerance ✏
2: Initialize by pulling each arm once

3: for t “ K ` 1, . . . ,T do
4: Choose It “ arg mini r distppµi ,t , BPq`✏s

a
Ti ptq and sample Xt „ ⌫It .

5: return pS “ ti P rK s : pµi ,Ti pt`1q P Pu

Katz-Samuels (University of Michigan) Any-m Feasible Arm Identification 4 / 10
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Distance to boundary of polyhedron, P

Background: MD-APT Theorem

Define H✏ “ ∞
i r distpµi , BPq ` ✏s´2

Theorem
Let K • 0,T • 2K , and ✏ • 0. Then, with probability at least

⌦p1 ´ plogpT q ` 1qK5
D
expp´ T

R2H✏
qq,

MD-APT(✏) returns pS such that

if distpµi ,Pcq • ✏, then i P pS and

if distpµi ,Pq • ✏, then i R pS .

Katz-Samuels (University of Michigan) Any-m Feasible Arm Identification 5 / 10
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Could it be faster to find only some feasible arms, but there 
are several edge cases

• If there are fewer than m feasible arms, return all
• Could we just end the full search earlier?

Any-m feasible arm identification
Setting discussed in this paper

Do we really need to know 
if every arm is feasible? 

Maybe only m = 4 will do.
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Allocate smaller budgets to MD-APT and gradually 
reduce tolerance

• Focus less on looking just around the boundary
• Quickly enumerates some feasible arms
• Can it guarantee returning at least m?

Any-m feasible arm identification
Example: Iteration 1

Gradually refine the tolerance. 

Stop at m = 4
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Allocate smaller budgets to MD-APT and gradually 
reduce tolerance

• Focus less on looking just around the boundary
• Quickly enumerates some feasible arms
• Can it guarantee returning at least m?

Any-m feasible arm identification
Example: Iteration 2

Gradually refine the tolerance. 

Stop at m = 4
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Allocate smaller budgets to MD-APT and gradually 
reduce tolerance

• Focus less on looking just around the boundary
• Quickly enumerates some feasible arms
• Can it guarantee returning at least m?

Any-m feasible arm identification
Example: Iteration 3

Gradually refine the tolerance. 

If m = 3, we would be done
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Allocate smaller budgets to MD-APT and gradually 
reduce tolerance

• Focus less on looking just around the boundary
• Quickly enumerates some feasible arms
• Can it guarantee returning at least m?

Any-m feasible arm identification
Example: Iteration 4

Since m = 4, we are done
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Sequentially calls MD-APT on fixed budget to trace out arms

• Call MD-APT with decreasing tolerance
• Checks whether MD-APT found at least m-feasible arms 
• Bounds depend on worst-case infeasible arm
• Returns all feasible arms if there are less than m

MD-APT-ANY
Given a fixed tolerance and budget, find m feasible arms.

See full paper for proof of the theorems

MD-APT-ANY

Algorithm 2 MD-APT-ANY

1: Input: tolerance ✏
2: Define ✏r – B

2r and tr “ r
T

rlog2pB
✏ qs

3: for r “ 1, . . . ,
P
log2pB✏ q

T
do

4: Run MD-APTp✏r q for
T

rlog2pBqs iterations.

5: pSr “ ti P rK s : pµi ,Ti ptr`1q P P and distppµi ,Ti ptr`1q, BPq • ✏r´1u
6: if | pSr | • m then

7: pS – arg max

ZÄ pSr , |Z |“m

∞
iPZ distppµi ,Ti ptr`1q, BPq

8: Return pS
9: Pick any pS Ä ti P rK s : distppµi ,Ti pT`1q,Pq § ✏u such that | pS | “

minpm, |ti P rK s : distppµi ,Ti pT`1q,Pq § ✏u|.
10: Return pS

Katz-Samuels (University of Michigan) Any-m Feasible Arm Identification 7 / 10

Result for any-m feasible arm identification

�m “ maxp pmq
max
i :µiPP

distpµi , BPq, 0q, Hm “
ÿ

iPrK s
maxp�m, distpµi , BPqq´2

Theorem

Let ✏ ° 0. With probability at least

⌦p1 ´ log2pB
✏

q logpT qK5
D
expp´ T

log2pB✏ qHmR
2

qq,

MD-APT-ANY(✏) outputs pS such that

if ✏ † �m
2 , then | pS | “ m and pS Ä ti P rK s : µi P Pu;

otherwise,

minp|ti P rK s : µi P Pu|,mq § | pS | and @i P pS : distpµi ,Pq § 2✏

Katz-Samuels (University of Michigan) Any-m Feasible Arm Identification 6 / 10
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Sample arms within border a little more on odd rounds

• Focus more on quasi-feasible arms
• Double-check that they are still feasible

MD-APT-ANY-F
Heuristic improvement

Experiments

Heuristic Algorithms:

§ MD-APT-ANY-F: on even rounds, it runs as usual and on odd rounds,

it only considers the top m arms that maximize

distppµi,Ti ptq,P
cq ´ distppµi,Ti ptq,Pq.

§ MD-APT-F is similar.

Synthetics experiments

§ E1: P “ tx P R5
: xi • .5u. 50 arms have mean p0.49999qb5

, 50 arms

have mean p0.6qb5
.

§ E2: Arm i P r50s has mean p0.5 ` .2 i
50 qb2

. Arm i P r200sz50 has mean

p0.5 ´ .2 i´50
150 qb2

.

§ E3: P “ tx P R5
: xi § xi`1@i P r4su. 50 of the arms have mean

p.1, .3, .5, .3, .1qJ
and 50 of the arms have mean p0.1, .3, .15, .7, .9qJ

.

Crowdsourcing experiment

A/B testing experiment

Medical dataset experiment

Katz-Samuels (University of Michigan) Any-m Feasible Arm Identification 8 / 10

2. On odd rounds, sample the top 
m arms by:

1. On even rounds, run

MD-APT-ANY

Inspired by hyperparameter optimization algorithms like Hyperband

Algorithm 3



23 |

MD-APT-ANY

Comparing arm pull distribution
MD-APT-ANY pulls arms which are likely to be feasible more often than other algorithms

[13] Julian Katz-Samuels and Clayton Scott. Feasible Arm Identification. In ICML (2018), 2540–2548

Conference’17, July 2017, Washington, DC, USA Julian Katz-Samuels and Abraham Bagherjeiran

Table 2: Experiments on synthetic datasets: Estimated probability of error with standard errors, comparing the proposed
algorithm MD-APT-ANY against state of the art algorithms MD-APT and MD-SAR.

(a) (b) (c)

Figure 1: Kernel density estimate (KDE) of the distribution of arm pulls for real-valued arms in Experiment 2 (m=20) for three
algorithms (a): MD-SAR , (b): MD-APT, (c): Proposed algorithm: MD-APT-ANY. MD-APT-ANY focuses its exploration budget
on eliminating infeasible arms–note the peak of the distribution just less than the feasible boundary of 0.5.

unlocks practical value by increasing the exploration budget that
can be used to consider even more alternatives.

The results suggest that, not only is MD-APT-ANY a good solu-
tion to the any-m feasible arm identi!cation problem, the heuristic
modi!cation MD-APT-ANY-F may be able to improve other algo-
rithms. In future work, we may apply this heuristic to the other
benchmark algorithms. We would also like to further develop its
theory, which we believe will lead to further improvements.
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Table 2: Experiments on synthetic datasets: Estimated probability of error with standard errors, comparing the proposed
algorithm MD-APT-ANY against state of the art algorithms MD-APT and MD-SAR.

(a) (b) (c)

Figure 1: Kernel density estimate (KDE) of the distribution of arm pulls for real-valued arms in Experiment 2 (m=20) for three
algorithms (a): MD-SAR , (b): MD-APT, (c): Proposed algorithm: MD-APT-ANY. MD-APT-ANY focuses its exploration budget
on eliminating infeasible arms–note the peak of the distribution just less than the feasible boundary of 0.5.

unlocks practical value by increasing the exploration budget that
can be used to consider even more alternatives.

The results suggest that, not only is MD-APT-ANY a good solu-
tion to the any-m feasible arm identi!cation problem, the heuristic
modi!cation MD-APT-ANY-F may be able to improve other algo-
rithms. In future work, we may apply this heuristic to the other
benchmark algorithms. We would also like to further develop its
theory, which we believe will lead to further improvements.
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• K = 144 arms, bidding strategies and their parameters
• M = 1, want to find just one good strategy
• D = 2, two rewards:
• CTR > default strategy
• Advertiser CPM < default strategy

Bidding strategies data
From iPinYou RTB bidding competition [21]

[21] Weinan Zhang, Shuai Yuan, Jun Wang, and Xuehua Shen. 2014. Real-time bidding benchmarking with iPinYou dataset, arXiv.  
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See paper for details on these experiments

Results on other public datasets
Comparing MD-APT-ANY against other state-of-the-art feasible arm identification methods
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Table 2: Experiments on synthetic datasets: Estimated probability of error with standard errors, comparing the proposed
algorithm MD-APT-ANY against state of the art algorithms MD-APT and MD-SAR.
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Figure 1: Kernel density estimate (KDE) of the distribution of arm pulls for real-valued arms in Experiment 2 (m=20) for three
algorithms (a): MD-SAR , (b): MD-APT, (c): Proposed algorithm: MD-APT-ANY. MD-APT-ANY focuses its exploration budget
on eliminating infeasible arms–note the peak of the distribution just less than the feasible boundary of 0.5.
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Table 1: Experiments on synthetic dataset (E3) and real-world datasets: Estimated probability of error with standard errors.

are su$ciently likely to: 1) give the correct answer; and 2) re-
spond on average at a suitable speed. We use a crowdsourcing
dataset collected by [17] in which AmazonMechanical Turk work-
ers evaluate the content of tweets. We only consider workers that
have answered at least 50 questions, leaving a total of 44 workers.
Here, µi,1 is the probability of being correct and µi,2 is the average
amount of time required. We set P “ tx : x1 ě .75,x2 ď 15u, i.e.,
we deem a worker satisfactory if he answers correctly with proba-
bility at least .75 and on average within 15 seconds. We setm “ 5,
i.e., the goal is to identify 5 workers that satisfy the criteria. Be-
cause the data for each worker is limited, whenever an algorithm
pulls an arm corresponding to a worker, it samples a data point as-
sociated with that worker uniformly at random with replacement.

5.2.1 Results. The results on real-world datasets illustrate the ob-
vious advantage of solving the any-m feasible compared to the
fully feasible arm identi!cation. In all experiments, shown in Table
1, eitherMD-APT-ANY or itsmodi!cationMD-APT-ANY-F showed
signi!cant improvement over the current state of the algorithms
for feasible arm identi!cation, achieving the lowest probability of
error in each of the experiments.

In the any-m feasible arm identi!cation problem, when there
are few arms, uniform allocation (UA) may have an advantage of
simply being lucky. This appears to be the case in our medical ex-
periment (Med E) in which uniform allocation has a the best error
rate. Although, as indicated in [13], UA does not return all the fea-
sible arms, it does appear to !nd the best one of four. For the other
experiments, UA simply has too many options to be e"ective.

5.3 Synthetic Experiments
To better understand MD-APT-ANY and the intuition behind MD-
APT-ANY-F, we considered several synthetic datasets, de!ned be-
low.

Experiment 1. The polyhedron is P “ tx P R5 : xi ě .5u. The
distributions are 5-dimensional multivariate normal distributions
with covariance matrix 1

4 I . 50 of the arms have mean p0.49999qb5

and 50 of the arms have mean p0.6qb5. We varym “ 5, 10, 15.
Experiment 2. The polyhedron is P “ tx P R5 : xi ě .5u.

Arm i P r50s has mean p0.5` .2 i
50 qb2. Arm i P r200sz50 has mean

p0.5 ´ .2 i´50
150 qb2.

Experiment 3.The polyhedron is P “ tx P R5 : xi ď xi`1@i P
r4su. We use 5-dimensional Bernoulli distributions. 50 of the arms
have mean p.1, .3, .5, .3, .1qJ and 50 of the arms have mean
p0.1, .3, .15, .7, .9qJ.

5.3.1 Results. The results on synthetic datasets show that MD-
APT-ANY clearly outperforms the other feasible arm identi!cation

algorithms. Figure 1 shows a kernel density estimate of the dis-
tribution of arm pulls for Experiment 2, where each arm is repre-
sented by its mean value. In Experiment 2, arms with mean greater
than 0.5 are feasible. In Figure 1a, MD-SAR pulls arms close to the
boundary and is slightly more likely to pull arms within the fea-
sible set. With an accept and reject sampling technique, MD-SAR,
spends budget on determining whether an arm is feasible within
the margin before deciding to accept or reject it. Although MD-
APT, shown in Figure 1b, improves on sampling outside the feasible
set, it focuses even more on arms that are nearly feasible. In con-
trast, the proposed algorithm MD-APT-ANY, shown in Figure 1c,
spends the exploration budget on exploring arms clearly outside
the feasible region–which is illustrated in the !gure as a skewed
distribution with peak and most of the mass on the left (infeasi-
ble) side. This suggests that MD-APT-ANY quickly identi!es some
feasible arms and then continues exploring the infeasible arms to
!nd better candidates. This con!rms our intuition for the heuristic
in MD-APT-ANY-F, which places additional emphasis on feasible
arms–essentially double-checking that the quickly identi!ed arms
really are feasible.

Discussion.When confrontedwith problems havingmany arms,
such as the A/B test and crowdsourcing experiments, MD-APT-
ANY and its extension MD-APT-ANY-F exhibit dramatic reduc-
tions in probability of error compared to state-of-the-art algorithms,
as much as 10X for one dataset. Drawing upon the intuitive behav-
ior illustrated in Figure 1, MD-APT-ANY quickly identi!es feasible
arms and then continues to explore other possibilities. In addition,
the heuristic modi!cation MD-APT-ANY-F shows that simply re-
stricting the sampling space to feasible arms is a good strategy.

6 CONCLUSION
We introduce and propose a solution for the any-m feasible arm
identi!cation problem. In this setting, an agent plays a sequential
game where at each round, it pulls one of the arms and observes
an independent realization from a distribution associated with the
arm. In contrast to the classical multi-armed bandit setting, the
agent in a pure-exploration multi-armed bandit seeks by the end
of the game onlym arms meeting several criteria rather than the
single best arm in just a single criteria.

Identifying a few known good solutions can su$ce for a variety
of real-world environments. For example, in A/B testing, we may
have many parameters of the same algorithm to test. It is infeasible
to test all the parameters thoroughly, but we also do not to hastily
select just one. Instead, wewould like to !nd a few known good so-
lutions and run these in a longer test. Identifying just a few rather
than all feasible arms dramatically reduces the error. Moreover, it
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Table 1: Experiments on synthetic dataset (E3) and real-world datasets: Estimated probability of error with standard errors.
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dataset collected by [17] in which AmazonMechanical Turk work-
ers evaluate the content of tweets. We only consider workers that
have answered at least 50 questions, leaving a total of 44 workers.
Here, µi,1 is the probability of being correct and µi,2 is the average
amount of time required. We set P “ tx : x1 ě .75,x2 ď 15u, i.e.,
we deem a worker satisfactory if he answers correctly with proba-
bility at least .75 and on average within 15 seconds. We setm “ 5,
i.e., the goal is to identify 5 workers that satisfy the criteria. Be-
cause the data for each worker is limited, whenever an algorithm
pulls an arm corresponding to a worker, it samples a data point as-
sociated with that worker uniformly at random with replacement.

5.2.1 Results. The results on real-world datasets illustrate the ob-
vious advantage of solving the any-m feasible compared to the
fully feasible arm identi!cation. In all experiments, shown in Table
1, eitherMD-APT-ANY or itsmodi!cationMD-APT-ANY-F showed
signi!cant improvement over the current state of the algorithms
for feasible arm identi!cation, achieving the lowest probability of
error in each of the experiments.

In the any-m feasible arm identi!cation problem, when there
are few arms, uniform allocation (UA) may have an advantage of
simply being lucky. This appears to be the case in our medical ex-
periment (Med E) in which uniform allocation has a the best error
rate. Although, as indicated in [13], UA does not return all the fea-
sible arms, it does appear to !nd the best one of four. For the other
experiments, UA simply has too many options to be e"ective.

5.3 Synthetic Experiments
To better understand MD-APT-ANY and the intuition behind MD-
APT-ANY-F, we considered several synthetic datasets, de!ned be-
low.

Experiment 1. The polyhedron is P “ tx P R5 : xi ě .5u. The
distributions are 5-dimensional multivariate normal distributions
with covariance matrix 1
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r4su. We use 5-dimensional Bernoulli distributions. 50 of the arms
have mean p.1, .3, .5, .3, .1qJ and 50 of the arms have mean
p0.1, .3, .15, .7, .9qJ.

5.3.1 Results. The results on synthetic datasets show that MD-
APT-ANY clearly outperforms the other feasible arm identi!cation

algorithms. Figure 1 shows a kernel density estimate of the dis-
tribution of arm pulls for Experiment 2, where each arm is repre-
sented by its mean value. In Experiment 2, arms with mean greater
than 0.5 are feasible. In Figure 1a, MD-SAR pulls arms close to the
boundary and is slightly more likely to pull arms within the fea-
sible set. With an accept and reject sampling technique, MD-SAR,
spends budget on determining whether an arm is feasible within
the margin before deciding to accept or reject it. Although MD-
APT, shown in Figure 1b, improves on sampling outside the feasible
set, it focuses even more on arms that are nearly feasible. In con-
trast, the proposed algorithm MD-APT-ANY, shown in Figure 1c,
spends the exploration budget on exploring arms clearly outside
the feasible region–which is illustrated in the !gure as a skewed
distribution with peak and most of the mass on the left (infeasi-
ble) side. This suggests that MD-APT-ANY quickly identi!es some
feasible arms and then continues exploring the infeasible arms to
!nd better candidates. This con!rms our intuition for the heuristic
in MD-APT-ANY-F, which places additional emphasis on feasible
arms–essentially double-checking that the quickly identi!ed arms
really are feasible.

Discussion.When confrontedwith problems havingmany arms,
such as the A/B test and crowdsourcing experiments, MD-APT-
ANY and its extension MD-APT-ANY-F exhibit dramatic reduc-
tions in probability of error compared to state-of-the-art algorithms,
as much as 10X for one dataset. Drawing upon the intuitive behav-
ior illustrated in Figure 1, MD-APT-ANY quickly identi!es feasible
arms and then continues to explore other possibilities. In addition,
the heuristic modi!cation MD-APT-ANY-F shows that simply re-
stricting the sampling space to feasible arms is a good strategy.

6 CONCLUSION
We introduce and propose a solution for the any-m feasible arm
identi!cation problem. In this setting, an agent plays a sequential
game where at each round, it pulls one of the arms and observes
an independent realization from a distribution associated with the
arm. In contrast to the classical multi-armed bandit setting, the
agent in a pure-exploration multi-armed bandit seeks by the end
of the game onlym arms meeting several criteria rather than the
single best arm in just a single criteria.

Identifying a few known good solutions can su$ce for a variety
of real-world environments. For example, in A/B testing, we may
have many parameters of the same algorithm to test. It is infeasible
to test all the parameters thoroughly, but we also do not to hastily
select just one. Instead, wewould like to !nd a few known good so-
lutions and run these in a longer test. Identifying just a few rather
than all feasible arms dramatically reduces the error. Moreover, it
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Conclusion

1 Real A/B tests fit well within pure-exploration 
feasible-arm identification bit learning

2 Any-m feasible arm identification returns a 
few good parameters within budget

3 Bidding strategies and their parameters fit 
within this scheme, as shown in results

4 Apply to other domains such as 
hyperparameter optimization
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