## Time-Aware Prospective Modeling of Users for Online Display Advertising

Djordje Gligorijevic, Jelena Gligorijevic and Aaron Flores

Presented by: Djordje Gligorijevic



## **Prospective Display Advertising Introduction**



### **Prospective display advertising**





#### **Prospective display advertising - Reality**





## **Problem statement**



## **Problem definition**

verizon<sup>4</sup> media

**Challenge**: More and more advertisers are *interested* in prospective advertising while current systems tend to *underperform* there.

**Problem**: Powerful signals often referred as *retargeting events* overwhelm predictive systems

| Conversion | Adv. site visit | Site visit prior to conv. | Percentage |
|------------|-----------------|---------------------------|------------|
| TRUE       | FALSE           | FALSE                     | 0.01%      |
| TRUE       | TRUE            | FALSE                     | 0.02%      |
| TRUE       | TRUE            | TRUE                      | 99.97%     |

Table 1: Percentages of conversions with respect whether advertisers' site visit (a retargeting) event occured, and if it occurred before the conversion or not.

- A simple rule based system can achieve Recall of 99.97% (on this retail advertiser example)
- Thus a few retargeting events can dominate over many other useful events
- Particularly noticeable for retail advertisers audiences

## **Proposed solution**

#### The idea:

99.97% of all conversions are coming from retargeting users - observed data should be altered

#### Dataset generation:

For each user, <u>generate</u> **events sequence** and <u>remove</u> all **known** retargeting events up to each conversion

#### Modeling goals:

to design more powerful models that can capture **early usefull signals** becomes a neccessity



#### verizon<sup>/</sup> media

## Data



### **Dataset illustrated**

Dataset: User activities collected in a chronological order

Canonicalized and normalized activities are derived from heterogeneous sources:

- Yahoo Search,
- Yahoo and AOL Mail receipts,
- Content reads on publisher's webpages such are Yahoo and AOL news, HuffPost, TechCrunch, Tumblr, etc.,
- Advertising data from Yahoo Gemini and Verizon Media DSP,
- Flurry mobile analytics,
- Conditional data from all advertisers (e.g., ad impressions, conversions, and advertiser site visits).

Final data product is a sequence of activities with a timestamp



temporally ordered trail of users events



# **Proposed Approach**



#### YAHOO! RESEARCH

#### Proposed approach: Deep Time-Aware conversioN model DTAIN

#### Architecture

- ✤ DTAIN takes 2 sets of inputs: events and timesteps
- Consists of 5 blocks: embedding, recurrent, two attention and a classification block
- Temporal Attention captures differences between event occurrence and inference timestamp through *mu* and *theta* parameters





## **Temporal Modeling in Deep Learning**

- Temporal information is most frequently modeled as a **decay function**, though:
  - Stop features [1]





> Attention regularization [2] (where  $\Delta_t$  is time gap between event and prediction time:

$$a_i = \frac{exp(v_i^T u - \lambda \Delta_t)}{\sum_t exp(v_t^T u - \lambda \Delta_t)}$$

> Attention modeling using the temporal signal [3, 4] by handcrafting time features  $A_j(\Delta t_i)$ 

$$a_i = Softmax\left(\sum_{j=1}^k p_{j,i}A_j(\Delta t_i)\right)$$



## **Temporal Modeling in Deep Learning**

**Proposed approach** is motivated by *Euler's forward method* of solving *linear dynamic systems* [5]

$$\begin{split} \Delta_t &= \tau_{e_j} - \tau_{e_i} \\ \delta(e_i, \Delta_t) &= S(\theta_{e_i} - \mu_{e_i} \Delta_t) \\ S(x) &= \frac{1}{1 + e^{-x}} \end{split}$$

Learns event-specific impact onto prediction [4]

□ Single dimensional *learnable parameters:* 

- □ theta is the *initial impact* of the event
- u mu is *temporal change* of the event
- Final impact of the event is *scaled* to 0-1 scale using Sigmoid function

<u>The larger theta</u> and <u>the smaller mu</u> -> the greater impact does the event have onto prediction
The closer to 0 they are -> the <u>smaller initial and/or temporal</u> impact the event has



## **Experimental Evaluation**



15

### **Experimental setup**

The proposed DTAIN model was evaluated on two datasets and against 4 competitive baselines

#### Datasets:

- 1) Proprietary Verizon Media dataset of a single retail advertiser
  - 788,551 users in train and 196,830 in test set, downsampled to obtain ~7.5% positives
- 2) Public youchoose.com dataset from RecSys 2015 challenge
  - 1,965,359 sessions in train and 279,999 in test set, downsampled to obtain ~11% positives

#### Baselines:

- 1) CNN
- 2) GRU
- 3) GRU + Attention layer
- 4) GRU + Self Attention layer



### **Experimental results: Proprietary VerizonMedia dataset**

#### • Verizon Media dataset:

verizon<sup>/</sup> media

- 985,381 user sessions, 74,407 conversions
- **long-time** sequences of activities
- prediction task: to predict if a user is going to convert for the given advertiser (binary classification task)

|              | ROC AUC | Accuracy | Precision | Recall | Bias   |
|--------------|---------|----------|-----------|--------|--------|
| CNN          | 0.8806  | 0.8110   | 0.2457    | 0.7871 | 1.0161 |
| GRU          | 0.9018  | 0.8520   | 0.3004    | 0.7972 | 1.1983 |
| GRU+Attn     | 0.8968  | 0.8438   | 0.2882    | 0.7982 | 0.8047 |
| GRU+SelfAttn | 0.8804  | 0.8364   | 0.2743    | 0.7756 | 0.9273 |
| DTAIN        | 0.9263  | 0.8602   | 0.3219    | 0.8537 | 0.9871 |

Table 3: Performance metrics on the proprietary user trailsdataset for all algorithms.

- The proposed DTAIN model outperforms other baselines on the conversion prediction task w.r.t. ROC AUC, Accuracy, Precision, Recall and Bias
- **Improvements** over all baselines are prominent thanks to the long-time sessions (>100 days)

# Experimental results: Proprietary VerizonMedia dataset, contd.

- Verizon Media dataset:
  - 985,381 user sessions, 74,407 conversions
  - **long-time** sequences of activities
  - prediction task: to predict if a user is going to convert for the different conversion rules given by the advertiser (multi-class classification task)
- Due to class disbalance that occurs when splitting the binary into multi-classification task we report PRC-AUC
- The proposed DTAIN model outperforms other baselines on the majority of metrics

|              | PRC AUC | Accuracy | Precision | Recall | Bias   |
|--------------|---------|----------|-----------|--------|--------|
| Task 0       |         |          |           |        |        |
| CNN          | 0.9880  | 0.8139   | 0.9810    | 0.8153 | 1.0069 |
| GRU          | 0.9896  | 0.8544   | 0.9821    | 0.8588 | 1.0030 |
| GRU+Attn     | 0.9907  | 0.8511   | 0.9837    | 0.8537 | 0.9933 |
| GRU+SelfAttn | 0.9877  | 0.8456   | 0.9795    | 0.8515 | 0.9941 |
| DTAIN        | 0.9926  | 0.8613   | 0.9876    | 0.8614 | 0.9982 |
| Task 1       |         |          |           |        |        |
| CNN          | 0.2523  | 0.9602   | 0.3161    | 0.2506 | 0.8836 |
| GRU          | 0.2711  | 0.9629   | 0.3635    | 0.2720 | 0.9715 |
| GRU+Attn     | 0.3013  | 0.9630   | 0.3788    | 0.3139 | 1.1163 |
| GRU+SelfAttn | 0.2452  | 0.9606   | 0.3277    | 0.2648 | 1.0645 |
| DTAIN        | 0.2880  | 0.9652   | 0.4000    | 0.2539 | 1.0680 |
| Task 2       |         |          |           |        |        |
| CNN          | 0.2495  | 0.9584   | 0.3287    | 0.2419 | 0.7588 |
| GRU          | 0.2567  | 0.9597   | 0.3485    | 0.2464 | 0.8849 |
| GRU+Attn     | 0.2374  | 0.9584   | 0.3355    | 0.2582 | 1.0453 |
| GRU+SelfAttn | 0.2081  | 0.9587   | 0.3081    | 0.1951 | 0.9887 |
| DTAIN        | 0.2776  | 0.9633   | 0.4083    | 0.2348 | 0.9460 |

Table 4: Performance metrics on the proprietary user trailsdataset for different tasks.



17

## Interpretability analysis of the DTAIN model

On a dataset with 500 conversions and 500 last events in each trail we analyze attentions:

Figures (a) and (b) display attentions of GRU+Attn and DTAIN model:

- GRU+Attn looks on events mostly in the latter half
- DTAIN shows interesting pattern where it only focuses to last few events.

Analyzing temporal attention signals for theta (c) and mu (d):

• events both near and far from conversion are exploited

We suspect that the temporal-attention has captured the impacts of each event thus by biRNN modeling the information was compressed in last few event positions.

Figure 4: Heat maps of events attentions scores for 100 randomly sampled converters





## **Experimental results: Public RecSys 2015 challenge dataset**

#### • Youchoose.com dataset:

verizon<sup>v</sup> media

- 2,245,358 sessions, 241,887 buys
- short-time sequences of activities
- **prediction task**: to predict if a session is going to end in purchase (binary classification task)

|              | ROC AUC | PRC AUC | Accuracy | Precision | Recall |
|--------------|---------|---------|----------|-----------|--------|
| CNN          | 0.7534  | 0.2870  | 0.6779   | 0.2087    | 0.7041 |
| GRU          | 0.7504  | 0.2725  | 0.6958   | 0.2142    | 0.6746 |
| GRU+SelfAttn | 0.7029  | 0.2391  | 0.6734   | 0.1907    | 0.6184 |
| GRU+Attn     | 0.7639  | 0.2973  | 0.6997   | 0.2195    | 0.6904 |
| DTAIN        | 0.7666  | 0.3019  | 0.6943   | 0.2186    | 0.7047 |

- **The proposed DTAIN model outperforms other baselines** on the purchase prediction task w.r.t. ROC AUC, PRC AUC and Recall and is comparable to the second best baseline w.r.t. Accuracy and Precision.
- Improvements over GRU + Attention model are expectedly smaller (short sessions)
- However, **adding temporal information helps**, as it aslo models **initial impact** of the events to the conversion, thus providing additional information to the classifier.



## **Next steps**

- **1.** Analyze different dataset generation strategies
- 2. Predict first occurence of retargeting events
- 3. Design regularization techniques that act on events highly associated with the target
- 4. Extend model optimization through labeling such events as adversarial ones



21

#### References

[1] Pei W, Tax DM. Unsupervised Learning of Sequence Representations by Autoencoders. arXiv preprint arXiv:1804.00946. 2018 Apr 3.

[2] S. K. Arava, C. Dong, Z. Yan, A. Pani, et al. Deep neural net with attention for multi-channel multi-touch attribution. arXiv preprint arXiv:1809.02230, 2018

[3] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj, Peter J Liu, Xiaobing Liu, Mimi Sun, Patrik Sundberg, Hector Yee, et al. 2018. Scalable and accurate deep learning for electronic health records.arXiv preprint arXiv:1801.07860 (2018).

[4] T. Bai, S. Zhang, B. L. Egleston, and S. Vucetic. Interpretable representation learning for healthcare via capturing disease progression through time. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 43–51. ACM, 2018

[5] X. H. Cao, C. Han, and Z. Obradovic. Learning a dynamic-based representation for multivariate biomarker time series classifications. In 2018 IEEE International Conference on Healthcare Informatics (ICHI), pages 163–173. IEEE, 2018







