Modeling Advertiser Bidding Behaviors in Google Sponsored Search A Mirror Attention Mechanism

Liang Liu (Google)

Work by: Suqi Liu, Liang Liu, Sugato Basu, Jean-François Crespo

Background

Advertisers respond to feature launches in ads system

- A feature launch can result in changes in certain metrics
- Advertisers respond in various ways to the metrics that they observed
- Long term effect of a launch needs to take these response into account

How do Launches Affect System Metrics

How do Advertisers Respond

Goal of Modeling Advertisers

- Predict metrics considering long-term advertiser response to launches in ads system
- Aims to estimate advertiser response
 before / during / after a launch

How do we model advertiser response?

- Advertisers can respond to a change in the ad system in different ways
 - Adjust bid, budget, campaign structure, etc.
- We currently model bid adjustments made by advertisers
- Have to model (a) individual response, (b) response interaction via auction

Complexity of Problem

- Advertisers reactions are affected by various reasons
 - E.g., targeting strategy changes
- Advertiser responses are not IID
 - Interaction via the auction in each impression
- Advertiser's reaction can be long-term
 - Change budget allocation at end of quarter
- Super-tricky to get advertiser response ground truth
 - Data sparsity, noise

Advertiser Response Offline Experiment

- Reinforcement-learning like framework
 - Decouple the system(auction) and advertisers.
 - Iteratively run two components
- Treat advertisers as black-box
 - Directly model advertiser response from historical data.
 - Only model short-term response.

Advertiser Response Models

- Descriptive:
 - Invariant models
 - Preserve invariants: Spend / Conversions / Impression/ CPC
 - Other strategies (e.g., constrained utility maximization)

- Predictive:
 - Prediction model for direct regression

Metrics Features and Transformation

Raw features:

- Impressions
- Clicks
- Conversions
- Budget
- Cost
- Slot

Derived features

- CTR (clicks/impressions)
- CVR (conversions/clicks)
- CBR (cost/budget)
- CPC (cost/clicks)

https://support.google.com/google-ads/, snapshot on 2019.07.20

Data Form: Multivariate Time Series

Driver Sequence	Impressions	
	Clicks	
	Cost	
	Ads Positions	
Response Sequence	Bids	

Model Trials: Regression Model

Model Trials: Single Sequence Model(RNN)

Model Trials: Double Sequence Model (Dual RNN)

Attention Mechanism

- Ideally sequence models should be able to capture long range dependencies, but is difficult in reality.
- When making prediction, focus (i.e., attend) on relevant part of input

A woman is throwing a frisbee in a park.

In our context, to focus on relevant parts of historical sequence

Model Trials: Casual Attention Model

Model Trials: Mirror Attention Model

Testbed: Air Quality Data

- Air quality data from UCI ML repository [source]
- Multivariate time-series
- The dataset resembles the advertiser response
 - The concentration of pollutant has its own evolution [response metrics]
 - Concentration is influenced by weather conditions like temperature, pressure, wind speed, cumulative hours of rain, etc [driver metrics]

Results on Air Quality Test Data

0.1	<i>c</i> 1	10.1	0.4.1
3 hours	6 nours	12 hours	24 hours
100.00	100.00	100.00	100.00
111.11	121.98	113.65	75.63
87.70	89.03	73.28	66.41
94.36	81.44	73.32	67.99
93.82	84.47	72.72	65.21
89.89	81.82	72.82	65.67
	111.11 87.70 94.36 93.82	100.00 100.00 111.11 121.98 87.70 89.03 94.36 81.44 93.82 84.47	100.00 100.00 100.00 111.11 121.98 113.65 87.70 89.03 73.28 94.36 81.44 73.32 93.82 84.47 72.72

- DSEQ and MATT achieves better results when we increase the difficulty of the prediction task with larger predicting gap
- MATT performs consistently among the best models

Results on Advertiser Bid History Data

Model	Relative mean squared error
NAIV	100.00
REGR	85.62
SSEQ	80.82
CATT	74.11
DSEQ	64.96
MATT	61.98

- Length of attention window plays an important role
- The dimensions of hidden states in the driver sequence and response sequence significantly contribute to performance
- Parameter tuning discussed in paper

Conclusion

- Introduced a new data-driven approach to advertiser bid prediction
- A novel mirror attention mechanism tailored to the sequential prediction task was proposed
- The first step in our attempts towards understanding advertiser behaviors via sequence modeling
- Following up work to introduce more auction rules and policy into the models to strengthen from a pure multivariate time series model

Beyond Bid Response: Other Applications

The model we developed can potentially have more impacts when applied to the following tasks.

- Resource usage in systems
- User behavior modeling
- Weather prediction
- Financial market forecasting

