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Bidding Problems

Section 1

Bidding Problems
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Bidding Problems

Introduction

A typical DSP’s day:

Thousands of advertising campaigns, on behalf of. . .

Hundreds of clients (advertisers), served by bidding at. . .

Billions of auctions in real-time markets, in order to. . .

Purchase conversions (events of interest) for the clients.

But:

An auction is usually an opportunity for more than one client.

Each client sets contractual constraints on volume, costs, etc.

So, in order to decide when and how much to bid for which client:

Not only expected profits must be compared but also. . .

Shadow prices of each constraint set.
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Bidding Problems

Market and Campaigns

Definition (Campaign)

We have n advertising campaigns (i , j ∈ [n] = {1, · · · , n}) competing for
the RTB market.

Definition (Market)

The RTB market consists of m auctions (k ∈ [m] = {1, · · · ,m}), each one
characterized by:

wk(b): win rate, the probability of winning by bidding b.

ck(b): the expected cost of winning by bidding b.

ek(i , a): event rate, the probability of converting given that we won
and displayed ad a for campaign i .
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Bidding Problems

Strategies

Definition (Bidding strategy)

A bidding strategy x : [m]→ [n]× [a]× (0, b] is a mapping from auctions
to vectors (i , a, b), where i is a campaign, a is an ad and b is a bid.

Aggregated by campaign i , strategy x produces (expected) conversions by
incurring (expected) costs:

Definition (Aggregate functions)

Given a strategy x and a campaign i :

Ci (x) =
∑

(k,(j ,a,b))∈x | j=i wk(b) · ck(b) is the aggregate cost function.

Ei (x) =
∑

(k,(j ,a,b))∈x | j=i wk(b) · ek(j , a) is the aggregate event
function.
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Bidding Problems

MBFP Problem: Maximum Budget, Fixed Price

This is the problem we will be mostly dealing with today:

Definition (MBFP Problem)

The client sets an upper bound B̄i to the amount of money to spend (the
campaign budget) and pays price p̄i for each conversion.

max
x∈X

∑
i∈[n]

p̄iEi (x)− Ci (x) s.t.
∧
i∈[n]

p̄iEi (x) ≤ B̄i

or, equivalently maxx∈X |g(x)≤~0 f (x) where:

f : X → R | f (x) =
∑

i∈[n] p̄iEi (x)− Ci (x).

g : X → Rn | g(x) = (p̄1E1(x)− B̄1, . . . , p̄nEn(x)− B̄n).
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Bidding Problems

FBMP: Fixed Budget, Maximum Price

This is another, somewhat harder, problem:

Definition (FBMP: Fixed Budget, Maximum Price)

The client pays b̄i if we deliver enough events to put the unitary price
below P̄i while keeping our profit margin below M̄i .

max
x∈X

∑
i∈[n]

b̄i − Ci (x) s.t.
∧
i∈[n]

b̄i
Ei (x)

≤ P̄i ∧ 1 ≤ b̄i
Ci (x)

≤ 1 + M̄i

Since treatment w.r.t. duality is analogous to MBFP’s we won’t dwell on
FBMP here. We refer to our paper for further details.
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Bidding Problems

Other bidding problems

In practice, we deal with a handful of different bidding problems/contracts.

Despite having rather different constraints, all problems show the following
features:

Their goal is expected profit. This way we can aggregate different
problems company-wise in a way that makes economical sense.

Goals and constraints are sums of strictly per-auction (i.e. unitary)
terms.

Furthermore, each constraint is linear in expected unitary costs
wk(b) · ck(b) and expected unitary events wk(b) · ek(j , a).
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Continuous Relaxation Solution

Section 2

Continuous Relaxation Solution
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Continuous Relaxation Solution

Knapsack Problem

Now translate MBFP with a single campaign i according to:

The campaign is a knapsack.

Its budget is the weight capacity of the knapsack W̄ = B̄i = B̄.

Each auction is an item to pack with:

Weight equal to its cost ωk = piwk(b)ek(i , a) = pwkek .
Value equal to its profit νk = wk(b)(piek(i , a)− ck(b)) = wk(pek − ck).

A strategy can then be represented as a {0, 1}m vector indicating which
items will be packed into the knapsack.

We have reformulated a simplified version of MBFP as an instance of the
0-1 knapsack problem ⇒ MBFP is hard.
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Continuous Relaxation Solution

Single Campaign

 Here’s an idea: sort the items in decreasing “specific value” (i.e. value
per unit of weight) ρk = νk/ωk order.

� But, in general, there will be a next-to-be-packed item with ρ∗ that
won’t fit the sack, leaving wasted space.

� BUT, if items were divisible, item ρ∗ could have been split to exactly fill
the sack.

That is a continuous relaxation solution due to Dantzig. It will be close to
our approximate solution in a huge market of tiny transactions.

5
4
3

21

Approximate (easy)

≤
5
4
3

21

Optimal (hard)

≤
5
4
3
21

Relaxed (unfeasible)
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Continuous Relaxation Solution

Multiple Campaigns

Consider any pair of campaigns i , j and an amount of infinitely divisible
auctions assigned to them in decreasing ρ-order so as to exhaust budgets.

Was auction k assigned to the right campaign? If so, a compensated
transference of fraction α shouldn’t increase expected net value:

ρ∗

+αωik

i

ρik

ρ∗i

−αωik +αωjk

−αωjk

j

ρjk

ρ∗j

So, assuming we can always extend our “buying frontier” a bit, we require
−αωik(ρik − ρ∗i ) + αωjk(ρjk − ρ∗j ) ≤ 0.
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Continuous Relaxation Solution

Bidding rule

From our previous analysis a bidding rule immediately follows:

Definition (ρ-rule)

Pick the campaign i with highest positive ωik(ρik − ρ∗i ) (if any) for some
bid b and ad a.

The “buying frontier” ρ∗ = ρ∗1, . . . , ρ
∗
n sorts of measure how far we go in

order to complete budgets.

The focus has shifted to finding an optimal buying frontier ρ∗opt that
complete all budgets when following the ρ-rule.
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Continuous Relaxation Solution

Not the end of the road

We actually implemented an algorithm that follows ρ-rule and daily
adjusts ρ∗ towards ρ∗opt .

Still we needed to:

Prove stronger optimality and convergence results.

Extend it to other contracts and identify general conditions that
enable that extension.

Support noisy and changing real-life market environments.

Support both first-price and second-price auctions.

For that we developed the more abstract framework that follows, which
contains the previous intuitive solution as a special case.
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Convex Relaxation Solution

Section 3

Convex Relaxation Solution

Carlos Pita (jampp.com) Optimal bidding August 5, 2019 16 / 27



Convex Relaxation Solution

Lagrangian

So take two! The Lagrangian of MBFP is:

L(x , θ∗) = f (x) + 〈θ∗, g(x)〉

=
∑
i∈[n]

p̄iEi (x)− Ci (x) + θ∗i (p̄iEi (x)− B̄i )

L(x , θ∗) is a sum over a large number of per-auction k terms:

uk(i , b, a) = wk(b)(p̄iek(i , a)− ck(b)) + θ∗i wk(b)p̄iek(i , a)

= wk(p̄iek − ck) + θ∗i wk p̄iek

� The additive structure implies that the contribution of each auction can
be computed without considering other auctions.
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Convex Relaxation Solution

Bidding Rule

Therefore, in order to maximize the Lagrangian, we just follow:

Definition (MBFP Rule)

Assign auction k to campaign i∗ with bid b∗ and ad a∗ such that
i∗, b∗, a∗ = arg maxi ,b,a uk(i , b, a) if and only if uk(i∗, b∗, a∗) > 0.

 Since
uk(i , b, a) = wk [(1 + θ∗i )p̄iek − ck ]

it’s clear that for 2nd price auctions b∗ = (1 + θ∗i )p̄iek .
(You might think of θ∗i ≤ 0 as a “pacing” parameter).

 The rule is seen to be equivalent to our previous ρ-rule:

uk = wk p̄iek

(
wk(p̄iek − ck)

wk p̄iek
+ θ∗i

)
=

θ∗i :=−ρik∗i
ωik(ρik − ρik∗

i
)
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Convex Relaxation Solution

Dual Problem

The previous rule compute the MBFP dual function q in θ∗:

Definition (MBFP Dual Function)

Given θ∗, the MBFP dual function q(θ∗) maximizes the Lagrangian
L(x , θ∗) over the set of strategies X , i.e. q(θ∗) = supx∈X L(x , θ∗). We call
a maximizer xopt(θ

∗).

We will see that by finding a θ∗opt that minimizes q we get an approximate
solution to MBFP (recall our equivalent open problem of finding ρ∗):

Definition (MBFP Dual Problem)

The MBFP dual problem consists in minimizing the dual function q(θ∗)
over the non-positive orthant, i.e. infθ∗≤~0 q(θ∗). We call a minimizer θ∗opt .
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Convex Relaxation Solution

Primal Problem

Now consider this primal function:

p(θ) = min
x |g(x)≤θ

−f (x) = − max
x |g(x)≤θ

f (x)

Customarily, we are rehashing our original
problem as a minimization one.

By varying θ we can tighten or relax the
constraints of our original problem.

p is clearly non-increasing in θ.

We want −p(~0) (but we content ourselves
with an approximation −p∗∗(~0)). 0

p

p(θ)

θ
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Convex Relaxation Solution

Fenchel Conjugate

We will be taking advantage of some known facts about the Fenchel (aka
convex) conjugate p∗ of p in what follows.

Recall that:

−p∗(θ∗) gives the intercept of the
supporting hyperplane of the epigraph
of p with slope θ∗.

Thus, p∗ can be seen as encoding an
alternative representation of p by
mapping slopes to intercepts.

If p is convex the encoding is “loseless”.

p

p(θ)

θ

−p∗(θ∗)

(1, θ∗)
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Convex Relaxation Solution

Subgradient Descent

It is relatively easy to show that p∗ = q, i.e. conjugate and dual functions
are the same.

� Now, it’s known that p∗:

Is convex (no matter whether p is also convex or not).

Has a subgradient g(xopt) at point θ∗.

Recall that, given θ∗, we compute the optimal strategy xopt by picking
arg maxi ,b,a uk(i , b, a) for each auction k.

� This implies we can solve the dual problem using a simple subgradient
descent method. With constant learning rate αt = α this converges
logarithmically near the optimum.

Carlos Pita (jampp.com) Optimal bidding August 5, 2019 22 / 27



Convex Relaxation Solution

Small Duality Gap

It’s also quite easy to show that by solving our dual we get −p∗∗(~0).

� But it’s also known that conjugating again recovers the convex closure
of p (hence the name ”convex relaxation”):

If p is convex the process is “loseless”,
i.e. p∗∗ = p.

But if p is “almost convex” we might
still be fine, i.e. p∗∗(~0) ≈ p(~0).

duality gap
p∗∗(~0)

p(~0)

p

p∗∗ = cl p

� We have reasons to believe −p (p) is “almost concave (convex)”:

Constrains limit the sum of many small, quite substitutable, auctions.

While relaxing θ, the optimizer will pick better opportunities first,
yielding mostly decreasing marginal returns.
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Practical Algorithm

Section 4

Practical Algorithm
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Practical Algorithm

Iterative Algorithm

Our previous analysis suggests an iterative algorithm. Each period:

Given current multipliers θ∗t , run the optimal strategy xt = xopt(θ
∗
t ).

Then descend along −g(xt) to get new multipliers θ∗t+1(xt).

We still need some kind of stationarity/ergodicity assumption:

We consider a daily period to be a reasonable compromise, since most
significative seasonality happens within a day and not between days.

By keeping the learning rate α small but above some threshold, the
optimizer remains adaptive to longer seasonal cycles and trends, and
also reactive to structural breaks.
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Practical Algorithm

Noisy Environment

 We can use a simple stochastic subgradient descent algorithm that only
relies on having unbiased estimates of the subgradient to logarithmically
converge in expectation near the optimum with constant learning rate
αt = α.

� But there is a catch: when daily computing g(xt) we only have access
to per-campaign effective cost and event aggregates for the day, that is
realizations instead of the expectations that g(xt) depends on.

� Nevertheless, since constraints g are ultimately linear in wk · ck and
wk · ek we conclude that these realizations can be used to compute an
unbiased estimate of g(xt) (details in paper).
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Practical Algorithm

Current Work

Currently at an advanced stage in the implementation and A/B testing of
Gloval (as in Capt. Gloval from Robotech), an optimizer module for our
bidder based on the previous analysis.

Over the next months, we plan to publish a follow-up paper reporting:

Bounds for the duality gap.

Empirically calibrated values for the learning rate and other
hyper-parameters.

Overall economical performance of the algorithm.

Carlos Pita (jampp.com) Optimal bidding August 5, 2019 27 / 27


	Bidding Problems
	Continuous Relaxation Solution
	Convex Relaxation Solution
	Practical Algorithm

