Optimal bidding A dual approach

Carlos Pita

jampp.com

August 5, 2019

Carlos Pita (jampp.com)

Optimal bidding

August 5, 2019 1/27

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Outline

- 2 Continuous Relaxation Solution
- Convex Relaxation Solution
- Practical Algorithm

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Section 1

Bidding Problems

3

jampp

Introduction

A typical DSP's day:

- Thousands of advertising *campaigns*, on behalf of...
- Hundreds of *clients* (advertisers), served by bidding at...
- Billions of *auctions* in real-time *markets*, in order to...
- Purchase conversions (events of interest) for the clients.

But:

- An auction is usually an opportunity for more than one client.
- Each client sets contractual constraints on volume, costs, etc.
- So, in order to decide when and how much to bid for which client:
 - Not only expected profits must be compared but also...
 - Shadow prices of each constraint set.

Market and Campaigns

Definition (Campaign)

We have *n* advertising campaigns $(i, j \in [n] = \{1, \dots, n\})$ competing for the *RTB market*.

Definition (Market)

The RTB market consists of *m* auctions ($k \in [m] = \{1, \dots, m\}$), each one characterized by:

- $w_k(b)$: win rate, the probability of winning by bidding b.
- $c_k(b)$: the expected cost of winning by bidding b.
- $e_k(i, a)$: event rate, the probability of converting given that we won and displayed *ad a* for campaign *i*.

イロト イポト イヨト イヨト 二日

Strategies

Definition (Bidding strategy)

A bidding strategy $x: [m] \to [n] \times [\overline{a}] \times (0, \overline{b}]$ is a mapping from auctions to vectors (i, a, b), where *i* is a campaign, *a* is an ad and *b* is a bid.

Aggregated by campaign i, strategy x produces (expected) conversions by incurring (expected) costs:

Definition (Aggregate functions)

Given a strategy x and a campaign *i*:

C_i(x) = ∑_{(k,(j,a,b))∈x|j=i} w_k(b) · c_k(b) is the aggregate cost function.
E_i(x) = ∑_{(k,(j,a,b))∈x|j=i} w_k(b) · e_k(j, a) is the aggregate event function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

MBFP Problem: Maximum Budget, Fixed Price

This is the problem we will be mostly dealing with today:

Definition (MBFP Problem)

The client sets an upper bound \overline{B}_i to the amount of money to spend (the *campaign budget*) and pays *price* \overline{p}_i for each conversion.

$$\max_{x \in X} \sum_{i \in [n]} \bar{p}_i E_i(x) - C_i(x) \quad \text{s.t.} \quad \bigwedge_{i \in [n]} \bar{p}_i E_i(x) \leq \bar{B}_i$$

or, equivalently $\max_{x \in X \mid g(x) \le \vec{0}} f(x)$ where:

•
$$f: X \to \mathbb{R} \mid f(x) = \sum_{i \in [n]} \bar{p}_i E_i(x) - C_i(x).$$

• $g: X \to \mathbb{R}^n \mid g(x) = (\bar{p}_1 E_1(x) - \bar{B}_1, \dots, \bar{p}_n E_n(x) - \bar{B}_n).$

イロト イポト イヨト イヨト

FBMP: Fixed Budget, Maximum Price

This is another, somewhat harder, problem:

Definition (FBMP: Fixed Budget, Maximum Price)

The client pays \bar{b}_i if we deliver enough events to put the unitary price below \bar{P}_i while keeping our profit margin below \bar{M}_i .

$$\max_{x\in X}\sum_{i\in [n]}\bar{b}_i-C_i(x) \quad \text{s.t.} \ \bigwedge_{i\in [n]}\frac{\bar{b}_i}{E_i(x)}\leq \bar{P}_i \ \land \ 1\leq \frac{\bar{b}_i}{C_i(x)}\leq 1+\bar{M}_i.$$

Since treatment *w.r.t.* duality is analogous to MBFP's we won't dwell on FBMP here. We refer to our paper for further details.

< □ > < □ > < □ > < □ > < □ > < □ >

Other bidding problems

In practice, we deal with a handful of different bidding problems/contracts.

Despite having rather different constraints, all problems show the following features:

- Their goal is expected profit. This way we can aggregate different problems company-wise in a way that makes economical sense.
- Goals and constraints are sums of strictly per-auction (*i.e.* unitary) terms.
- Furthermore, each constraint is linear in expected unitary costs $w_k(b) \cdot c_k(b)$ and expected unitary events $w_k(b) \cdot e_k(j, a)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Section 2

Continuous Relaxation Solution

3

A D N A B N A B N A B N

Knapsack Problem

Now translate MBFP with a single campaign i according to:

- The campaign is a *knapsack*.
- Its budget is the *weight capacity* of the knapsack $\overline{W} = \overline{B}_i = \overline{B}$.
- Each auction is an *item* to pack with:
 - Weight equal to its cost $\omega_k = p_i w_k(b) e_k(i, a) = p w_k e_k$.
 - Value equal to its profit $\nu_k = w_k(b)(p_ie_k(i,a) c_k(b)) = w_k(pe_k c_k)$.

A strategy can then be represented as a $\{0,1\}^m$ vector indicating which items will be packed into the knapsack.

We have reformulated a simplified version of MBFP as an instance of the *0-1 knapsack problem* \Rightarrow MBFP is hard.

Single Campaign

 \mathbf{Q} Here's an idea: sort the items in decreasing "specific value" (*i.e.* value per unit of weight) $\rho_k = \nu_k / \omega_k$ order.

O But, in general, there will be a next-to-be-packed item with ρ^* that won't fit the sack, leaving wasted space.

O BUT, if items were divisible, item ρ^* could have been split to exactly fill the sack.

That is a *continuous relaxation* solution due to Dantzig. It will be close to our approximate solution in a huge market of tiny transactions.

jampp

Multiple Campaigns

Consider any pair of campaigns i, j and an amount of infinitely divisible auctions assigned to them in decreasing ρ -order so as to exhaust budgets.

Was auction k assigned to the right campaign? If so, a compensated transference of fraction α shouldn't increase expected net value:

So, assuming we can always extend our "buying frontier" a bit, we require $-\alpha \omega_{ik}(\rho_{ik} - \rho_i^*) + \alpha \omega_{jk}(\rho_{jk} - \rho_j^*) \leq 0.$

From our previous analysis a bidding rule immediately follows:

Definition (ρ -rule)

Pick the campaign *i* with highest positive $\omega_{ik}(\rho_{ik} - \rho_i^*)$ (if any) for some bid *b* and ad *a*.

The "buying frontier" $\rho^* = \rho_1^*, \ldots, \rho_n^*$ sorts of measure how far we go in order to complete budgets.

The focus has shifted to finding an optimal buying frontier ρ_{opt}^* that complete all budgets when following the ρ -rule.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Not the end of the road

We actually implemented an algorithm that follows $\rho\text{-rule}$ and daily adjusts ρ^* towards $\rho^*_{opt}.$

Still we needed to:

- Prove stronger optimality and convergence results.
- Extend it to other contracts and identify general conditions that enable that extension.
- Support noisy and changing real-life market environments.
- Support both first-price and second-price auctions.

For that we developed the more abstract framework that follows, which contains the previous intuitive solution as a special case.

< □ > < □ > < □ > < □ > < □ > < □ >

Section 3

Convex Relaxation Solution

3

A D N A B N A B N A B N

Lagrangian

So take two! The Lagrangian of MBFP is:

$$egin{aligned} \mathcal{L}(x, heta^*) &= f(x) + \langle heta^*, g(x)
angle \ &= \sum_{i \in [n]} ar{p}_i E_i(x) - C_i(x) + heta^*_i (ar{p}_i E_i(x) - ar{B}_i) \end{aligned}$$

 $\mathcal{L}(x, \theta^*)$ is a sum over a large number of per-auction k terms:

$$egin{aligned} &u_k(i,b,a)=w_k(b)(ar{p}_ie_k(i,a)-c_k(b))+ heta_i^*w_k(b)ar{p}_ie_k(i,a)\ &=w_k(ar{p}_ie_k-c_k)+ heta_i^*w_kar{p}_ie_k \end{aligned}$$

③ The additive structure implies that the contribution of each auction can be computed without considering other auctions.

Carlos Pita	(jampp.com)
-------------	-------------

< □ > < □ > < □ > < □ > < □ > < □ >

Bidding Rule

Therefore, in order to maximize the Lagrangian, we just follow:

Definition (MBFP Rule)

Assign auction k to campaign i^* with bid b^* and ad a^* such that $i^*, b^*, a^* = \arg \max_{i,b,a} u_k(i, b, a)$ if and only if $u_k(i^*, b^*, a^*) > 0$.

Since

$$u_k(i, b, a) = w_k[(1 + \theta_i^*)\bar{p}_i e_k - c_k]$$

it's clear that for 2nd price auctions $b^* = (1 + \theta_i^*)\bar{p}_i e_k$. (You might think of $\theta_i^* \leq 0$ as a "pacing" parameter).

 $\$ The rule is seen to be equivalent to our previous ho-rule:

$$u_k = w_k \bar{p}_i e_k \left(\frac{w_k (\bar{p}_i e_k - c_k)}{w_k \bar{p}_i e_k} + \theta_i^* \right) \underset{\theta_i^* := -\rho_{ik_i^*}}{=} \omega_{ik} (\rho_{ik} - \rho_{ik_i^*})$$

Dual Problem

The previous rule compute the MBFP dual function q in θ^* :

Definition (MBFP Dual Function)

Given θ^* , the MBFP dual function $q(\theta^*)$ maximizes the Lagrangian $\mathcal{L}(x, \theta^*)$ over the set of strategies X, *i.e.* $q(\theta^*) = \sup_{x \in X} \mathcal{L}(x, \theta^*)$. We call a maximizer $x_{opt}(\theta^*)$.

We will see that by finding a θ_{opt}^* that minimizes q we get an approximate solution to MBFP (recall our equivalent open problem of finding ρ^*):

Definition (MBFP Dual Problem)

The MBFP dual problem consists in minimizing the dual function $q(\theta^*)$ over the non-positive orthant, *i.e.* $\inf_{\theta^* < \vec{0}} q(\theta^*)$. We call a minimizer θ^*_{opt} .

(日) (周) (三) (三) (三) (○) (○)

Primal Problem

Now consider this primal function:

$$p(\theta) = \min_{x|g(x) \le \theta} -f(x) = -\max_{x|g(x) \le \theta} f(x)$$

- Customarily, we are rehashing our original problem as a minimization one.
- By varying θ we can tighten or relax the constraints of our original problem.
- p is clearly non-increasing in θ .
- We want $-p(\vec{0})$ (but we content ourselves with an approximation $-p^{**}(\vec{0})$).

Fenchel Conjugate

We will be taking advantage of some known facts about the Fenchel (*aka* convex) conjugate p^* of p in what follows.

Recall that:

- -p*(θ*) gives the intercept of the supporting hyperplane of the epigraph of p with slope θ*.
- Thus, *p*^{*} can be seen as encoding an alternative representation of *p* by mapping slopes to intercepts.
- If p is convex the encoding is "loseless".

Subgradient Descent

It is relatively easy to show that $p^* = q$, *i.e.* conjugate and dual functions are the same.

- **()** Now, it's known that p^* :
 - Is convex (no matter whether *p* is also convex or not).
 - Has a subgradient $g(x_{opt})$ at point θ^* .

Recall that, given θ^* , we compute the optimal strategy x_{opt} by picking arg max_{*i*,*b*,*a*} $u_k(i, b, a)$ for each auction *k*.

^(c) This implies we can solve the dual problem using a simple subgradient descent method. With constant learning rate $\alpha_t = \alpha$ this converges logarithmically near the optimum.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Small Duality Gap

It's also quite easy to show that by solving our dual we get $-p^{**}(\vec{0})$.

① But it's also known that conjugating again recovers the convex closure of *p* (hence the name "convex relaxation"):

- If p is convex the process is "loseless",
 i.e. p^{**} = p.
- But if p is "almost convex" we might still be fine, *i.e.* $p^{**}(\vec{0}) \approx p(\vec{0})$.

< □ > < □ > < □ > < □ > < □ > < □ >

O We have reasons to believe -p(p) is "almost concave (convex)":

- Constrains limit the sum of many small, quite substitutable, auctions.
- While relaxing θ , the optimizer will pick better opportunities first, yielding mostly decreasing marginal returns.

3

Section 4

Practical Algorithm

2

A D N A B N A B N A B N

Iterative Algorithm

Our previous analysis suggests an iterative algorithm. Each period:

- Given current multipliers θ_t^* , run the optimal strategy $x_t = x_{opt}(\theta_t^*)$.
- Then descend along $-g(x_t)$ to get new multipliers $\theta_{t+1}^*(x_t)$.

We still need some kind of stationarity/ergodicity assumption:

- We consider a daily period to be a reasonable compromise, since most significative seasonality happens within a day and not between days.
- By keeping the learning rate α small but above some threshold, the optimizer remains adaptive to longer seasonal cycles and trends, and also reactive to structural breaks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Noisy Environment

 \heartsuit We can use a simple *stochastic* subgradient descent algorithm that only relies on having unbiased estimates of the subgradient to logarithmically converge *in expectation* near the optimum with constant learning rate $\alpha_t = \alpha$.

B But there is a catch: when daily computing $g(x_t)$ we only have access to per-campaign effective cost and event aggregates for the day, that is *realizations* instead of the *expectations* that $g(x_t)$ depends on.

③ Nevertheless, since constraints g are ultimately linear in $w_k \cdot c_k$ and $w_k \cdot e_k$ we conclude that these realizations can be used to compute an *unbiased estimate* of $g(x_t)$ (details in paper).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Current Work

Currently at an advanced stage in the implementation and A/B testing of Gloval (as in Capt. Gloval from Robotech), an optimizer module for our bidder based on the previous analysis.

Over the next months, we plan to publish a follow-up paper reporting:

- Bounds for the duality gap.
- Empirically calibrated values for the learning rate and other hyper-parameters.
- Overall economical performance of the algorithm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >