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ABSTRACT
We apply and extend recent results in feasible arm identi󰎓cation
to quickly 󰎓nd a small set of bidding strategies that can simulta-
neously meet multiple business objectives. We formulate this as
an any-m feasible arm identi󰎓cation problem, a pure exploration
multi-armed bandit problem where each arm is a D-dimensional
distribution represented by a mean vector. The goal is to identify
m feasible arms, meaning they satisfy a set of multiple criteria, rep-
resented by a polyhedron P “ tx : Ax ď bu Ă RD . This problem
has many applications beyond advertising to online A/B testing,
crowdsourcing, clinical trials, and hyperparameter optimization.
We propose a new formal algorithm and explore a heuristic im-
provement through synthetic and real-world datasets.
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1 INTRODUCTION
Multi-armed bandits have a long history starting from [16], inwhich
an agent seeks tomaximize an objective function by selecting arms
which represents a design parameter (in A/B testing), a dosage for
a drug, or a candidate to select for a task (crowdsourcing). Maxi-
mizing the objective function requires an agent to continually bal-
ance the value of exploitation by simply picking the best arm so
far against the cost of exploration–trying new arms. Known as the
explore-exploit tradeo󰎎, a multi-armed bandit expects to achieve
better objective values by gradually exploiting more and exploring
less.

A pure exploration multi-armed bandit addresses the explore-
exploit tradeo󰎎 sequentially. Rather thanmaximizing the objective
fully, an agent seeks to explore arms for awhile and then stopwhen
it 󰎓nds an arm or a subset of arms nearly optimal as described in
[11, 15]. This is determined by setting a 󰎓xed termination crite-
ria in advance. Upon reaching the exploration termination point,
the agent could focus fully on exploitation [11]. Pure exploration
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multi-armed bandits follow more closely the common experimen-
tation practice of running an initial trial of many options and then
scaling up the best one or a few options.

Pure exploration bandits tend to follow two overall regimes for
selecting the termination condition. In the 󰎓xed-con󰎓dence setting
[1, 3, 10, 12, 14], a con󰎓dence threshold bound to the objective is
selected in advance. These methods tend to consume considerable
exploration rounds to obtain minute gains in the objective func-
tion. In modern online A/B testing environments where experi-
ments cost time and money, it can be impractical to run the experi-
ment long enough to reach a 󰎓xed con󰎓dence threshold even with
guarantees on the threshold [10]. Having a clear time- or value-
based budget re󰎐ects the practical reality that experiments are al-
ways resource-bound. We consider here the 󰎓xed-budget setting
[13], where the exploration budget is determined in advance and
the best solution at that time is used.

Enumerating all arms which meet the criteria, though possi-
ble, is unnecessarily expensive in terms of number of exploration
rounds [3, 13]. In many applications, we seek only a 󰎓xed number,
say m, arms which meet the criteria, i.e., are feasible. This sim-
pli󰎓cation, as we demonstrate, leads to as much as a 10X reduc-
tion in error probability and consequently reduces the number of
exploration rounds needed. We 󰎓nd that this setting is quite com-
mon, for example, in online advertising where hundreds of param-
eters combinations can be evaluated on a small amount of tra󰎏c to
quickly weed out those which we know do not meet all the criteria.
Then, a longer test can evaluate a few that do meet the criteria.

In online advertising, bandit algorithms have been used in sev-
eral areas, such as bidding behavior and mechanism design [6, 8,
20]. Bidding strategies bene󰎓t from the exploration inherent to
bandit algorithms because bidders only receive feedbackwhen they
win an auction. However, long-running exploration introduces risk,
so a pure-exploration bandit with a 󰎓xed budget o󰎎ers a good bal-
ance between the need to explore and the long-term risk.

We introduce any-m feasible arm identi󰎓cation, which identi󰎓es
m arms that simultaneously satisfy multiple criteria. We consider
the setting where each arm, i , has a multi-dimensional distribution
represented by a mean vector µi and the criteria are described by
a multi-dimensional polyhedron, P . A feasible arm is one whose
mean lies within the polyhedron, µi P P . We propose a new algo-
rithm MD-APT-ANY for the 󰎓xed budget setting, prove an upper
bound, and, 󰎓nally, demonstrate its performance in experiments
on several public datasets.

2 RELATEDWORK
To our knowledge, ours is the 󰎓rst study of the any-m feasible arm
identi󰎓cation problem under a 󰎓xed budget setting.

There has been a recent stream of research on the problem of
best arm identi󰎓cation, [2, 4, 5, 9, 15]. In this setting, we want to
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󰎓nd the best of k feasible arms. Most work assumes one dimen-
sional arms and is not applicable to our setting ofmulti-dimensional
arms. Recently, [1] considered the problem of Pareto front identi-
󰎓cation for multi-dimensional arms. Their work di󰎎ers from the
current paper since any-m feasible arm identi󰎓cation and Pareto
front identi󰎓cation are quite di󰎎erent and our work considers the
󰎓xed budget setting versus 󰎓xed con󰎓dence in [1].

Best arm identi󰎓cation assumes that all arms are already feasi-
ble. Feasible arm identi󰎓cation considers the large problem to 󰎓nd
the feasible arms in the 󰎓rst place, suggesting a simple two-step
approach of 󰎓nding the feasible arms and then 󰎓nd the best. Chen
et al. [3] consider a very general problem of 󰎓nding the best set of
arms, of which any-m feasible arm identi󰎓cation problem is a re-
lated subproblem which has two major di󰎎erences. First, they and
their extensions such as [12] consider the 󰎓xed con󰎓dence setting
whereas the current paper deals with the 󰎓xed budget setting. Sec-
ond, their proposed algorithm (see Algorithm 7 in [3]) is impracti-
cal since it begins by uniformly sampling the arms until the con-
󰎓dence bound is achieved (based on con󰎓dence level δ “ 0.01) of
the arms imply that a particular set ofm arms have means belong-
ing to the polyhedron. On the other hand, we propose practical,
fully adaptive algorithms.

Recently, [14] proposed the thresholding bandit problem, inwhich
there are K scalar-valued distributions and a threshold τ and the
goal is to determine for each arm i , whether µi ě τ . This problem
was generalized in [13] so that there are K vector-valued distribu-
tions and a polyhedron P and proposed algorithms MD-APT and
MD-SAR to determine for each arm i , whether µi P P . Under a
󰎓xed -budget scheme, both MD-APT and MD-SAR spend consid-
erable budget on enumerating all feasible arms. In contrast, we
demonstrate that there is considerable gain to emitting only m,
any-m feasible arms rather than all of them.

The any-m feasible arm identi󰎓cation problem under a 󰎓xed-
budget setting is more practically relevant than traditional feasi-
ble arm identi󰎓cation since in many applications, it is su󰎏cient to
󰎓nd a certain number of arms that do satisfy the criteria rather
than having to determine whether each and every arm satis󰎓es
them. It is unnecessary to determine for the other arms whether
they belong to the polyhedron. Furthermore, algorithms developed
for traditional feasible arm identi󰎓cation problem waste much of
their sampling e󰎎ort to arms with arms near the boundary. This
leads to poor performance when used for the any-m feasible arm
identi󰎓cation problem.

3 SETUP
In this section, we formulate the any-m feasible arm identi󰎓cation
problem. To begin, we de󰎓ne some notation. For all n P N, de󰎓ne
rns “ t1, . . . ,nu. For anyA Ă RD andx P RD , de󰎓ne distpx ,Aq “
inf󱗌PA }x ´󱗌}2. Let BA denote the boundary ofA, i.e., BA “ sAzA˝

where sA denotes the closure ofA andA˝ denotes the interior ofA.
Let 1t¨u denote the indicator function and 1 “ p1, . . . , 1qT P RD .
De󰎓ne SD´1 “ tx P RD : }x}2 “ 1u. Let U be a 󰎓nite set and f
be a scalar-valued function with domain containing U , and de󰎓ne

maxplq
xPU f pxq –

"

maxxPU |t󱗌PU :f p󱗌qěf pxqu|ěl´1 f pxq |U | ě l

´8 otherwise

In words, maxplq
xPU f pxq is the value of the lth largest x P U under

f p¨q and if |U | ă l , then it is ´8.
Suppose we are given K stochastic arms. When the ith arm is

pulled, a realization is drawn i.i.d. from a D-dimensional distribu-
tion νi . Denote µi “ EX „νiX . We assume that the agent is given
a polyhedron P “ tx : Ax ď bu where A P RMˆD such that

A “
`

at1, . . . ,a
t
M

˘T

andb P RM . By dividing each constraint j by
›

›aj
›

›

2, we can assume
without loss of generality that

›

›aj
›

›

2 “ 1 for all j P rMs. For sim-
plicity, we assume that P has positive volume and that diampPq ď
2B.

In the 󰎓xed budget setting, the game is as follows: there are T
rounds and at each round t , the agent chooses an arm It P rKs and
observes a realizationXt „ νIt . The goal in the game is to identify
m arms with means µi P P . In the degenerate case where there
are fewer thanm arms in the polyhedron, our algorithm identi󰎓es
at least |ti P rKs : µi P Pu| arms with means µi that satisfy
distpµi , Pq ď 2ϵ , where ϵ ą 0 is a speci󰎓ed tolerance.
Our analysis assumes that each νi is a multi-dimensional sub-

Gaussian distribution, whose de󰎓nition we repeat here (see [19]
for more details). Let X be a scalar random variable. We say that X
is R-sub-Gaussian if E exppX

2

R2 q ď 2. The sub-Gaussian norm of X
is the smallest R that satis󰎓es the above requirement, as follows:

}X}ψ2
“ inftR ą 0 : E expp

X 2

R2
q ď 2u

A random vector X P RD is sub-Gaussian if X ta is sub-Gaussian
for all a P RD . The sub-Gaussian norm of X is de󰎓ned as

}X}ψ2
“ sup

aPSD´1

›

›X ta
›

›

ψ2
.

We say that a random vector X is R-sub-Gaussian if }X}ψ2
ď R.

Henceforth, we assume that ν1, . . . ,νK are R-sub-Gaussian. See
[18, 19] for further details on sub-Gaussian distributions.

4 ALGORITHM
In this section, we present our algorithm MD-APT-ANY. First, we
introduce some notation. Let It denote the index of the arm chosen
at time t and Ti ptq “

řt´1
s“1 1tIs “ iu denote the number of pulls

of arm i at round t . Let Xi, j,t denote the t th realization of the jth
coordinate of νi and pµi,t denote the estimate of µi after t samples,
i.e., pµi,t “ ppµi,1,t , . . . , pµi,D,t qt where pµi, j,t “ 1

t
řt
s“1 Xi, j,s . De-

󰎓ne the distance to the polyhedron P of arm i at time t , p∆
pϵq
i,t , as

follows:

p∆
pϵq
i,t “

"

minjPrMs bj ´ atj pµi,t ` ϵ : pµi,t P P

distppµi,t , Pq ` ϵ : pµi,t R P

where p∆
pϵq
i,t is the estimator of the margin between feasible and

infeasible region, or the distance to the closest side if the mean is
within P and the distance to the closest point inside P if the mean
is outside P .
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Background.Algorithm 1, introduced as MD-APT by [13] gen-
eralizes APT from [14] to multi-dimensional distributions. MD-
APT is a nearly optimal algorithm for feasible arm identi󰎓cation;
MD-APT(ϵ) determines correctly for each arm i forwhich distpµi , BPq ě
ϵ , whether µi P P , and its probability of error decays as expp´c T

Hϵ
q

where Hϵ “
ř

iPrK sr distpµi , BPq `ϵs´2. Its key idea is to sample
each arm proportionally to r distpµi , Pq ` ϵs´2. The main draw-
back of MD-APT for any-m feasible arm identi󰎓cation is that it
wastes budget sampling arms near the boundary to 󰎓nd all feasi-
ble arms rather than 󰎓nding onlym feasible arms.

The Algorithm. We propose MD-APT-ANY, shown in Algo-
rithm 2, for any-m feasible arm identi󰎓cation. MD-APT-ANY takes
as an input a tolerance parameter ϵ ą 0. It divides the budget T
into

Q

log2pBϵ q
U

rounds. Each round r consists of two main steps.

First, it runs MD-APTpϵr q for T
rlog2pBqs iterations with a decreas-

ing tolerance for feasibility, ϵr – B
2r . Next, it performs a test to

determine whether there are at leastm arms close enough to the
boundary. Speci󰎓cally, if there arem arms such that pµi,Ti ptr`1q P
P and distppµi,Ti ptr`1q, BPq ě ϵr´1, then it concludes that these
arms belong to P and returnsm of them. We note that in practice
once the condition in line 6 is met, one could run MD-APTp B

2r q
for the remaining number of iterations. Finally, if at the end of
round

Q

log2pBϵ q
U

, the condition in line 6 is still not satis󰎓ed, the

algorithm returns a set of arms pS such that each i P pS satis󰎓es
distppµi,Ti pT`1q, Pq ď ϵ and |pS| has size as follows:

min
´

m, |ti P rKs : distppµi,Ti pT`1q, Pq ď ϵu|
¯

Algorithm 1 MD-APT: Multi-dimensional Anytime Parameter-
Free Thresholding algorithm [13]
1: Input: K arms, polyhedron P , tolerance ϵ , budget T
2: for t “ 1, . . . ,T do
3: if t ď K then
4: Sample Xt „ νt .
5: else
6: Choose It “ arg mini p∆

pϵq
i,Ti ptq

a

Ti ptq. Sample Xt „ νIt .

Next, we give an upper bound for the performance of the algo-
rithm. De󰎓ne Γm as the distance of themth arm furthest from the
boundary, as:

Γm “ max
ˆ

0,
pmq
max
i :µiPP

distpµi , BPq

˙

,

H
pϵq
m “

ÿ

iPrK s

r distpµi , BPq ` maxpΓm , ϵqs´2 .

where H pϵq
m is a worst-case proximity to the feasibility boundary

for all arms. The following theorem bounds the number of explo-
ration rounds required to either the output them arms in the poly-
hedron or them arms within a distance of ϵ .

Algorithm 2MD-APT-ANY
1: Input:K arms, polyhedron P , tolerance ϵ , budgetT ,m number

of desired arms
2: De󰎓ne ϵr – B

2r and tr “ r T
rlog2p Bϵ qs

3: for r “ 1, . . . ,
Q

log2pBϵ q
U

do

4: Run MD-APTpϵr q for T
rlog2pBqs iterations.

5: pSr “ ti P rKs : pµi,Ti ptr`1q P
P and distppµi,Ti ptr`1q, BPq ě ϵr´1u

6: if |pSr | ě m then
7: pS – arg max

ZĂ pSr , |Z |“m

ř

iPZ distppµi,Ti ptr`1q, BPq

8: Return pS
9: Pick any pS Ă ti P rKs : distppµi,Ti pT`1q, Pq ď ϵu such that

|pS| “ min
´

m, |ti P rKs : distppµi,Ti pT`1q, Pq ď ϵu|
¯

.

10: Return pS

T󰝕󰝒󰝜󰝟󰝒󰝚 1. Let ϵ ą 0. Suppose that T ě 2K
Q

log2pBϵ q
U

. Then
for some universal constant c ą 0, with probability at least

1 ´ c log2

ˆ

B

ϵ

˙

logpT qK5D exp

˜

´T

2592 log2pBϵ qHmR2

¸

,

(1) if ϵ ă Γm
2 , MD-APT-ANY(ϵ) outputs pS such that |pS| “ m and

pS Ă ti P rKs : µi P Pu;
(2) otherwise, MD-APT-ANY(ϵ) outputs pS such that

min p|ti P rKs : µi P Pu| ,mq ď |pS| ď m

@i P pS : distpµi , Pq ď 2ϵ

A few remarks are in order. First, it is possible to change MD-
APT-ANY so that if the test in line 6 is never satis󰎓ed, then it sim-
ply concludes that there are not m arms with distpµi , Pc q ě 2ϵ .
Then, the proof of Theorem 1 (omitted due to space restrictions)
implies that this variant of MD-APT-ANY would be correct with
the probability given in Theorem 1. Second, there is a tradeo󰎎 in
how to select ϵ . On the one hand, the smaller ϵ is, the larger the
probability of error via the term log2pBϵ q. But, on the other hand,
the smaller ϵ is, the more reasonable it is to believe that ϵ ă Γm

2
and if Γm

2 ą ϵ , MD-APT-ANY 󰎓nds arms closer to P .
Finally, whereas the probability of error of MD-APT decays as

exp
´

´c TH

¯

, the probability of error of MD-APT-ANY decays as

exp
ˆ

´T
log2p Bϵ qHm

˙

. Although there appears to be some looseness

in our algorithm with the term log2
´

B
ϵ

¯

, it is usually dominated
by the di󰎎erence between H and Hm . Indeed, H can be arbitrarily
larger than Hm . Intuitively, we can think of Hm as limiting how
far past the boundary we need to go to 󰎓nd the m feasible arms,
rather than going all the way across the boundary H .

Intuition for MD-APT-ANY. MD-APT-ANY is based on two
main observations. First, if Γm were known, then one could run
MD-APT( Γm2 ) forT iterations, after which with probability at least
(ignoring lower order terms) 1 ´ expp´ T

Hm
q, the following two
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events occur: 1) any feasible arm whose distance from the bound-
ary of P is at least as large as Γm (i.e., distpµi , Pc q ě Γm ) would
satisfy Apµi,Ti pT`1q ď b ´γm1 where γm is a period-arm distance
to the boundary; and 2) any infeasible arm is not too far away
from the complement of the boundary Pc or, more speci󰎓cally,
Apµi,Ti pT`1q ≰ b´γm1. Thus, MD-APT( Γm2 ) avoids sampling arms
close to the boundary too much and still allows for distinguishing
m arms in P .

Yet, Γm is not known in practice, so it is not possible to run MD-
APT as is. The second observation is that we can overcome our
lack of knowledge of Γm by applying the principle of optimism
in the face of uncertainty with respect to Γm . Speci󰎓cally, since
Γm P

”

B
2r`1 ,

B
2r

¯

for some r P N, if we then run MD-APT( B2r ) for

T iterations for increasing r , then for r “
Q

log2
´

2B
Γm

¯U

, we have
that

B

2r
P

„

Γm
2
,
Γm
4

ȷ

so that the observation concerning MD-APT( Γm2 ) in the previous
paragraph applies only T logp 2B

Γm
q total iterations have passed. Of

course, since we are concerned with the 󰎓xed budget setting here
where onlyT rounds are permitted, we apply this idea by incorpo-
rating a tolerance ϵ into MD-APT-ANY.

Comparison with MD-APT. Consider the example m “ 1,
µ1 “ .5 ` cϵ, µ2:100 “ .5 ´ ϵ and P “ tx P R : x ě .5u, where
c is a positive constant. Running MD-APT alone simulates a static
allocation algorithm that knows the gaps distpµi , BPq. This algo-
rithm would sample the ith arm T

distpµi ,BPq2H times. Thus, this

algorithm would pull arm 1 T
c2pK´1q`1 times. Thus, by letting ϵ

go to 0 and c to 8, we have that arm 1 would be pulled T
Kd times

for any positive constant d . More formally, it can be shown that
the probability of error is on the order of expp´ T

H q.

5 EXPERIMENTS
We conduct experiments on a public real-time bidding dataset and
several synthetic and real-world datasets. We compare our pro-
posedMD-APT-ANY against three state of the art algorithms: MD-
APT, MD-SAR, and uniform allocation (UA).

Each experiment measures the probability of an error after 󰎓xed
budgetT rounds of exploration. The budget is assumed to be a 󰎓xed
input, but for the experiments we choose T to be on the same or-
der ofHm . The error probability measures how often the algorithm
pulls an infeasible arm. It does not depend on the number of feasi-
ble arms required,m.

5.1 Bidding Strategies
We cast bidding strategy selection as a feasible arm identi󰎓cation
in which the arms are not the bids themselves but rather policies
that can be used to set the bids. Thus the pure-exploration ban-
dit is running a large-scale A/B/n test, trying many strategies and
returning at least m feasible strategies. We use a public advertis-
ing benchmark dataset collected by [21] from the RTB algorithm
competition of iPinYou in 2013.

The arms are the existing bidding algorithms described in [21],
each falling into the categories: constant (const), random (rand),
Mcpc, and a linear-form bidding (lin). Const, rand, and lin each
have a hyperparameter, which results in a total of 144 bidding
strategies (arms). Again, ourmethod is not a novel bidding strategy
but rather selects from a set of strategies.

Feasibility is de󰎓ned here as improving over all criteria relative
to a baseline model. We consider two business criteria. Average
cost per 1000 impressions (CPM), µi,1, and average click through
rate (CTR), µi,2. The baseline method is a 󰎓xed set of parameters
for the linear bidding algorithm, whose CPM and CTR are µl,1 and
µl,2, respectively. The feasible arm identi󰎓cation task is to deter-
mine if µi P P or equivalently, whether µi,1 ě µl,1 and µi,2 ě µl,2.

In Table 1, column 5 (A/B E), we see that MD-APT-ANY shows
a 46% relative improvement over MD-APT. By focusing sampling
time on determining whether at least a few arms are feasible rather
than returning all feasible arms, MD-APT-ANY can spend explo-
ration budget within the interior of the polyhedron.

5.1.1 MD-APT-ANY-F. During our implementationwe noticed that
MD-APT-ANY 󰎓nds quasi-feasible arms quickly and then spends
budget validating feasibility. By focusingmore on the quasi-feasible
arms, we might see an improvement. We call this heuristic method
MD-APT-ANY-F. During even iterations, it samples only the m
quasi-feasible arms thatmaximize distppµi,Ti ptq, P

c q´ distppµi,Ti ptq, Pq
where Pc is the complement of the polyhedron P . This simple heuris-
tic improvement turned out to improve over our main algorithm.
This is likely because it is sampling the feasible arms more often
than would be warranted based on the criteria in MD-APT-ANY.

5.2 Real-world Dataset Experiments
Although conceived for bidding strategy identi󰎓cation, we eval-
uated the algorithm on several real-world datasets. Each of the
following real-world datasets poses a multi-dimensional any-m-
feasible arm identi󰎓cation problem. In each task, there ismore than
one desirable criteria that must be satis󰎓ed for an arm to be accept-
able. Moreover, each task seeks onlym feasible solutions.

Medical Experiment. We consider the problem in clinical tri-
als of identifying the drug that: 1) has a su󰎏ciently high probability
of being e󰎎ective; and 2) meets some safety standard. We use data
from [7] (see ARCR20 in week 16 in Table 2 and Table 3), which
studies the drug secukinumab for treating rheumatoid arthritis.
They test four dosage levels (25mg, 75mg, 150mg, 300mg) and a
placebo. Each arm corresponds to a drug and has two attributes:
let µi,1 denote the probability of being e󰎎ective and µi,2 the prob-
ability of causing an infection or infestation. The dosage levels
25mg, 75mg, 150mg, and 300mg have means µ1 “ p.34, .259qJ,
µ2 “ p.469, .184qJ, µ3 “ p.465, .209qJ, µ4 “ p.537, .293qJ, re-
spectively, and the placebo has mean µ5 “ p.36, .36qJ. We deem
a drug acceptable if the probability of being e󰎎ective is at least .4
and the probability of causing an infection is at most .25. We set
m “ 1, i.e., the goal is to 󰎓nd one acceptable drug. In our exper-
iment, whenever arm i is chosen two Bernoulli random variables
with means given by µi are drawn.

Crowdsourcing Experiment. We examine the task of using
a limited budget of queries to 󰎓nd crowdsourcing workers that
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Table 1: Experiments on synthetic dataset (E3) and real-world datasets: Estimated probability of error with standard errors.

are su󰎏ciently likely to: 1) give the correct answer; and 2) re-
spond on average at a suitable speed. We use a crowdsourcing
dataset collected by [17] in which AmazonMechanical Turk work-
ers evaluate the content of tweets. We only consider workers that
have answered at least 50 questions, leaving a total of 44 workers.
Here, µi,1 is the probability of being correct and µi,2 is the average
amount of time required. We set P “ tx : x1 ě .75,x2 ď 15u, i.e.,
we deem a worker satisfactory if he answers correctly with proba-
bility at least .75 and on average within 15 seconds. We setm “ 5,
i.e., the goal is to identify 5 workers that satisfy the criteria. Be-
cause the data for each worker is limited, whenever an algorithm
pulls an arm corresponding to a worker, it samples a data point as-
sociated with that worker uniformly at random with replacement.

5.2.1 Results. The results on real-world datasets illustrate the ob-
vious advantage of solving the any-m feasible compared to the
fully feasible arm identi󰎓cation. In all experiments, shown in Table
1, eitherMD-APT-ANY or itsmodi󰎓cationMD-APT-ANY-F showed
signi󰎓cant improvement over the current state of the algorithms
for feasible arm identi󰎓cation, achieving the lowest probability of
error in each of the experiments.

In the any-m feasible arm identi󰎓cation problem, when there
are few arms, uniform allocation (UA) may have an advantage of
simply being lucky. This appears to be the case in our medical ex-
periment (Med E) in which uniform allocation has a the best error
rate. Although, as indicated in [13], UA does not return all the fea-
sible arms, it does appear to 󰎓nd the best one of four. For the other
experiments, UA simply has too many options to be e󰎎ective.

5.3 Synthetic Experiments
To better understand MD-APT-ANY and the intuition behind MD-
APT-ANY-F, we considered several synthetic datasets, de󰎓ned be-
low.

Experiment 1. The polyhedron is P “ tx P R5 : xi ě .5u. The
distributions are 5-dimensional multivariate normal distributions
with covariance matrix 1

4 I . 50 of the arms have mean p0.49999qb5

and 50 of the arms have mean p0.6qb5. We varym “ 5, 10, 15.
Experiment 2. The polyhedron is P “ tx P R5 : xi ě .5u.

Arm i P r50s has mean p0.5` .2 i
50 qb2. Arm i P r200sz50 has mean

p0.5 ´ .2 i´50
150 qb2.

Experiment 3.The polyhedron is P “ tx P R5 : xi ď xi`1@i P
r4su. We use 5-dimensional Bernoulli distributions. 50 of the arms
have mean p.1, .3, .5, .3, .1qJ and 50 of the arms have mean
p0.1, .3, .15, .7, .9qJ.

5.3.1 Results. The results on synthetic datasets show that MD-
APT-ANY clearly outperforms the other feasible arm identi󰎓cation

algorithms. Figure 1 shows a kernel density estimate of the dis-
tribution of arm pulls for Experiment 2, where each arm is repre-
sented by its mean value. In Experiment 2, arms with mean greater
than 0.5 are feasible. In Figure 1a, MD-SAR pulls arms close to the
boundary and is slightly more likely to pull arms within the fea-
sible set. With an accept and reject sampling technique, MD-SAR,
spends budget on determining whether an arm is feasible within
the margin before deciding to accept or reject it. Although MD-
APT, shown in Figure 1b, improves on sampling outside the feasible
set, it focuses even more on arms that are nearly feasible. In con-
trast, the proposed algorithm MD-APT-ANY, shown in Figure 1c,
spends the exploration budget on exploring arms clearly outside
the feasible region–which is illustrated in the 󰎓gure as a skewed
distribution with peak and most of the mass on the left (infeasi-
ble) side. This suggests that MD-APT-ANY quickly identi󰎓es some
feasible arms and then continues exploring the infeasible arms to
󰎓nd better candidates. This con󰎓rms our intuition for the heuristic
in MD-APT-ANY-F, which places additional emphasis on feasible
arms–essentially double-checking that the quickly identi󰎓ed arms
really are feasible.

Discussion.When confrontedwith problems havingmany arms,
such as the A/B test and crowdsourcing experiments, MD-APT-
ANY and its extension MD-APT-ANY-F exhibit dramatic reduc-
tions in probability of error compared to state-of-the-art algorithms,
as much as 10X for one dataset. Drawing upon the intuitive behav-
ior illustrated in Figure 1, MD-APT-ANY quickly identi󰎓es feasible
arms and then continues to explore other possibilities. In addition,
the heuristic modi󰎓cation MD-APT-ANY-F shows that simply re-
stricting the sampling space to feasible arms is a good strategy.

6 CONCLUSION
We introduce and propose a solution for the any-m feasible arm
identi󰎓cation problem. In this setting, an agent plays a sequential
game where at each round, it pulls one of the arms and observes
an independent realization from a distribution associated with the
arm. In contrast to the classical multi-armed bandit setting, the
agent in a pure-exploration multi-armed bandit seeks by the end
of the game onlym arms meeting several criteria rather than the
single best arm in just a single criteria.

Identifying a few known good solutions can su󰎏ce for a variety
of real-world environments. For example, in A/B testing, we may
have many parameters of the same algorithm to test. It is infeasible
to test all the parameters thoroughly, but we also do not to hastily
select just one. Instead, wewould like to 󰎓nd a few known good so-
lutions and run these in a longer test. Identifying just a few rather
than all feasible arms dramatically reduces the error. Moreover, it
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Table 2: Experiments on synthetic datasets: Estimated probability of error with standard errors, comparing the proposed
algorithm MD-APT-ANY against state of the art algorithms MD-APT and MD-SAR.

(a) (b) (c)

Figure 1: Kernel density estimate (KDE) of the distribution of arm pulls for real-valued arms in Experiment 2 (m=20) for three
algorithms (a): MD-SAR , (b): MD-APT, (c): Proposed algorithm: MD-APT-ANY. MD-APT-ANY focuses its exploration budget
on eliminating infeasible arms–note the peak of the distribution just less than the feasible boundary of 0.5.

unlocks practical value by increasing the exploration budget that
can be used to consider even more alternatives.

The results suggest that, not only is MD-APT-ANY a good solu-
tion to the any-m feasible arm identi󰎓cation problem, the heuristic
modi󰎓cation MD-APT-ANY-F may be able to improve other algo-
rithms. In future work, we may apply this heuristic to the other
benchmark algorithms. We would also like to further develop its
theory, which we believe will lead to further improvements.
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