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ABSTRACT
This paper describes a practical system for Multi Touch
Attribution (MTA) for use by a publisher of digital ads.
The approach has two steps, comprising response modeling
and credit allocation. For step one, we train a Recurrent
Neural Network (RNN) on user-level conversion and expo-
sure data. The RNN has the advantage of flexibly handling
the sequential dependence in the data while capturing the
impact of advertising intensity, timing, competition, and
user-heterogeneity, which are known to be relevant to ad-
response. For step two, we compute Shapley Values, which
have the advantage of having axiomatic foundations and
satisfying fairness considerations. The specific formulation
of the Shapley Value we implement respects incremental-
ity by allocating the overall incremental improvement in
conversion to the exposed ads, while handling the sequence-
dependence of exposures on the observed outcomes. The
system is deployed at JD.com, and scales to handle the high
dimensionality of the problem on the platform.
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1 INTRODUCTION
The issue ofMulti TouchAttribution (MTA) is one of high im-
portance to advertisers and digital publishers. MTA pertains
to the question of how much the marketing touchpoints a
user was exposed to, contributes to an observed action by
the consumer. Understanding the contribution of various
marketing touchpoints is an input to campaign design, to
optimal budget allocation and for understanding the rea-
sons for why campaigns work. Wrong attribution results
in misallocation of resources, inefficient prioritization of
touchpoints, and lower return on marketing investments.

This paper develops a data-driven MTA system for a pub-
lisher of digital ads. We developed this system for JD.com,
an eCommerce company, which is also a publisher of digital
ads in China. Our approach has two steps. The first step
(“response modeling”) fits a user-level model for purchase
of a brand’s product as a function of the user’s exposure to
ads. The second (“credit allocation”) uses the fitted model
to allocate the incremental part of the observed purchase
due to advertising, to the ads the user is exposed to over the
previous T days.

In step one, our goal is to develop a response model that
accommodates heterogeneously the responsiveness of user
purchase behavior to the sequence (temporal ordering) of
past own and competitor advertising exposures, with re-
sponse driven by the intensity of those ad-exposures with
possible time-decay. An MTA system that comprehensively
accommodates all these features is currently missing in the
literature. Sequential dependence is key to the ad-response,
because what we need to capture from the data is how ex-
posure to past touch points cumulatively build up to affect
the final outcome.

Given the scale of the data, and the large number of ad-
types, a fully non-parametric model that reflect these con-
siderations is not feasible. Instead, we train a Recurrent
Neural Network (RNN) for ad-response. The specific RNN
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we present is architected to capture the impact of advertis-
ing intensity, timing, competition, and user-heterogeneity
outlined above while accommodating sequence-dependence.

To implement step two, we focus on incrementality-based
allocation for advertising. We allocate only the incremental
improvement generated by advertising to an order to each
exposed ad-type, ensuring that the part of observed orders
that would have occurred anyway is not allocated to a focal
brand’s ads. To allocate credit, we compute Shapley Values
(henceforth “SVs”), which have the advantage of having
axiomatic foundations and satisfying fairness considerations.
The specific formulation of the SVs we implement respects
incrementality while handling the sequence-dependence of
exposures on the observed outcomes.

Computing the SVs is computationally intensive.We present
a new scalable algorithm (implemented in a distributed
MapReduce framework) that is fast enough to make practi-
cal productization feasible. The algorithm takes predictions
from the response model as an input, and allocates credit
over tuples of ad-exposures and time periods. Allocation at
the tuple-level has the advantage of handling the role of the
sequence in an internally consistent way, which is new to
the literature. Once allocation of credit at this level is com-
plete, credit allocation over any desired bundle of exposure
options (such as ad-channels like search and display) can
be developed by exact aggregation, reducing aggregation
biases.

We present an illustration of the framework using data
from the cell-phone product category at JD.com. This is a
single category version of the full framework. The full frame-
work which has been deployed accommodates all product
categories on the platform, and scales to handle the dimen-
sionality (attribution of the orders of about 300M users, for
roughly 160K brands, across 200+ ad-types, served about
80B ad-impressions over a typical 15-day period).

2 RELATEDWORK
Previous art has developed various empirically specified ad-
response models using user-level browsing and conversion
data (e.g. [2, 3, 6, 8, 14, 17, 21]). Compared to this stream,
which simplifies the sequential dependence, the RNN model
used here handles complex patterns of dependence in a more
flexible way, and allows different sequences of touchpoints to
have differential effects on final conversion, which is novel.
The setup also accommodates in one framework the role
of intensity, timing, competition, and user-heterogeneity,
which have not been considered together previously.

Dalessandro et al. [6], Yadagiri et al. [18] combine data-
based response models with SVs for the MTA problem, but
abstract away from the explicit role of the sequence and
allocate the total, rather than the incremental component of
orders. In contrast, we focus on incremental allocation, and
the allocation of credit to an ad-slot in our model depends

explicitly on its order in the temporal sequence of exposures,
which is more general. Also related are versions of RNNs
presented by li et al. [9], Ren et al. [12] for user response,
but without an SV-based allocation scheme.

A limitation of our approach and of all the response mod-
els cited previously, is the lack of exogenous variation in user
exposure to advertising. Extant papers that have trained ad-
response models on data with full or quasi-randomization
(e.g., [4, 10, 13, 20]) have done so at smaller scale, over limited
number of users and ad-types due to the cost and complexity
of such randomization, and have not considered the corre-
sponding credit-allocation problem. The approach adopted
here is to include a large set of user features into themodel as
synthetic control. Controlling flexibly for these observables
mitigates the selection issue (e.g., [16]), albeit not perfectly.

3 MODEL FRAMEWORK
3.1 Problem Definition
Let i = 1, ..,N denote users; t = 1, ..,T days; and b = 1, ..,B
brands. Let k = 1, ..,K index an “ad-position,” i.e., a particular
location on the publishers inventory or at an external site
at which the user can see advertisements of a given brand.
For e.g., an ad-slot showing a display ad on the top frame of
the JD app home-page would be one ad-position. Consider
an order o (i,b,T ) made by user i for brand b on day T . Let
AibT ⊆ K denote the set of ad-positions at which user i
was exposed to ads for brand b over the T days preceding
the order (from t = 1 to T ).

The attribution problem is to obtain a set of credit-allocations
ϱk (AibT ) for all k ∈ AibT , so that the allocation for k rep-
resents the contribution of brand b’s ads at position k to the
expected incremental benefit generated by brandb’s advertis-
ing on the order. Definev (AibT ) as the change in the proba-
bility of order o (i,b,T ) occurring due to the user’s exposure
to b’s ads in the positions in AibT . We look for a set of frac-
tions ϱk (AibT ) such that,

∑
k ∈AibT

ϱk (AibT ) = v (AibT ).

3.2 Problem Solution
To allocate the orders on dateT , in step 1, we train a response
model for purchase behavior using individual user-level data
observed during t = 1 to T . In step 2, we take the model
as given, and for each order o (i,b,T ) observed on date T ,
we compute SVs for the ad-positions k ∈ AibT . We set
ϱk (AibT ) to these SVs and aggregate across orders to obtain
the overall allocation for brand b on date T .

3.2.1 SVs. The SV (Shapley [15]) is a fair allocation scheme
in situations of joint generation of outcomes. A fair alloca-
tion avoidswaste and allocates all the benefit to the units that
generated it (“allocative efficiency”). Fairness also suggests
that two units that contribute the same to every possible
configuration should be allocated the same credit, and a unit
which contributes nothing should be allocated no credit. Fair
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allocations also satisfy the “marginality principle”, that the
share of total joint benefit allocated should depend only on
that unit’s own contribution to the joint benefit (see Young
[19]). The appeal of the SV is that it is the unique sharing
rule that is efficient, symmetric and satisfies the marginality
principle (Young [19]).

Defining the Expected Incremental Benefit to an Order. Let
YibT ∈ (0, 1) denote a binary random variable for whether
user i purchases brandb on dayT . An ordero (i,b,T ) is a real-
ization YibT = 1with associated own-brand ad-exposures at
positionsAibT . The expected incremental benefit generated
by brand b’s advertising on order o (i,b,T ) is v (AibT ) =

E [YibT |AibT ]−E [YibT |∅b ]. Holding everything else fixed,
this difference represents the expected incremental contribu-
tion of the ad-positions in AibT to the order. We can think
of v (AibT ) as a causal effect of brand b’s advertising over
the past T days on user i ′s propensity to place the observed
order on day T .

Allocating Incremental Benefit to a Position-Day Tuple.
To allocate v (AibT ) to the ad-positions in AibT , we first
allocate v (AibT ) to each ad-position-day tuple in which i
saw ads of brand b over the last T days. We then sum the
allocations across days for the tuples that each ad-position
k ∈ AibT is associated with, to obtain the overall allocation
of v (AibT ) to that k .

To do this, let NibT be the set of ad-position-day com-
binations at which user i saw ads for brand b during the T
days preceding order o (i,b,T ). For a given tuple {k, t}, let S
denote a generic element from the power-set ofNibT \{k, t} .
Let the cardinalities of these sets be denoted |NibT |, |S |.

Define the functionw (S) = E [YibT |S]−E [YibT |∅b ], i.e.,
w (S) represents the expected incremental benefit from user
i seeing ads for brandb at ad-position-day combinations in S ,
holding everything else fixed. By construction,w (NibT ) =

v (AibT ). So, by allocatingw (NibT ) across the ad-position-
day tuples in NibT , we allocate the same total incremental
benefit generated by brand b’s advertising, as we would by
allocating v (AibT ) across the ad-positions in AibT . Also,
by construction,w (∅b ) = 0.

We need the fractions ϱ {k,t }(NibT ), to satisfy two condi-
tions. First, that

∑
{k,t }⊆NibT

ϱ {k,t }(NibT ) = w(NibT ), so
that the fractions sum to the full incremental benefit of the
ads on the order (i.e., satisfy allocative efficiency). Second,
that the fractions for a given tuple {k, t} are functions of
only its marginal effects with respect to w (.) (i.e., satisfy
the marginality principle). These are the SVs for the tuples
{k, t} ⊆ NibT defined as,

ϱ {k,t }(NibT ) =∑
S ⊆NibT \{k,t }.

|S |!(|NibT | − |S | − 1)!
|NibT |!

[
w(S ∪ {k, t}) −w(S)

]
(1)

Computing the SVs requires a way to estimate the mar-
ginal effects w (S ∪ {k, t}) −w (S) in equation (1) from the
data, as well as an algorithm that scales to handle the high-
dimensionality of S . This is discussed in the subsequent
section.

Once the SVs ϱ {k,t }(NibT ) are computed, we sum them
across all t to obtain the allocation of that order to ad-
position k as, ϱk (NibT ) =

∑
t ⊆NibT (k) ϱ {k,t }(NibT ), where

NibT (k) is the set of days in NibT that are associated with
ad-position k .

The final step is to do this across all orders observed for
brand b on day T . To do this, we sum ϱk (NibT ) across all
k and all users who bought brand b on day T . This gives
the overall incremental contribution of the K ad-positions
to the brand’s orders. To allocate this to k, we simply com-
pute how much ad-position k contributed to this sum. De-
note ϱk (NibT ) above as ϱibkT for short. We allocate to ad-
position k , a proportionΨbkT ,

ΨbkT =

∑
{i :YibT =1} ϱibkT∑

k
∑

{i :YibT =1} ϱibkT
(2)

Each element k in ΨbT = (Ψb1T , ..,ΨbKT ) represents the
contribution of ad-position k to the total incremental orders
obtained on dayT by the brand due to its advertising on the
K positions.ΨbT thus represent a set of attributions that
can be reported back to the advertiser.

Linking to a Response-Model. Let xibkt be the number of
impressions of brand b’s ad seen by user i at ad-position k on
day t . Collect all the impressions of the user for the brand’s
ad across positions on day t in xibt = (xib1t , ..,xibKt ); col-
lect the impression vectors across all the brands for that user
on day t in xit = (xi1t , .., xiBt ); and stack the entire vector
of impressions across all days and brands in a (K · B ·T ) × 1
vector xi,1:T =(xi1, .., xiT )′. Let pbt be a price-index for
brand b on day t , representing an average price for prod-
ucts of brand b faced by users on day t .1 Collect the price
indices for all brand on day t in vector pt = (p1t , .., pBt )
and stack these in a (B ·T ) × 1 vector p1:T = (p1, .., pT )′.
Finally, let di represent a R × 1 vector of user characteris-
tics collected at baseline. The probability of purchase on
day T is modeled as a function of user characteristics, and
the ad-impressions and price-indices of brand b and all
other brands in the product category over the last T days as
E [YibT ] = Pr (YibT = 1) = σ

(
xi,1:T , p1:T , di ; Ω̂

)
. The prob-

ability model σ (.) is parametrized by vector Ω̂ which will
be learned from the data.

We use E [YibT ] as above along with the definition of the
marginal effectsw (S), to compute the SVs defined in equa-
tion (1). To obtain the marginal effects from the response
model, we define an operator Γb (.) on xi,1:T that takes a

1We compute this as a share weighted average of the list prices of the SKUs
associated with the brand on that day.
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set S as defined in §3.2.1 as an input.2 Given S , Γb (.) sets
all the impressions of brand b apart from those in the ad-
position-day tuples in S to 0. Γb (.) also leaves impressions
of all brands b ′ , b unchanged.

Mathematically, taking xi,1:T and S as input, Γb
(
xi,1:T , S

)
outputs a transformed vector x(b,S )i,1:T computed as,

x
(b,S )
ib′kt =

{
0 if b ′ = b and {k, t} ⊊ S

xib′kt otherwise
(3)

With x
(b,S )
ib′kt as defined above, we can compute the SV using

the response model as,

ϱ {k,t }(NibT ) =∑
S ⊆NibT \{k,t }.

|S |!(|NibT | − |S | − 1)!
|NibT |!

[
σ
(
x(b,S∪{k,t })i,1:T ,

p1:T , di ; Ω̂
)
− σ

(
x(b,S )i,1:T , p1:T , di ; Ω̂

)] (4)

In effect, what we obtain in the square brackets in equa-
tion (4) is the change in the predicted probability of purchase
of an order of brand b on day T by user i when the tuple
{k, t} is added to the set of ad-position-day combinations in
S , holding everything else (including competitor advertising)
fixed at the values observed in the data for that order. The
arXiv version of the paper provides an example.

Efficient Algorithm for Fast, Large-Scale Computation. Ex-
act computation of SVs as described above is computation-
ally intensive. SVs have to be calculated separately for each
ad-position-day tuple for each order (in the millions). When
|NibT | is large, this latter step also becomes computation-
ally intensive, requiring Monte Carlo simulation methods
to approximate the calculation.

Our implementation switches between exact and approx-
imate solutions for the SVs depending on the cardinality of
NibT , and is implemented in a MapReduce framework so it
runs in a parallel, distributed environment. Algorithm 1 in
the arXiv version of the paper presents details.

3.2.2 Response Model. The response model provides the
marginal effects in equation (1). The architecture of the RNN
is presented in Figure (1). Though the model training is done
simultaneously across all brands, the picture is drawn only
for one brand. The input vector of ad-impressions, xit, and
the input vector of price-indexes, pt , are fed through an
LSTM layer with recurrence. The user characteristics, di ,
are processed through a separate, fully-connected layer. The
outputs from the LSTM cells and the fully-connected layer
jointly impact the predicted outcome Ỹit . Combining this
with the observed outcome,Yit , we obtain the log-likelihood

2Recall from §3.2.1 that we use S to refer to a sub-set of ad-position-day
combinations at which the user saw ads for brand b during the T days,
excluding tuple {k, t }.

L, which forms the loss function for the model. The RNN
finds a set of parameters or weights that maximizes the
log-likelihood.
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Figure 1: Computational Graph for RNN

As noted before, we utilize a bi-directional formulation.
This is shown in Figure (1) where the superscript “fw” in-
dicates forward recurrence and “bw” indicates backward
recurrence. This improves the fit of the model, because the
fact that a user i saw a particular set of ads in t + 1, ..,T is
useful to predict his response in period t . For example, if a
user bought a brand in t , he may not search for that brand in
period t + 1, and not be exposed to search ads in t + 1. So the
knowledge that he did not see search ads in t + 1 is useful to
predict whether he will buy in period t . When computing
SVs for an order, the entire sequence of ads for T periods
prior to the order are known, so the use of the bi-directional
RNN as a predictive model presents no conceptual difficulty.
The arXiv version of the paper provides additional details of
the implementation, including an extension to much larger
scale to accommodate all product categories (not just one as
above) in one unified framework.

4 EMPIRICAL APPLICATION
Code for a simulation that implements the system is provided
at: https://github.com/jd-ads-data/jd-mta. Here, we
discuss an application of the model using user-level data
from the cell-phone product category on JD.com during
a 15-day window in 2017. To create the training data, we
sample users who saw during the window, at least one ad-
impression related to a product in the cell-phone product
category on JD.com. We define the positive sample as the
set of users who purchased a product of any brand in the
cell-phone category during the time window. We define the
negative sample as the set of users who did not purchase any
product in the cell-phone category during the 15-day time
window. Table 1 provides summary statistics.

At the brand-level, the recall and precision of the model
are Huawei (.340,.714), Xiaomi (.308,.705), Apple (.218,.696),



Causally Driven Incremental Multi Touch Attribution Using a Recurrent Neural NetworkADKDD’19, August 2019, Anchorage, Alaska USA

Table 1: Summary Statistics of Training Data

Number of users in Overall Sample 75,768,508

Number of users in Positive Sample 2,100,687

Number of users in Negative Sample 73,667,821

Num: of ad-impressions in category 7,153,997,856

Num: of orders in category 3,477,621

Number of orders made on day T = 15 175,937

Number of brands (B) 31
Number of ad-positions (K ) 301

Meizu (.186,.727), Xiaomi (.119,.762), Others (.095,.726), show-
ing it fits the data well (accuracy > .99 for all). Figure 2 com-
pares the accuracy, precision, recall and AUC (area under the
curve) statistics of the model against two benchmark spec-
ifications.3 The first is a flexible logistic model (analogous
to early papers like Shao and Li [14]), which specifies the
probability of a user i purchasing brand b on day t as a semi-
parametric logistic function of the ad-impressions and price-
indexes on the same day (i.e.,Pr (Yibt = 1) = logistic (xit , pt ;Ω)).
The second is a unidirectional LSTM RNN, which is the same
as the preferred model but without the forward recurrence.

Looking at the results, we see the bi-directional RNN has
the highest AUC amongst the models; and has accuracy,
precision and recall statistics that are comparable or higher.
The poor performance of the logistic model emphasizes the
importance of accounting for dependence over time to fit
the data. The plots also show the speed of convergence of
the models as a function of the number of training steps;
the bi-directional RNN converges faster in fewer training
steps. This is helpful in production, which typically requires
frequent model updating.4

Tables 2 also benchmarks the algorithm for distributed
computation of SVs. Recall this algorithm shifts from exact
computation of SVs to a Monte Carlo simulation approxima-
tion when the number of ad-positions over which to allocate
credit is large. This “mixed” method improves computational
speed, which is important for high-frequency reporting of
results in deployment. To assess the performance of this
algorithm, we pick 6,000 orders from t = T and run the
algorithm on these data for various configurations. The ex-
periment is repeated for each configuration 5 times, and
the average across the 5 reps is reported.5 The first row in
the table reports on the number of orders we are able to
attribute per minute using the three methods: the mixed
method is about 2,300% faster than exact computation, and

3The statistics are computed on a validation dataset that is held-out separately
from the training dataset.
4To get a sense for this, the training times for 30,000 steps for the 3 models on
our cluster are 11.21 hrs (bi-directional RNN); 9.68 hrs (unidirectional RNN);
12.48 hrs (logistic) hrs respectively.
5The computational environment uses a Spark cluster with Spark 2.3 by
pyspark, running TensorFlow v1.6, with an 8 core CPU, 100 workers and 8
GB memory per worker without the GPU.
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Figure 2: Performance Benchmarks

Table 2: Processing Efficiency of SV Computation

Algorithm Exact Approximate Mixed

Orders processed per minute 4.2 88.85 101.24
Error − 0.3190 0.0064

about 14% faster than a simulation-only method. The second
row documents this efficiency gain does not come at the
cost of high error: the average error in the mixed method is
low relative to exact computation, and a order of magnitude
smaller than using full simulation.6

Additional details on credit allocation from the model are
reported in the arXiv version of the paper which shows (1)
that allocating only the incremental component of orders is
important; and (2) that SVs have discriminatory power in
picking high-contribution ad-positions. We also document
there that intensity, sequence, timing and competitive effects
matter for capturing ad-response in these data; and that
controls for selection via user attributes have value.

Figure 3 compares the credit allocation to “Last-clicked”
attribution. We show the SVs at each ad-position on the
x-axis, averaged across all orders on T = 15 for which that
position was the last clicked. The SVs are all seen to be <1;
in contrast, “last-click” would allocate these ad-positions
full-credit. To the extent that the SVs are all less than 0.6, the
model suggests that last-clicked ads contribute a maximum
of 60% to the incremental conversion due to advertising. As
a gut check, cart and payment page positions which may

6We compute error as a mean squared difference over the l = 1, ..6000orders
in the total attributed value (line 20 in Algorithm 1) for the evaluated
algorithm (SAl ) relative to that from the exact algorithm

(
SA∗

l

)
, i.e. err =√

1
6000

∑6000
l=1

(
SAl − SA∗

l

)2
.
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Figure 3: Benchmark Against Last-Click Attribution

get a lot of credit under “last-click” or “last-visit” attribution
schemes on eCommerce sites, are seen to not be allocated a
lot of credit by the model.

As a final assessment, we compare Figure 4a which shows
the proportion of ad-impressions in the data across the ad-
positions to Figure 4b which shows the average (across or-
ders) of the SVs for the same positions. The ad-positions
are indexed from 1 − 301 in order of their share of total
impressions. Comparing the two, we can see that the dis-
tribution of SVs across positions do not follow the same
pattern as that of impressions, suggesting that the model
is not purely picking up differences in intensity of adver-
tising expenditures. We observe that some positions that
receive fewer ad-impressions have higher SVs than those
that receive higher impressions. This suggests that adver-
tising expenditure allocations overall may not be optimal
from the advertiser’s perspective, and could be improved
by incorporating better attribution. A more formal assess-
ment however also requires a method for advertiser budget
allocation, which is outside of the scope of this paper.
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Figure 4: Shapley Values by Impression Share

5 CONCLUSIONS
A practical system for data-driven MTA for use by a pub-
lisher is presented. A bi-directional RNN for ad-response is
developed as the response model, which is semi-parametric,

reflects many aspects of ad-response, and able to handle high
dimensionality and long-term dependence. The SV used al-
locates credit in a way that respects the sequential nature of
ad-response and fairness considerations. An area of future
research would be to use the model for campaign budget
allocation and bidding (e.g., Geyik et al. [7], Pani et al. [11]).
The SV takes the advertisers’ actions as given. It is possi-
ble that advertisers re-optimize their advertising policies in
response to the attribution. The optimal contract that en-
dogenizes equilibrium response remains an open question
(e.g., Abhishek et al. [1], Berman [5] for theory).
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