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ABSTRACT
In this paper, we consider the in-app purchase prediction problem
to effectively show display ads and to promote in-app purchases
to users in a personalized manner. Compared to install prediction,
purchase prediction is more difficult in the sense that the number of
in-app purchases is much fewer than that of installations. To resolve
this issue, following the idea of the Bayesian personalized ranking
(BPR) framework, we consider the installation of an application
as an intermediate feedback between purchase and unobserved
feedback and propose install-enhanced BPR. More specifically, in
our proposed method, we enhance the quality of the intermedi-
ate information by combining the dwell time on the application.
Through experiments using a real-world dataset, we show that our
proposed method outperforms the baselines and provides several
insights on user activity.
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1 INTRODUCTION
Mobile games attract a large number of users, as they are freely
available, and there exist various types of games ranging from
puzzle games to role-playing games. While most users play games
without paying any money, some users purchase items in the game
(e.g., swords and armors to power up soldiers in role-playing games)
to enjoy the games more actively. Thus, game companies need to
not only increase the number of users, but also let the users make
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purchases within the games. To this end, display advertisements
play an important role.

Recently, with regard to the acquisition of new users, advertisers
have insisted that more attention should be given to the lifetime
value (LTV) of a user, which is the revenue that a user will generate
in the future, than the cost per install (CPI). For advertisers, it is
sometimes not sufficient to just improve the CPI because if a new
user stops using an application right after installation, it is not
worth the expense and only contributes to unsustainable business
growth. Hence, from a marketing perspective, to achieve persistent
revenue growth, LTV is becoming increasingly important for the
pursuit of long-standing high-revenue users.

The long-standing high-revenue users are those who bring in
revenue actively and sustainably, and finding such users is one of
the most important tasks to improve LTV. In this regard, a crucial
task is to figure out users who have a high potential to purchase
as well as items that are more likely to be purchased, rather than
finding users who have high a potential to install applications. This
problem is regarded as the personalized in-app purchase prediction
problem. In this problem, we face an issue regarding data sparsity
that we do not have as many purchase feedbacks as we have install
feedbacks. As most applications are available on the application
store and the install of an application itself does not involve any
cost, the number of application installs is relatively large compared
with that of in-app purchases. Therefore, install feedback infor-
mation can be used as intermediate feedbacks, which are ranked
between in-app purchases and unobserved feedbacks. Such inter-
mediate feedbacks are called implicit feedbacks, and some of the
ranking-based recommender systems utilize them to improve their
recommendations.

Bayesian Personalized Ranking (BPR) [12] is a ranking-based
recommendation method, which ranks items for each user on the
assumption that users prefer observed items to unobserved items.
BPR has been successfully applied to various domains [3, 15] and
also extended to situations such as those with multiple-type feed-
backs [2, 7, 10].

In this study, based on BPR, we utilize the login information
of users as the dwell time information for enhancing predictions.
The use of dwell time has been shown to be effective in various
recommendation domains [6, 13, 14], and we apply this idea to the
mobile game domain. Specifically, we model the dwell time using
Weibull distribution and incorporate it into our BPR formulation.
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Through exploratory analysis and performance comparison using a
real-world dataset containing in-app purchases and application in-
stall records collected by CyberAgent Inc. over a period of two years,
we show that the proposed method outperforms the baselines.

In summary, our contributions in this paper are two-fold:
(1) A game-app recommendation method using user-item ori-

ented weights based on dwell time analysis.
(2) Analysis of the dwell time in a real dataset in the game ap-

plication domain on a relatively long scale, and comparison
with baselines using a real-world dataset to demonstrate the
effectiveness of our proposed method.

2 RELATEDWORK
Recommendation problems can be categorized into two types: (1)
explicit feedback settings where we can directly observe each user’s
preference through the rating scores given by the user. (2) implicit
feedback settings where we can only observe each user’s past inter-
actions that are weakly related to the user’s preference. In this paper,
we consider the latter, and we review several implicit feedback mod-
els based on BPR and the variances of BPR for multi-feedback. We
also review recommendation methods based on dwell time.

2.1 Implicit Feedback
While the implicit feedback setting is more practical than the ex-
plicit setting, it is more challenging in terms of handling unobserved
instances, which are usually ignored in the explicit setting. One of
the most popular and simplest solution to handle them is to treat
all the unobserved instances as negative feedbacks [5] or to use
a subset of them as negative feedbacks [12]. The key idea behind
this is that users might prefer observed items than unobserved
items. BPR [12] is one of the prevalent learning-to-rank methods
applicable to the implicit feedback setting. It generates personalized
rankings based on the assumption that users prefer observed items
to unobserved items. BPR has been extended to several specific
domains [3, 9]. They combine user-item pairs with domain features
and show their effectiveness. Loni et al. [7] improved BPR by consid-
ering different levels of implicit feedbacks. In order to predict users’
regarding items that are preferred more feedback (i.e., high score
rating, purchase), additionally sampled intermediate feedbacks are
used for more sophisticated rankings [2, 10].

2.2 Dwell time analysis
Dwell time, which is the duration of time one spends for an item,
has been successfully applied in recommendation tasks [13, 14]. Liu
et al. [6] modeled users’ dwell time on web pages using Weibull
distribution for the first time. Yin et al. [14] modeled users’ view-
vote behaviours in a joke app domain using a graphical model and
converted the dwell time into a pseudo vote for mitigating data
sparsity. Although their work is closely related to ours, we focus
on a completely different domain, namely game applications, and
demonstrate the effectiveness of dwell time in a ranking method
(i.e., BPR) in this domain; we do not consider different methods
of processing the dwell time. We emphasize that the employment
of the dwell time significantly improved the performance of the
traditional method such as matrix factorization in several domains.
We are motivated to show the effectiveness of the dwell time in

Table 1: An illustrative example of our game application
dataset.

user ID app ID first login date last login date in-app purchase
user0 app0 20XX/1/April 20XX/1/May 0
user0 app2 20XX/1/April 20XX/1/May 0
user0 app3 20XX/1/April 20XX/1/May 1
user1 app1 20XX/1/April 20XX/1/May 1
user1 app2 20XX/1/April 20XX/1/May 0
... ... ... ... ...

the game application domain and as the user-item oriented weight
in the ranking method for purchase prediction.

3 PROBLEM STATEMENT
Suppose we have a set of usersU and another set of applicationsA.
Let P = {(u,a)} ⊂ U×A be the set of in-app purchases consisting
of pairs of useru and application a. (u,a) indicates that useru made
at least one in-app purchase in application a. We also let T ⊂ U×A
be a set of user-app pairs that the users have not even installed
the applications. Our goal is to find a subset of our target pairs
T consisting of user-app pairs having high probabilities of in-app
purchases if the users install the apps in the future.

In addition to P and T, we assume we also have records of
users who installed the apps but not made any in-app purchase
for each application. We denote by I ⊂ U × A the set of such
user-app pairs. Note that P ∩ I = ϕ, T ∩ I = ϕ, P ∩ I = ϕ, and
P ∪T ∪I = U×A hold. We regard an install of an application by
a user as an intermediate feedback that should be ranked between
‘purchase’ and ‘no-install’, and we want to exploit the implicit feed-
back information effectively in order to improve in-app purchases
in game applications.

In this paper, we assume each instance of the data dataset consists
of a user ID, an app ID, the first login date, the last login date, and
whether or not the user made an in-app purchase. We show an
illustrative example of the dataset in Table 1. They correspond to
P and I in our notation.

In addition to the user-app pairs, we also have the first login
dates and the last login dates. In this paper, we exploit them as
the side information by converting them into the dwell time. The
intuition behind the use of the dwell time information is that time
they have spent on the apps should reflect their preference and can
be useful for more precise ranking. The previous work [13, 14] also
used similar features in terms of the dwell time; however, the time
scale of their dwell time were relatively short, i.e. several seconds
to a few minutes, while our time scale is in days and months. Also,
we first apply the idea to the game-app domain to the best of our
knowledge.

4 PROPOSED METHOD (DBPR)
We first review two existing approaches: the vanilla BPR [12] and
the install-enhanced BPR [2]. We then propose our Bayesian Per-
sonalized Dwell Day Ranking model, which takes the dwell day
information into account.
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4.1 BPR
BPR [12] is a widely used learning-to-rank method for implicit
feedback. The key idea is to rank the observed items higher than
the unobserved items for each user. The loss function of BPR is
given as

L =
∑

(u,i, j)∈D
logp(Θ | i >u j) =

∑
(u,i, j)

− logp(i >u j | Θ)p(Θ)

=
∑
(u,i, j)

− logσ (r̂ui (θ ) − r̂uj (θ )) + λΘΘ, (1)

where D, r̂ui , and Θ denote {(u, i, j) | i ∈ Pu ∧ j ∈ Iu ∪ Tu }, the
inner product of the user latent factor pu and item latent factor
qi , and the set of all the parameters, respectively. The traditional
matrix factorization-based methods basically treat observed targets
as 1 and unobserved targets as 0, when applying the least squares
method; however, the problem to be solved for the implicit setting
is not a regression problem but should be a classification problem,
or more precisely, a ranking problem. A previous work has shown
that such a formulation is more effective [12].

4.2 Install-enhanced BPR
An extension of BPR (viewBPR) was proposed to enhance BPR in an
e-commerce domain by combining view and purchase feedbacks [2].
In the viewBPRmodel, they sampled not only the purchase feedback
but also the view feedback, and used them to generate a more
sophisticated ranking. The loss function of viewBPR is given as

L =
∑

(u,i, j,k )∈D̂
− logσ (r̂ui (θ ) − r̂uj (θ ))

− (1 − αu ) logσ (r̂ui (θ ) − r̂uk (θ ))
− αu logσ (r̂uk (θ ) − r̂uj (θ ))) + λΘΘ, (2)

where D̂ and αu denote {(u, i, j,k) | i ∈ Pu ∧k ∈ Iu ∧ j ∈ Tu } and a
user-dependent weight, respectively. The viewBPR model assumes
that a viewed item k should not be ranked higher than a purchased
item i but should be ranked higher than an unobserved item j, and
αu controls the relative importance of the view information. In the e-
commerce domain, they calculated the ratio of the number of views
to the number of purchases. In this paper, we simply introduce the
in-app purchase ratio PRu = |Pu |

|Iu∪Pu | for user u and use it as αu .
We call this method the install-enhanced BPR. The key ideas are

(1) the simultaneous sampling of purchased items, viewed items,
and unobserved items to obtain a more effective loss function, and
(2) controlling the relative importance of the intermediate feedbacks
with the user-oriented weights.

4.3 Dwell Day BPR
Now, we introduce our model, the dwell day BPR (DBPR). In the
game application domain, we can use dwell days, i.e., how long
the users have enjoyed the games. Although the dwell time is con-
sidered a kind of implicit feedback and also seems promising and
helpful in this domain, making use of it as additional information
is not trivial as suggested in the literature [6, 13, 14]. While the
previous work handled the seconds-to-minutes scale dwell time (i.e.,
how long they read news, or how long they read jokes), we use
the days-to-months scale dwell time. However, how to handle such

ALGORITHM1:Normalized dwell time for game applications
for item i in A do

µi ← 1
|(u,i)∈P∪T | Σ(u,i)∈P∪T log(t̃ui )

σ 2
i ←

1
|(u,i)∈P∪T | Σ(u,i)∈P∪T (log(t̃ui ) − µi )

2

for user u inU do
tui ← exp

(
log (t̃ui )−µi

σi

)
end

end

a dwell time is not obvious, and is highly domain dependent. We
design an approach that combines the dwell day and BPR frame-
works. To use the first login dates and the last login dates for the
recommendations effectively, we simply process them as follows
for the user-item pair (u, i) ∈ P ∪ I:

t̃ui = Last login timestamp − First login timestamp. (3)

Since different game apps have different release dates, it is not easy
to preprocess of dwell days for every item in order alleviate the
effect of items that which have distinct release dates. We transform
each t̃ui into the normalized dwell time [13] as shown in Algorithm 1.
Basically, we follow the same procedure proposed as that in the
previous work [13]. First, we calculate the average and standard
deviation in the log scale for every item, and then all the dwell days
are normalized.

Figures 1 (a), (b) , and (c) show the dwell day distribution, the
normalized day distribution in our game application dataset, and
the correlation distribution between the actions (i.e., purchase and
install) and the normalized time, respectively.

Figures 1 (a) and (b) show that as the day or normalized day
increases, the ratio of the in-app purchase increases and this indi-
cates that users tend to play items in which they have made in-app
purchases longer than just installed apps. In addition, we examine
the correlation between the action and the dwell time for every user.
Figure 1 (c) shows the point biserial correlation, which equals to 1
when in-app purchased apps are enjoyed longer than just installed
ones, and is equal to −1 when in-app purchased apps are enjoyed
shorter than just installed ones. The distribution tends to the right;
hence it can be seen that the dwell time and the actions of most
users are correlated with their dwelling time. Here, we introduce
the assumption that users are more likely to purchase something
in longer dwelled applications than in shorter dwelled ones.

Based on these assumptions, we introduce user-item oriented
weights using Weibull distribution for improving the in-app pur-
chase predictions in game applications. Weibull distributions are
often used for survival analysis [1], analysis of the properties of
brittle materials [8], and activity analysis of website visitors [6].
Weibull distribution and its cumulative distribution function are
given as

p(x ,m, λ) = m

λ

(x
λ

)m−1
exp

(
(−x/λ)m

)
, (4)

F (x) =
∫ x

0
p (x ,m, λ)dx = 1 − exp

(
(−x/λ)m

)
, (5)

where x > 0,m > 0 and λ > 0 indicate the random variable,
the shape parameter, and the scale parameter, respectively. Each
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(a) The raw dwell-day distribution
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Figure 1: (a) The distribution of the raw dwell days. (b) Since different applications have different release dates, we normalized
each item using Algorithm 1. Note that the sum of the blue line and the green line equals to the red line. The proportion of
in-apps purchase increases as the normalized dwell days increase as the orange line indicates. This suggests users tend to enjoy
preferable applications longer. (c) The distribution of the correlations between the in-app purchases and normalized days.

parameter is estimated using the least square method [11]; we
calculate the mean rank F̂ (xi ) = i

n+1 for the i-th smallest value and
solve the linear regression problem

m̂ =
n
∑n
i=1A(xi ) −

∑n
i=1 logxi

∑n
i=1A(xi )

n
∑n
i=1(logxi )2 −

∑n
i=1(logxi )

2 , (6)

λ̂ = exp
(−∑n

i=1A(xi ) + m̂
∑n
i=1 logxi

nm̂

)
, (7)

where n is the sample size, i.e, | (u, i) ∈ P ∪ T | and
A(xi ) = log

[
− log(1 − F̂ (xi ))

]
. Note that the other estimation ap-

proaches (e.g., maximum likelihood estimation) can be more effi-
cient, but exploring them is beyond the scope of this paper. We have
made an assumption that long-dwelling users like the dwelled items
much more than short-stayed items. Hence, we aim to measure how
strong they like the items by using the cumulative Weibull distribu-
tion. While in the install-enhanced BPR, a user-oriented constant
value PRu is given for every user, we provide a user-item constant
value αuk , to obtain a more precise purchase potential. Then, the
user-item oriented weight αuk , which indicates how much a user u
is not likely to make an in-app purchase in the app k , is calculated
by feeding the dwell day tuk into Fu (x), which indicates the prob-
ability that user uwill quit or make an in-apps purchase by day x
since u has installed an app k as αuk = 1 − Fu (tuk ). Using αuk , the
objective function to minimize is defined as follows:

L =
∑

(u,i, j,k )∈D̂
− log(r̂ui (θ ) − r̂uj (θ ))

− αuk log(r̂ui (θ ) − r̂uk (θ ))
− (1 − αuk ) log(r̂uk (θ ) − r̂uj (θ )) + λΘΘ. (8)

We employ the matrix factorization model and Stochastic Gradient
Descent (SGD) for the optimization, similar to that in the previ-
ous work [2, 10]. We update each parameter with the following
formulas:

ALGORITHM 2: DBPR algorithm
Initialize: Θ
# Estimate the dwell-time distribution for each user
for user u inU do

xi = Pu ∪ Iu
Estimate the Weibull distribution for user u using Eqs. (6)
and (7)

end
# Train a BPR model
while not converged do

u← draw a sample user fromU
i← draw a sample item from Pu
j← draw a sample item from Tu
k← draw a sample item from Iu (intermediate sample)
# Compute dwell-day weights
αuk = 1 − Fu (tuk )
Compute the loss function using Eq. (8)
Compute the gradients using Eq. (9)
Update parameters (SGD)

end

∂

∂θ
L =



τ (r̂ui j )(qi − qj )
+αukγ (r̂uik )(qi − qk )
+(1 − αuk )γ (r̂uk j )(qk − qj ) + λpi (θ = pi )
γ (r̂ui j )pu + αukγ (r̂uik )pu + λqi (θ = qi )
−γ (r̂ui j )pu − αukγ (r̂uk j )pu + λqj (θ = qj )
−αukγ (r̂uik )pu + αukγ (r̂uk j )pu + λqk (θ = qk )

, (9)

where γ (x) = 1 − σ (x) and r̂ui j = r̂ui (θ ) − r̂uj (θ ).We summarize
the algorithm of the proposed method in Algorithm 2.

5 EXPERIMENTS
5.1 Dataset
We use an anonymized dataset containing in-app purchases and
application install records collected by CyberAgent over a period
of 2 years. We randomly select a subset of users from among users
who have installed at least 20 applications and purchased at least



In-app Purchase Prediction
Using Bayesian Personalized Dwell Day Ranking AdKDD ’19, August 5, 2019, Anchorage, Alaska, USA

one item in some of them. For detailed analyses of the experimental
results, we divide the test users into three groups based on their
correlation coefficients. Users whose correlation coefficients are
above 0.2 are regarded as “positively correlated" users, those be-
tween 0.2 and −0.2 are regarded “uncorrelated" users, and those
below −0.2 are regarded as ‘negatively correlated‘ users.

The numbers of users, items, install, in-app purchases are
140856, 706, 2119990, and 726419, respectively.

5.2 Baselines
We choose several BPR-based methods, including the state-of-the-
art methods capable of handling multi-feedbacks as the baselines.
As a trivial baseline, we also use the item popularity method, which
predicts items based only on their popularity.
BPR (In-app purchases) [12] is the vanilla BPR, which samples
in-app purchase transactions. BPR, which samples both purchased
items and installed items without distinguishing them, showed poor
performance in our preliminary experiment, unlike the result in
the previous work [10]; we omit the results of this version of BPR.

AdaptiveBPR (ABPR) [10] is the state-of-the-art Bayesian per-
sonalized method for multi feedbacks. This method learns the con-
fidence scores and regularizers for the immediate feedback in cases
where we cannot explicitly prepare the confidence scores. It also
samples positive feedbacks and immediate feedbacks. The differ-
ence from the install-enhanced BPR is in the method of constructing
the loss function. While the install-enhanced BPR combines the
loss functions using simultaneous pairwise ranking and updates
the parameters simultaneously, ABPR does it separately. We tuned
the hyperparameters, the threshold τ , and the iteration number T
using the validation dataset, where we used τ = 150 and T=10.

Install-enhanced BPR [2] is the state-of-the-art Bayesian per-
sonalized method for multiple feedbacks, which utilizes the install-
enhanced scheme using Eq. (2). The key idea is to enhance the
preference ranking by using the intermediate feedback informa-
tion (e.g., view, install, etc.) for predicting positive feedbacks.

5.3 Experimental setup
For all the methods, the performance was evaluated when the the
number of factors k = 32, λΘ = 0.01, and learning rate 0.01. Al-
though some works [2, 4] adopted the leave-one-out scheme, this is
not a realistic scenario. Hence, we employ Recall@k, Precision@k ,
and nDCG@k (k ∈ {5, 10}) as the evaluation metrics.

We use the data for which the last login dates are between 2016
and 2018 as the training data and aim to predict in-app purchases
after this period. In order to ensure that the user engagements of
the users applications can be observed appropriately, we kept the
data in which both the first login and the last login occurs between
2016 and Feb. 14, 2018. We set the period in which a user quits using
use an application for some reason as 2 weeks. Hence, if a user has
never logged into an application for 2 weeks, we assume that the
user must have stopped using the application for some reason and
we use them as training data. We focus on effect of the dwell time,
because an appropriate estimation of how long they an enjoy app is
necessary.We conduct experiments with three different initial seeds
and report the averaged results. For early stopping, we evaluated

the model using nDCG@20 and stopped the training when the
model showed the best performance for the validation dataset.

5.4 Experimental results
Table 2 shows a summary of the experimental results. Ta-
ble 2 (a) shows the result all for the whole users, while Ta-
bles 2 (b), (c) and (d) show the results those for the positively corre-
lated users, the uncorrelated users, and the negatively correlated
users, respectively. It can be seen that our method outperforms the
baselines in all of the performance metrics when we test them with
the data of all users, which clearly demonstrates the effectiveness of
our learning-to-rank method using the dwell time information. The
vanilla BPR improves upn ABPR in the same way as BPR (in-app
purchases+install). It is worth pointing out that the install-enhanced
BPR shows better performance, which demonstrates the effective-
ness of simultaneous pairwise ranking, which is consistent with
the findings of previous work [2].

The results for particular classes of users show that the perfor-
mance improvement by the proposed method is less significant for
the negatively-correlated users who tend to quit using applications
in which they have made an in-app purchase, compared with the
other two user groups; however, the result is still comparable and
shows that our proposed approach is promising.

6 CONCLUSION
We proposed the Bayesian personalized dwell-day ranking for mo-
bile game applications, a novel method that considers how long
users have dwelled with each item. Our proposed method is based
on the assumption that the longer they enjoy certain applications,
the more they like them and the greater the possibility of making
in-app purchases. Our proposed method shows significant improve-
ments over the baseline methods, especially for users whose pur-
chases have strong positive correlations with their dwell times. Our
future work will address the relatively difficult cases for the current
model such as those with the negatively-correlated users.
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significant for the positively correlated users.

(a) Results for all users

recall@5 recall@10 Precision@5 Precision@10 nDCG@5 nDCG@10
Item Popularity 0.0238 ± 0.0005 0.0471 ± 0.0008 0.0133 ± 0.0002 0.0145 ± 0.0002 0.0159 ± 0.0003 0.0265 ± 0.0004

BPR [12] 0.0676 ± 0.0010 0.1182 ± 0.0036 0.0274 ± 0.0005 0.0263 ± 0.0007 0.0463 ± 0.0004 0.0667 ± 0.0020
Install-enhanced BPR [2] 0.0702 ± 0.0005 0.1213 ± 0.0006 0.0275 ± 0.0003 0.0258 ± 0.0001 0.0473 ± 0.0013 0.0674 ± 0.0014

ABPR [10] 0.0661 ± 0.0036 0.1138 ± 0.0037 0.0252 ± 0.0016 0.0238 ± 0.0042 0.0463 ± 0.0021 0.0652 ± 0.0014
DBPR (ours) 0.0792 ± 0.0021 0.1293 ± 0.0015 0.0315 ± 0.0008 0.0276 ± 0.0003 0.0564 ± 0.0024 0.0761 ± 0.0015
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ABPR [10] 0.0592 ± 0.0021 0.1018 ± 0.0006 0.0215 ± 0.0009 0.0203 ± 0.0002 0.0410 ± 0.0018 0.0577 ± 0.0014
DBPR (ours) 0.0663 ± 0.0022 0.1150 ± 0.0019 0.0260 ± 0.0006 0.0243 ± 0.0004 0.0470 ± 0.0021 0.0660 ± 0.0012

(d) Results for negatively correlated users

recall@5 recall@10 Precision@5 Precision@10 nDCG@5 nDCG@10
Item Popularity 0.0384 ± 0.0005 0.0749 ± 0.0014 0.0227 ± 0.0002 0.0246 ± 0.0010 0.0255 ± 0.0002 0.0424 ± 0.0007

BPR [12] 0.0864 ± 0.0068 0.1486 ± 0.0042 0.0355 ± 0.0021 0.0349 ± 0.0013 0.0575 ± 0.0024 0.0834 ± 0.0019
Install-enhanced BPR [2] 0.0913 ± 0.0060 0.1597 ± 0.0050 0.0356 ± 0.0023 0.0355 ± 0.0008 0.0604 ± 0.0054 0.0881 ± 0.0049

ABPR [10] 0.0822 ± 0.0106 0.1410 ± 0.0089 0.0307 ± 0.0031 0.0308 ± 0.0016 0.0573 ± 0.0075 0.0816 ± 0.0069
DBPR (ours) 0.0997 ± 0.0047 0.1623 ± 0.0041 0.0394 ± 0.0020 0.0360 ± 0.0015 0.0707 ± 0.0050 0.0961 ± 0.0032
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