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ABSTRACT
In this paper, we present a data-driven approach to predicting adver-
tiser’s bid prices in a sponsored search system, like Google Search
Ads, with a new type of attention-based sequence learning model.
Instead of characterizing the advertisers’ bidding behaviors with
explicit assumptions (e.g., rationality models), as done in previous
work [15], we treat their bid adjustments as response to observable
metrics (e.g., impression count, click-through rate) and directly
predict the bid prices using recurrent neural networks combined
with a novel attention mechanism. The proposed model consists
of two recurrent neural networks, for capturing the dynamics of
metric sequence and bid sequence respectively, connected by a mir-
ror attention layer formulation that transfers location information
from metrics to bids. We evaluate the performance of the proposed
model, along with other baselines, on advertiser bidding history
data extracted from Google Search Ads system logs. We also demon-
strate the generality of the new mechanism by experimenting on
another domain: air quality prediction. Our empirical results show
the effectiveness of the modeling approach and the new mechanism
— we see a significant improvement over the baseline models for
both advertiser bid prediction and air quality prediction tasks.
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1 INTRODUCTION
Search advertising has become a major source of monetization on
the Internet, and plays a critical role in commercial search engines.
Understanding advertisers’ behaviors is essential for optimizing the
auction system underlying the sponsored search (e.g., tuning the
reserved price) and improving the efficiency of the associated ad
market. In a sponsored search system like Google Ads, an advertiser
creates advertising campaigns targeting different keyword queries.
Once a specific query is issued by a search system user, the relevant
∗This work was done while the author was at Google.
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campaigns are chosen to participate in an ad auction. Generalized
second-price (GSP) and its variants are among the more commonly
used auction mechanisms in sponsored search to select the relevant
ads. The bid price (named maximum cost-per-click bid in Google
Ads), also referred to simply as the bid, is the maximum amount of
money an advertiser is willing to pay for an actual click. It is one
of the important values an advertiser controls in a campaign. This
value together with quality of the ad determines the auction score
of the ad that enters the auction, which finally clinches the ranking
of the ad (the ad will not be shown if a particular reserve score is
not met).

There can be various reasons why advertisers make changes
to their bids. Some do not concern the sponsored search and are
just external causes, e.g., sales performance of a product. While
excluding those outside information, the bid changes would be
due to the advertisers’ response to the observable metrics in the
system such as impressions, click-through rate, etc. In particular,
as more and more advertisers adopt auto bidding strategies, the
bidding behaviors become increasingly relying on the metrics. Even
if the bids are assumed to be merely the consequences of metrics,
predicting them still poses many difficulties. First, the ads usually
come from a large variety of domains — bids related to luxury
products such as a diamond ring can be largely different from those
of regular consumer products such as packs of gum. They even
vary a lot within the same business category, e.g., budget wine and
fine wine. Second, advertisers have very different goals towards
advertising. Many advertisers hope viewers will click their ad —
but that’s not always the main goal. Some are primarily interested
in brand exposure, and are happy to have people to see the ad,
even if they don’t click it. Others optimize for high ranks in the
list of advertisements. Moreover, the advertisers may not always
bid rationally, leading to bidding patterns that are not optimal for
their goals. Finally, there can be large volatility in the bids. They
even vary a lot within a short time period. For all these reasons and
more, predicting bidding behaviors is quite challenging.

Prior work on the subject mostly focuses on modeling adver-
tiser’s bid strategy with explicit assumptions [1, 15]. The payoffs
and interactions among all competing advertisers are discussed in
depth with full or limited rationality. This approach can have a
number of drawbacks. First, the utility function needs to be close
enough to reality. In other words, the value of a click for an adver-
tiser has to be accurate. Second, modeling the interactions among
all competitors is not scalable and quickly becomes intractable as
the number of participating campaigns grows. Third, such models
generally ignore the different advertising goals, which depend on
numerous metrics or their combinations. For the reasons above, the
game theoretical modeling is seldom used in practice.
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Figure 1: Ad simulation system

In this work, we take a data-driven approach to modeling adver-
tiser bidding behaviors — it learns a bid response model of advertis-
ers from bidding history without strong explicit assumptions like
rationality. We think of the advertiser’s bid changes as response
to metrics, which are available to the advertiser as feedback from
the sponsored search auction system, while respecting the bidding
patterns. There are two types of dynamics in this modeling ap-
proach: (a) the evolution of metrics driven by the machinery of the
environment (auction system), and (b) the progression of bids based
on the actions taken by the agents (advertisers). Under this setting,
it is useful to consider advertiser models that capture both these
aspects of the dynamics. We start with a simple advertiser model
that assume no response, and then experiment with successively
more complex and realistic models. When we discuss the sequence
models, the metric sequence is called the “driver” sequence and the
bid sequence is called the “response” sequence. The single sequence
model deploys a recurrent neural networks (RNN) on the driver
sequence alone, while in the double sequence model, a separate
network is used for each of them. We also apply the conventional
attention mechanism to the driver sequence and further develop a
novel mechanism termed “mirror attention”, which transfers the
similarity information from the states of the driver sequence to
those of the response sequence.

Once the advertiser model is built, it can be used to study the
individual advertiser behavior or connected to an auction simulator
to give insights into ways to analyze the market and effectively im-
prove the auction system. Accordingly, we design an ad simulation
system as shown in Figure 1. The auction simulator simulates the
GSP auction based on input bids from advertiser model and the
historical data. The output of the auction simulator is aggregated
performance metrics, which are the same as those displayed to the
advertisers in the real system. The advertiser model then takes as
input the bid and metric history, and outputs new bids.

To assess the performance of the advertiser model, we collected
advertiser bidding history data for a particular time period in 2018
from Google Search Ads. We also evaluate the proposed attention
mechanism on a publicly-available air quality dataset.

2 RELATEDWORK
Modeling advertiser bidding behaviors in sponsored search has at-
tracted increased attention from the research community [2, 14–16].
Earlier work focused on the game theoretic modeling approach,
as we discussed in Section 1. Recent work [3, 7, 11, 13] has em-
ployed the data-driven approach. Broder et al. [3] and Ren et al.
[13] considered a simple functional relationship between bid and
features, while Cui et al. [7] predicted the bid landscape by combin-
ing templates and decision trees. These approaches do not model
time-dependant dynamics. On the other hand, Long et al. [11] mod-
eled the bids as a time series, however, the dependency on metrics
was left out.

The prediction task we discuss here is also related to classic time
series analysis[4, 12], with modern emphasis on learning models [6,
9]. The major difference is that our model structures involve the
driver and response sequences and address the response relation
between them.

3 ADVERTISER MODELING
Some widely adopted advertiser models take the path of treating
the sponsored search auction as a multi-player game [1, 5]. By
defining an appropriate utility function, the optimal bids are given
by the equilibrium of the game. The game is usually solved by some
specific algorithm together with an auction simulator. Due to the
fact that optimal response is not observed in practice, some models
take into account the willingness, capability and constraints of
advertisers to model their imperfect rationality in setting bids [15].
This has led to a body of work in advertiser modeling that focuses
on capturing the rational and irrational parts of bidding behaviors
explicitly through specific model assumptions [14, 15].

We start with a different view for modeling advertiser bidding
behaviors. To begin with, a brief overview of the Google Ads system
is provided here. Most of the definitions are derived directly from
Google Ads support page.1 Registered customers of Google Ads
can create advertisement campaigns. A campaign may contain
multiple ad groups, targeting different search query terms (known
as keywords). The advertiser can set a base bid for the campaign
and bid multipliers for each ad group. The final bid for each query
is the product of the base bid and its multiplier for the ad group.
The advertiser controls two values in each campaign:

• Maximum CPC bid – a number to determine the highest
amount that the advertiser is willing to pay for a click on
the ad

• Daily budget – an amount to specify howmuch, on average,
the advertiser would like to spend each day

The advertiser is also able to observe certain performance metrics
for their campaign. Some of these metrics are as follows:

• Impressions – a count of the number of times the ad is
shown on a search result page or other sites on the Google
Network

• Clicks – a count of the number of times the users clicked
on the ad

1https://support.google.com/google-ads/, snapshot on 2018.12.07

https://support.google.com/google-ads/
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• Conversions – a count of the number of actions when some-
one interacts with the ad and then takes an action that is
defined as valuable to advertiser’s business

• AdRank – a value that is used to determine the ad’s position
(where ads are shown on a page relative to other ads) and
whether the ad will show at all

• Actual CPC – the final amount that the advertiser is charged
for a click

In addition to the rawmetrics above, some other metrics are derived
by computing the following ratios:

• Click-through rate (CTR) – a ratio showing how often
people who see the ad end up clicking it

• Conversion rate – the average number of conversions per
ad click, shown as a percentage

The first step of our data-driven approach is to discretize the data.
Each day is chosen to be one time-step, so all metrics are aggregated
on a daily basis. We also consider the advertiser model on the
campaign level. In each step, the target is to predict the bid in the
next step given all the bid and metric history. Both bids and metrics
are normalized for each campaign to resolve the heterogeneity. Let
xt ∈ [0, 1]m denote the input vector of metrics at time t , where
m is the input dimension, and let ŷt ∈ [0, 1] be the output from
the advertiser model, which is the predicted response bid at time t .
Then, we consider the following functional form:

ŷt+1 = f (x0, . . . , xt ),

where f denotes generally the sequential prediction model. We
incorporate the true bid yt at time t as part of xt .

In addition to metrics, some demographic information of the
advertisers can also be retrieved — it is reasonable to believe that
this facilitates the understanding of their behaviors as well. The
following features, which are usually reported by the advertiser,
are also used in the prediction model:

• Language – the primary language of the ads landing page
• Country – the targeted country of ads
• Vertical – the specific markets that the ads are targeting
• Classification – the commercial sectors, business categories
and business attributes of the advertiser

Let z denote the features corresponding to these attributes of the
advertiser. The prediction model can now be written as:

ŷt+1 = f (x0, . . . , xt ; z).

The parameters of the sequential prediction model are estimated
on advertiser’s bidding history by minimizing an appropriate loss
between predicted bid ŷt+1 and the target, i.e., the true bid at the
next step yt+1. Suppose we have N sequences each of length T .
The training phase becomes solving the following optimization
problem:

min
θ

N∑
i=1

T∑
t=1

(
ŷ(i)t − y(i)t

)2
,

where θ denotes in general the model parameters. Here, the squared
loss is used. By modeling the bidding behaviors as response to
observable metrics, the advertiser’s bidding strategies are implicitly
learned by the model that is trained from historical data.

4 SEQUENTIAL PREDICTION MODELS
In this section, we describe several baseline models and the pro-
posed mirror attention mechanism. The models are introduced in
the order of increasing complexity, encapsulating intuitions derived
from advertiser modeling. For all the models, each type of the ad-
vertiser features is first passed through an embedding layer and
then served as input to the prediction layer.

4.1 Naïve forecast
A simple prediction model [12] assumes no response to metrics and
merely outputs the actual bid from the last step. It is sometimes
referred to as “naïve forecast” in learning community. The predicted
bid at time t + 1 is simply

ŷt+1 = yt .

4.2 Linear regression
The linear regression model [12] makes predictions based on the
inputs within a time window of certain size, while the output has a
linear dependence over all inputs. Considering the metrics in s time
steps, the model prediction takes the following form (as shown in
Figure 2):

ŷt+1 =
s∑
i=1

β⊤i xt−i+1,

where βi ∈ Rm is the weight vector for inputs at time t − i + 1. The
linear regression depending solely on previous targets is also called
auto-regressive (AR) model in statistics.

x

y

xt-s+1, ..., xt

yt+1

Figure 2: Regression model

4.3 Single sequence
The sequence modeling approach in machine learning extends
the linear regression model by allowing nonlinear and long-range
dependencies. Practically, the inputs at all previous time steps are
fed sequentially into a recurrent neural network (RNN) such as
long-short term memory (LSTM) [8]. A fully-connected layer is
stacked on top of the outputs of the RNN (shown in Figure 3). The
prediction of the model is emitted from the fully-connected layer.
Let ht be the hidden state vector of the RNN. The update rule can
be written generally as

ht = f (xt , ht−1).
In a regression model, the output only depends on part of in-

puts within the fixed window. Long range dependencies are not
well captured. The recurrent structure allows the information over
a relatively longer time period to be still relevant. This is essen-
tial in bid prediction since the response can be the result of some
accumulating factors.
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Figure 3: Single sequence model

4.4 Causal attention
Causal attention is a local attention mechanism that preserves the
causality over the series. At each time step t , the hidden states
within a window of size s from t − s to t − 1 is used to compute a
context vector ct with a score function. For two vectors u and v,
three score functions are commonly used:

score(u, v) =


u⊤v dot

u⊤W v дeneral

w⊤ tanh(W [u; v]) concat

,

where the vector w and the matrixW are model parameters to be
trained. The attention weight vector is then computed by

α t = so f tmax(score(Ht ,ht )),
whereHt = [ht−s+1, . . . , ht−1] is the matrix where the columns are
the hidden states within the time window, and the score function
is applied to the matrix column-wise, while the softmax function
converts the scores into a discrete probability distribution. Finally,
the context vector is calculated as the expectation of the hidden
states over the distribution α t :

ct = Htα t .

In our formulation, we use the attention mechanism over an
LSTM layer. The output of the model is built on top of the RNN and
the context vector ct by a fully-connected layer (see Figure 4).

xt

yt+1

ht

xt-1xt-s+1

ht-s+1 ht-1

ct

x

y

...

...

Figure 4: Causal attention model

The attention mechanism facilitates the prediction at step t by
querying relevant locations within the time window. This allows
long range experience to be directly reusable as reference.

4.5 Double sequence
In addition to modeling the dependency of yt+1 on the history of
x0, . . . , xt , a double sequence model takes into account the separate
evolution of yi ’s. Alongside the RNN over the input sequence,
another RNN that takes y0, . . . , yt as inputs is used to capture
the dynamics of the targets. Similar to previous models, a fully-
connected layer is stacked on top of the outputs of the RNNs. The

final output of the model is a combination of the hidden states
encoding the input history and those encoding the target history
(see Figure 5).

xt

yt+1

RNN

yt

RNN

x

y

Figure 5: Double sequence model

This architecture is a special case of single sequence that forces
the dynamics of the outputs to be modeled separately. In the se-
quential prediction context, the isolation of inputs and outputs
becomes natural — the inputs evolves independently according
to the environment, while the output sequence can have separate
dynamics in addition to the response to inputs. For example, the
bid sequence may satisfy some smoothness assumption that does
not allow abrupt change (e.g., based on advertiser policy).

4.6 Mirror attention
This novel formulation extends the double sequence with a special-
ized attentionmechanism. In attention-based learning, the attention
scores indicate where to focus in the sequence. Similar to causal
attention, the attention weight vector is computed based on the hid-
den states of the driver sequence. But instead of using this similarity
information with the driver sequence, it is applied to the response
sequence to aggregate the target history into a context vector. Let
Gt be the matrix of output hidden states within a window s in
the response sequence. The context vector in mirror attention is
defined as

ct = Gtα t .

The attention weight vector α t is computed with the states of the
driver sequence as before. Figure 6 shows this mechanism graphi-
cally.

yt

gtgt-1gt-s+1

ct

xt

yt+1

ht

xt-1xt-s+1

ht-s+1 ht-1

αt

yt-1

...

...

...

...yt-s+1

x

y

Figure 6: Mirror attention model

If attention mechanism is understood as using historical infor-
mation to facilitate prediction, it is reasonable to combine the in-
formation not only from the environment but also from the actions
taken before. When hard attention is used, the mirror attention
mechanism is equivalent to querying key-value pairs composed of
the driver and response states.
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5 ADVERTISER DATA
The advertiser data consist of two parts: (a) bidding history with
metrics, and (b) information regarding the campaign, as discussed
in the modeling approach (Section 3). The advertiser bidding history
dataset is fully anonymized— all identifying information is removed
to protect the privacy of the advertisers. Also, for privacy concerns,
we are not able to release the experiment data in this study for now.

5.1 Bidding history
The dataset is collected from auction system logs during a particular
period in 2018 in Google Search Ads. We retrieved the average daily
bid along with all metrics that are displayed to an advertiser in the
Google Ads dashboard. We noticed that some small campaigns were
created for testing purposes and their bidding behaviors are largely
experimental. So campaigns with number of clicks smaller than a
threshold were removed. Campaigns that are not active during this
whole period were also excluded.

The raw metrics usually exhibit large variations across cam-
paigns. Therefore, we normalized all raw metrics using a min-max
normalization for each campaign to alleviate this problem. The
normalized bids and metrics, fall into a range from 0 to 1. Hence,
the bid we are predicting is a relative value with respect to the
minimum and maximum bid of each campaign.

In addition to the raw metrics, we also included several derived
metrics, which are the ratios of raw metrics. The following derived
metrics are used:

• Click-through rate (CTR) – # clicks / # impressions
• Conversion rate (CVR) – # conversions / # clicks
• Cost-budget ratio (CBR) – cost / budget
• Cost per click (CPC) – cost / # clicks

Since some commonly seen bidding strategies are based on those
ratios, it is natural to believe that they have direct impacts on the
bids or at least are useful for prediction.

5.2 Campaign information
In addition to the logs, we also obtained background information of
each campaign as features, listed in Table 1 with their dimensions.
The features are treated as categorical inputs into the model. As the
categories usually have a long tail distribution, i.e., large numbers
of categories contain only a few instances, we merged all small
categories into a single one. Each feature is connected to the model
using an embedding layer with a specific embedding dimension.

Table 1: Campaign background information with their di-
mensions

Feature Dimension
Language 91
Country 225
Vertical 1,426

Classification 5,006

6 EXPERIMENTS
We evaluate the models on both the air quality dataset and adver-
tiser dataset. The models in our experiments will be referred to by
their abbreviations – NAIV: naïve forecast; REGR: regression; SSEQ:
single sequence; CATT: causal attention; DSEQ: double sequence;
MATT: mirror attention.

6.1 Air quality
The air quality dataset [10] contains the hourly PM2.5 data of the
US Embassy in Beijing, together with meteorological data from
Beijing Capital International Airport, from Jan 1st, 2010 to Dec
31st, 2014. Data from 2010 to 2013 are used for training and those
in 2014 are used for testing. The dataset resembles the advertiser
response in the sense that the concentration of pollutant has its
own evolution but is still influenced by meteorological conditions
like temperature, pressure, wind speed, cumulative hours of rain,
etc. We treat the meteorological information as the driver sequence
and the pollutant concentration as the response sequence.

To best mimic the serial pattern of advertiser bidding history,
we chunk the long sequence into short sequences of length 3 days
with 72 time steps. All features are normalized using a min-max
normalization. The data are further converted to four prediction
tasks: pollutant concentration after 3 hours, 6 hours, 12 hours and
24 hours, with increasing difficulty. The results are shown in Table
2.

Table 2: Comparison of model performances on air quality
dataset

3 hours 6 hours 12 hours 24 hours
NAIV 100.00 100.00 100.00 100.00
REGR 111.11 121.98 113.65 75.63
SSEQ 87.70 89.03 73.28 66.41
CATT 94.36 81.44 73.32 67.99
DSEQ 93.82 84.47 72.72 65.21
MATT 89.89 81.82 72.82 65.67

Themean squared error of baseline (naïve forecast) is normalized
to be 100.00, and we present the relative values of other models’
mean squared errors compared to this baseline. The smallest two
prediction errors in each task are highlighted in bold. As we can
see, modeling both the drive and response sequences (DSEQ or
MATT) achieves better results when we increase the difficulty of
the prediction task with larger predicting gap, and MATT performs
consistently among the best models.

6.2 Advertiser bidding history
We sample a fraction of advertisers in Google Ads during a con-
tinuous time period. The training and testing split is according to
campaigns. 80% of the campaigns are used for training and 20%
for testing. We also report the relative performances of the models
compared to the baseline, which is a naïve forecast model with one
day time difference, i.e., simply predicting the bid using the actual
advertiser bid on the last day. The results are shown in Table 3.

Evaluated on the advertiser data, the relative mean squared er-
rors are converted to percentages same as in previous experiments,
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Table 3: Comparisons of model performance on advertiser
bidding history dataset

Model Relative mean squared error
NAIV 100.00
REGR 85.62
SSEQ 80.82
CATT 74.11
DSEQ 64.96
MATT 61.98

where lower scores indicate better performances. Due to the com-
plexity in advertiser bid data, especially the dynamics of the bid
sequence, models such as REGR, SSEQ, CATT shows less improve-
ment with respect to the baseline. Double sequence models such
as DSEQ and MATT achieve lower errors. The best performance
comes from the proposed mirror attention mechanism.

To study the impact of model complexity, we fine-tuned the pa-
rameters of MATT with several configurations of networks to see
how much incremental gain it can provide. For the model parame-
ters of MATT, we denote the length of time window in a sample
asW , the dimension of hidden states in metric sequence asM , the
dimension of hidden states in bid sequence as B, the score function
dimension as S , and the embedding layer dimensions as a vector E.
Some representative results are detailed in Table 4 as percentage
improvements over the baseline.

Table 4: Parameter tuning of mirror attention model on ad-
vertiser bidding history dataset

Parameters Relative improvement (%)
W = 10,M = 8,B = 4, S = 10

E =[10, 10, 20, 20] 22.71

W = 30,M = 8,B = 4, S = 10
E = [10, 10, 20, 20] 27.54

W = 30,M = 16,B = 8, S = 10
E = [10, 10, 20, 20] 28.25

W = 30,M = 16,B = 8, S = 20
E = [10, 10, 20, 20] 28.75

W = 30,M = 128,B = 64, S = 40
E = [10, 10, 20, 20] 38.01

W = 30,M = 128,B = 64, S = 40
E = [10, 64, 64, 128] 37.74

For MATT models, the prediction accuracy improves with larger
model sizes. We noticed that the length of attention windowW
plays an important role in model performance, since it defines the
look-back period for advertiser’s decision-making. The dimensions
of hidden states in the driver sequence and response sequence
significantly contribute to the model performance as well. Score
dimension and embedding layer dimension are less effective though
adding extra training latency. Overall, we see substantial improve-
ment for MATT from simple structure to complex structure on the
bid prediction task, with careful parameter tuning.

7 CONCLUSION
In this paper, we introduced a new data-driven approach to adver-
tiser bid prediction. A novel mirror attention mechanism tailored
to the sequential prediction task was proposed. We experimented
with various models on the advertiser bidding history data, as well
as a benchmark air quality dataset, and showed the advantage of
the proposed mechanism. This work is a first step in our attempts
towards understanding advertiser behaviors via sequence modeling
– this study shows the potential of the proposed model that enables
us to simultaneously learn the advertisers’ response and optimize
the system for better performance. In future work, we will continue
working on more complex model structures to further improve the
prediction power. For the proposed mirror attention mechanism
itself, we also see the wide applications to other prediction tasks
such as user modeling, stock price prediction, etc.
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