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ABSTRACT
Device graphs are datasets that organize and associate the many
identifiers produced by PCs, phones, TVs, and tablets as they access
media on the internet. Digital cross-media, the delivery and mea-
surement of advertisements across screens, has grown increasingly
reliant on device graphs. In response to privacy and tracking con-
cerns, some web browsers limit the persistence of the identifiers
used in device graphing. Examples include Safari’s implementation
of Intelligent Tracking Prevention and user invoked incognito/private
browsing capabilities. Non-persistent identifiers create both a scale
and accuracy challenge for device graphing. Motivated by accurate
audience measurement, this paper demonstrates how measurement
and other entities in the digital advertising ecosystem can over-
come the lack of persistence of identifiers without the need for
techniques such as browser fingerprinting. The approach is based
on first constructing a device graph and applying community detec-
tion using persistent identifiers, and then appending non-persistent
identifiers to the original communities using a technique termed
graph backfilling. The resulting device graphs are of immense scale,
organizing more than 4.7 billion identifiers worldwide.

CCS CONCEPTS
• General and reference → Measurement; • Information sys-
tems → Online advertising;
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1 INTRODUCTION
Cross-media audience measurement refers to the measurement of
media and advertisement consumption across screens, including
PCs, phones, tablets, and smart TVs. The delivery of digital media
and advertisements, while platform dependent, involves a complex
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interaction between a client device (i.e., PC, mobile phone or smart
TV) and publishers, advertising networks, advertising exchanges,
advertisers, and audience measurement companies. These entities
collect information about devices as they request media and inter-
act with the advertising ecosystem. The information is used for a
variety of purposes including audience measurement, attribution,
auditing, fraud detection, and targeted advertising. The informa-
tion is also used to address the primary challenge of cross-media –
identification of a unique person across screens.

Absent login information, third party measurement entities rely
on two types of identifiers to track activity: i) third party browser
cookies, and ii) operating system (OS) level mobile advertising iden-
tifiers (e.g., Apple’s Identifier For Advertisers (IDFA) and Android’s
Advertising ID). Third party cookies, or cookie IDs, can identify a
user when they accesses the web from a web browser. OS level
advertising IDs, or ad IDs, facilitate identification of a user when
mobile apps and smart TVs access resources on the internet. We
refer to both types of identifiers generically as IDs.

While both types of IDs facilitate measurement and targeting
in the advertising ecosystem, they differ drastically in the practi-
calities of their use. Cookie IDs are domain specific. Consider the
following hypothetical example: a user visits shoes.com. The user
then visits trucks.com. The browser itself ensures a tenant of web
security: shoes.com and trucks.com have different cookie IDs for
the same device/browser. This makes it challenging for parties to
identify users that are interested in shoes and trucks without fur-
ther effort in relating the different IDs. This is largely overcome by
deploying third party tracking and measurement tags. For example,
both trucks.com and shoes.com may direct a browser to measure-
ment.com in the background, which has the same third party cookie
ID when re-directed from either domain. In practice, some domains
call tens of tracking and measurement domains in the background
[9], many of which re-direct to other measurement domains, in a
practice called cookie syncing.

Ad IDs are accessible by apps. Any app installed on a device,
provided a limited set of restrictions are met, can access the OS
level ad ID. Unlike cookies and domains, different apps will observe
the same ad ID for the same device. Hence, app developers can
share information tied to ad IDs with relative ease. Consider the
following example: the developers of a shopping app sell purchase
information connected to an ad ID to a third party. The developers
of a travel app do the same. The third party is immediately able
to find common IDs that are interested in travel and shopping,
and make that information available for others to use. A cottage
industry has grown around purchasing and selling information tied
to ad IDs. Both Google and Apple developer agreements have terms
that restrict usage; it remains unclear how enforcement is possible.

Tracking and user identification on the web has been given
significant attention by internet privacy advocates. As the primary
mechanism for cross domain tracking, the third party web cookie
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has acted as a lightning rod to internet privacy advocacy [27, 35]. In
response, browser developers have created mechanisms to reduce
the efficacy of the third party cookie. The release of iOS 11 includes
“Intelligent Tracking Prevention" [3], which aims to reduce tracking
of users by third parties by frequent resetting of cookie IDs. The
result, from the perspective of a third party measurement entity,
is an increasing number of increasingly ephemeral IDs. Browser
features such as ‘incognito browsing’ in Google’s Chrome browser
and ‘Private Browsing’ in Safari also create ephemeral cookies that
only exist for the duration a browsing session. An ephemeral ID
lasts, approximately, for a time period less than a day.

Internet device graphs are datasets that capture relationships
between IDs at scale. By associating IDs that belong to the same
household, user, and device, device graphs can be used to solve the
fundamental challenge of cross media measurement – identifying
users across screens. Previously published work on internet device
graphs [16, 22] has not addressed the issue of capturing ephemeral
identifiers. Instead, previous work has explicitly excluded these
identifiers as they result in a scale that is not amenable to graphing
and community detection.

Motivated by cross media audience measurement, this paper ad-
dresses the scale related challenges caused by including ephemeral
IDs in device graphing processes. Our approach, termed backfilling,
expands on the work in [22] and [16] and allows the number of
IDs organized by the graphing process to grow from 1.7 billion
nodes to 4.7 billion nodes (across twelve countries). The approach
first separates observed IDs into two sets 1) persistent ID and 2)
non-persistent or ephemeral IDs. The persistent IDs are graphed as
described in [22], resulting in household level cohorts. Any IDs that
are not assigned a cohort, including non-persistent IDs, are eligible
to be associated with the cohorts by ‘backfilling’. The backfilling
process, in short, associates cohorts with a hashed IP addresses at
relatively short times scales. The IDs associated with the hashed IP
are then assigned to the cohort, provided certain conditions of the
algorithm are met. It is notable that the approach scales with the
number of nodes in the graph, not the number of edges.

We showcase our methodology with a large dataset of more than
1.8 trillion internet events collected over the course of six weeks
fromComscore’s digital census network. Comscore’s census network
is comprised of web page, mobile application, advertisement, and
video tags deployed across the internet. The tags generate server
logs of client requests for web pages, actions in mobile applications,
video requests, and advertisement deliveries. The dataset includes
3.4 billion persistent IDs, and more than 7.8 billion non-persistent
IDs across twelve countries. Of these 11 billion IDs, the original
graphing process organizes 1.7 billion IDs into small cohorts that
approximate residential households, and then appends 3 billion
additional IDs to those cohorts though backfilling. The system is de-
ployed in a production Hadoop Map Reduce environment, and runs
weekly. We report on results and the details of the implementation
in Section 3.

Finally, given the rapidly changing digital advertising ecosystem,
we discuss privacy and ethics associated with device graphing in
depth in section 4. Our use case is accurate audience measurement
and we advocate that privacy considerations are different for dif-
ferent applications. Our aim is to shed light onto difficult privacy

questions and provide context for ongoing conversation. We also
extrapolate on three important privacy related aspects of our ap-
proach. First, devices that return a blank or null ID are excluded
in the process. Second, we do not attempt to fingerprint devices.
Third, our device graphing approach is termed probabilistic (see
[22]) meaning the result is incorrect a non-negligible percentage of
time, providing plausible deniablity.

To summarize, this paper makes a number of contributions. First,
we propose an algorithm for device graphing that scales propor-
tionally to the number of nodes in the graph, not the number of
edges. To the best of our knowledge, this is the first study of the
problem of grouping multiple IDs at a scale exceeding four billion
identifiers. We demonstrate the efficacy of our approach on unique
datasets of immense scale, report on basic characteristics of the
output, and validate using a unique ground truth dataset.

2 METHODOLOGY
This section formalizes notation and defines the problem.G = (V ,E)
is a graph, with nodesV and weighted edges E. e ∈ E is a weighted
edge, which is a two element subset ofV with a real valued weight:
e = (i, j,w) ∈ V × V × R. A node i ∈ V is a an ID (e.g., a web
cookie or advertising ID). Groupings of nodes are termed cohorts
Cj = {i, . . . } ⊂ V , j = 1, . . . , and satisfy Cm ∩ Cn = {} for any
m , n. In this paper, we associate additional IDs with the cohorts.
The cohorts, after additional IDs are included, are denoted C+j ,
where Cj ⊂ C+j . The nodes of the graph are partitioned into two
sets: Vp, the set of persistent IDs, and Vnp, the set of non-persistent
IDs, with Vnp ∪Vp = V and Vnp ∩Vp = {}. For our purposes, the
approximate size of Vp is on the order of one billion nodes. Vnp is
significantly larger, approximately ten times the size of Vp.

Cohorts are small groups of closely related IDs. In this paper,
the cohorts approximate groups of IDs that share a residential
household or small business place. The cohorts can be tuned to
approximate person level groups or larger internet communities.

Device graphing faces significant scale challenges: the size of the
graph can surpass 10 billion nodes, beyond the scale at which even
the simplest community detection algorithms can run efficiently.
Previous efforts in device graphing have dealt with this issue by
dividing the node setV intoVp andVnp and then simply discarding
Vnp [22]. This paper addresses that shortcoming by answering the
following question: how can i ∈ Vnp be associated with the cohorts
C1, . . . , in light of the prohibitive scale of Vnp? In other words,
given a set of disjoint cohorts C1, . . . and a set of unassigned IDs
i < {∪jCj }, how can we use additional information to associate the
unassigned IDs, i < {∪jCj } with the cohorts C1, . . . ?

2.1 Graphing
Starting with a corpus of data consisting of tuples of (ID, IP-address,
timestamp), V is defined as the set of IDs appearing in the corpus.
V is partitioned into Vnp and Vp using the time-stamps associated
with each ID; for example, Vnp is the set of IDs that have difference
between the last and first timestamp less than twenty-four hours.

Next, the corpus of data is restricted to tuples (ID, IP-address,
timestamp) associated with IDs in Vp. The IP co-location algorithm
of [22] proceeds as follows. On the first epoch, for each IP in the
dataset, an edge is created between every pair of IDs that share an



IP. The weight of the edge is the inverse of the number of IDs (inVp)
observed on the IP address. The process is repeated for T epochs,
resulting in T graphs. The full graph, G, is created by summing
the weighted edges across the epochs. Full details are presented in
Algorithm 1 of [22].

Prior to community detection, low weight edges are discarded
from the graph, resulting in the culled graph, denoted Gγ . The
culled graph is defined as Gγ = (Vγ ,Eγ ), with Eγ = {ei : wi > γ }.
Any node with all edges below γ are excluded from the node set;
Vγ = {i :

⋃
j wi, j > γ }. The parameter γ is used to tune and adjust

the size of the output communities. The nodes in Vγ are termed
graphed IDs, while IDs in V \Vγ are termed orphaned IDs.

After graph creation is complete, community detection algo-
rithms are applied to Gγ resulting in cohorts that associate IDs
from the same household, machine, or person. While [22] proposes
use of Louvain Modularity [7], a number of community detection al-
gorithms are appropriate. The result is a set of communitiesC1, . . .
with {

⋃
j Cj } = Vγ ⊂ Vp. This process is summarized on the left

side of Fig. 1.

Figure 1: Device graphing with backfilling. The left side of
the digagram shows the process described in [22] in relation
to the backfilling algorithm described in Alg. 1.

2.2 Backfilling
The backfilling algorithm requires two parameters: α the persistent
ID threshold, and γ , the edge weight threshold. The input to the
algorithm is i) tuples of (ID, IP-address, timestamp) for all IDs in V ,
and ii) cohorts C1, . . . that partition Vγ .

The backfilling algorithm begins as as follows. On epoch 1, each
IP address that appears in the dataset is mapped to zero or one co-
hort Cj . The mapping is determined by the composition of graphed
IDs that appear on the IP address. If graphed IDs on that IP from
a single cohort Cj comprise a strict majority among all graphed
IDs on that IP, then the IP is mapped to Cj . Next, all orphaned IDs
(i.e, i ∈ V \ Vγ ) on the mapped IP inherit the the same mapping.
For each orphaned ID, a list of mappings to cohorts across IPs and
epochs, denoted [j∗i,k,t ]k,t in Alg. 1, is maintained. The modal ele-
ment of the list, if it exists, is chosen as the final assignment of the
orphaned ID to a single cohort. The orphaned IDs assigned to Cj

and the original elements of Cj together define C+j . The algorithm
is described in Alg. 1.

Algorithm 1 Device Graph Backfilling
1: paramaters: minimum edge weight γ , persistence threshold α
2: input: observations: (ID i , IP address k , time t )
3: define Vp: set of persistent IDs, Vnp: set of non-persistent IDs
4: build graph [22] {(i , k , t ) for all i ∈ Vp }, γ → Gγ = (Vγ ,Eγ )
5: community detection [22] Gγ → Cj , j = 1, . . .
6: for each IP k , each time step t
7: define Ik,t = {i : i observed on IP k on time t}
8: define j∗k,t = {j : |Cj ∩ Ik,t |/|Ik,t ∩Vγ | > 1/2}
9: for each i ∈

{
Ik,t ∩ {V \Vγ }

}
10: define j∗i,k,t = j∗k,t
11: j∗i = mode [j∗i,k,t ]k,t for all i
12: C+j = Cj ∪ {i : j∗i = j} for all j = 1, . . .

3 EVALUATION
In this section we apply Alg. 1 to an internet scale dataset provided
by Comscore. The dataset is restricted to data collected in the US.
We note that the numbers presented in this section are smaller
than those presented in the introduction, reflecting the restriction
to the US traffic. We begin with several paramaterizations of the
persistent ID device graph of [22]. Our objectives are to demonstrate
the merits and effectiveness of Alg. 1, and to validate the results
against a unique ground truth dataset.

3.1 Data and Implementation
The data used to implement and validate our methodology is ob-
tained from Comscore’s digital network, one of the largest in the
world. This data is collected through the deployment of either
JavaScript/HTML tags or SDK tags across a wide variety of web
pages, mobile applications, video requests, advertisement deliver-
ies, and other distributed content. In the case of both techniques, a
unique record is reported directly to Comscore’s collection infras-
tructure when a client machine locally executes the tags.

For this study we use data collected over a 42 day (6 week) period.
This data originates from the US between the dates of February
25, 2019 and April 7, 2019, with the epoch used being a UTC day.
Alg. 1 was implemented on this data in Apache Pig [33], running
on an Apache Hadoop environment with 500+ worker nodes. The
parameters used to specify the initial persistent device graph were
tuned. We report results for γ = 0.4 to 2.0 in 0.2 increments.

3.2 Characteristics of Backfilled Cohorts
The backfilled cohorts, for γ = 0.8, consist of 2.57 billion IDs, an
increase of 1.74 billion IDs when compared to the original cohorts.
This increase shows the effectiveness of the backfill process, and
how it can be used to alleviate the challenges posed by ephemeral
IDs. Table 1 shows values associated with Fig. 1 for γ = 0.8.

While the increase in graphed IDs demonstrates the effective-
ness of Alg. 1, it also highlights the impact of γ , which in effect,
creates a trade-off between the number of IDs assigned a cohort



Figure 2: Number of IDs in initial cohorts and number of IDs
added via backfill process in the US, plotted across various
values of γ .

Figure 3: Mean precision-recall curve showing verification
of cohorts, Cj and cohorts after backfill, C+j , against the
ground truth communities in the US.

in the original graph processing, and the backfilling process. In-
creasing γ reduces the number of graphed IDs, but allows more IDs
to be assigned during backfilling. Likewise, decreasing γ increases
the number of IDs assigned a cohort in original graphing process,
and decreases the number of IDs eligible for assignment during
backfilling.

Fig. 2 shows the results of varying γ . Changing γ also has an im-
pact on computational complexity of the process. As γ is decreased
and the number of graphed IDs increases, community detection
algorithms become prohibitive. At smaller γ , their implementation
becomes all together intractable. Alg. 1 overcomes this problem;
IDs that would have been discarded at higher γ are still eligible for
inclusion in the cohorts.

Backfill Statistics, US
raw rows 1.87T
all IDs , |V | 6.92B
persistent IDs, |Vnp | 1.77B
graphed IDs, |G0.8 | 832M
number of cohorts, |{C1, . . . }| 180M
ID count, initial cohorts, |{i ∈ ∪jCj }| 832M
ID count, cohorts via backfilling, |{i ∈ ∪j {C

+
j \Cj }}| 1.81B

Table 1: Summary statistics of the device graphing and back-
filling process in the US, γ = 0.8.

We note that of the total IDs in the US (|V | = 6.92 billion), 832
million are assigned a cohort in the original process, and 1.81 billion
are assigned a cohort in the backfilling process. This leaves 4.28
billion IDs unassigned. Many of these IDs are excluded as they are
not associated with an IP address assigned a mapping as defined in
Alg. 1. The requirements of the association can be relaxed to allow
for inclusion of more IDs.

3.3 Validation
Validation was achieved utilizing the Comscore Total Home Panel
(THP), which collects data from participants’ homes via customized
wireless routers, providing a ground truth dataset. The customized
routers capture statistics on web traffic for all device in the house-
hold, as well as both an obfuscated version of the media access
control (MAC) address and any device IDs (3rd party cookies and
advertising IDs) associated with the devices. Comscore’s THP pro-
vides thousands of ground truth households, each consisting of one
or more IDs. The IDs associated with a THP household are used
as ground truth to to calculate precision and recall for the backfill
process. Precision, defined as the fraction of IDs in a cohort that are
also in the same ground truth household, and recall, the fraction of
IDs in the the ground truth household that are also in the cohort,
are defined formally in [22], eqn. (1) and eqn. (2).

Fig. 3 shows the precision-recall curve of the cohorts before
backfilling, Cj , and after backfilling, C+j . The plot is generated by
sweeping across selected values of γ . As expected, as original co-
horts Cj are subsets of C+j , they exhibit significantly higher recall,
while coming close to maintaining precision.

4 PRIVACY
Recent years have seen growing concerns over user privacy on
the internet. While the concerns usually manifest as a discussion
of cross domain tracking, privacy concerns related to digital IDs
in general have been discussed on many forums, including aca-
demic literature, popular press, and government forums. Numerous
articles have appeared calling for government regulation on track-
ing (e.g., [17, 21, 31]). Legislation has been passed to address these
concerns in various geographies, including the General Data Pro-
tection Regulation (GPDR) and the California Consumer Privacy
Act (CCPA) of 2018. In the EU it is illegal to track users via IDs
(either cookies or advertising IDs) without explicit consent [34];
this and other GDPR compliance requirements already have had an
impact on third-party tracking [2]. In California, the CCPA of 2018



[6], which is slated to be enacted in 2020, while not as extensive
as GDPR, requires companies that store IDs and associated infor-
mation to enable opt out mechanisms that remove a user’s IDs (i.e,
cookies and advertising IDs) from the companies databases. A result
of the legislation is companies voluntarily avoid doing business in
these geographies prior to the enactment of new regulation.

Beyond government regulation, privacy concerns have sparked
development of browser capabilities that limit the persistence of
third party cookies. Starting with the release of iOS 11, Apple now
includes Intelligent Tracking Prevention [3] (ITP) in the Safari web
browser. ITP aims to reduce tracking by frequent resetting of third
party cookie IDs. Tracking cookies are identified through a machine
learning classification algorithm. Safari’s implementation of ITP is
irrelevant to many third party measurement domains since Safari
rejects placement of any third party tracking cookie that is not
associated with a domain directly visited by a user. This implies
that most tracking entities (other than google.com, for example) are
unable to even place a cookie. Apple has lauded it’s own efforts
to hinder third party tracking cookies through recent marketing
campaigns [12]. The authors estimate that such efforts are symbolic
at best, as no similar efforts have been taken by Apple related to
the more persistent and universal IDFA.

While measures to increase privacy and reduce unwanted track-
ing on the internet are often seen as commendable, the issue is
complex. As the driving financial engine for the internet, the adver-
tising ecosytem has an obligation to capitalize on efficiencies. Such
efficiencies include targeted advertisements and, our primary in-
terest, accurate audience measurement. The ecosystem also has an
obligation to respect privacy as specified by a user. While legislative
measures and browser capabilities that limit tracking are seen by
many as positive developments, this paper showcases that entities
with sufficient data assets are able to reconstruct associations, mak-
ing an argument that more can be done to limit tracking. The use
case of such efforts play an important role in arguing for or against
such techniques as acceptable. We posit that audience measurement
statistics are an important, acceptable use case. The argument for
targeted advertisements is a similar but distinct discussion.

The device graphing and graph backfilling processes described
here exhibit a number of properties that conform with established
privacy norms. First, the work herin, and in [16, 22], do not consider
devices that return a blank or null ID, which is an indication that a
user has selected to opt out of ‘ad tracking’ in either a browser or
on a mobile device. In fact, these data points are actively excluded
in the process. Second, the device graphing process we present
does not rely on fingerprinting techniques, which often actively
attempt tomitigate user privacy preferences. Also, it is worth noting
that the device graphing approach here is probabilistic (see [22]
for a detailed discussion). The validation results in prior sections
imply the graph, while often correct, is indeed incorrect a non-
negligible percentage of the time, providing an additional layer
of privacy through plausible deniability. A number of other tools,
including ad blocking software, help limit tracking and facilitate
cookie management and removal (e.g., [30], [23]). In addition to
measures that limit tracking, numerous studies have focused on
understanding the prevalence of tracking via IDs and the related
issue of information leakage (e.g., [9, 14, 19, 20, 23, 24, 26]).

Incomplete device graphs result in inefficiencies throughout the
digital advertising ecosystem. Browser features that limit ID persis-
tence further favor entities with access to first-party deterministic
graphs based on email, login, or other information (for example,
Google, Apple, Facebook and others). Third-party measurement
companies, such as Comscore, face increasing challenges in provid-
ing accurate, independent tools for measurement of audience size
and validation of delivery of digital advertisements. Some advertis-
ers not privy to deterministic graphs estimate resulting losses into
the hundreds of millions of dollars [5]. Regardless of perspective,
device graphs will continue to play a role in online advertising.
Making accurate probabilistic graphs in the face of ephemeral IDs
is a challenging problem. We posit that by describing techniques for
making these associations, we can expand the conversation about
how best to describe and implement privacy policies to protect the
privacy requests of users.

5 RELATEDWORK
There is limited academic literature related to device graphing used
for audience estimation beyond [16, 22]. Work in device graphing
and more generally identification on the internet can be divided
broadly into two categories: i) related work directly pertaining
to device graphing, much of which is not published in academic
literature, and ii) device fingerprinting techniques, which have a
much more extensive history in academic publication.

As discussed in Section 2, our work is an extension of two papers
in device graphing [16, 22]. The first of the two papers by Malloy
et al. is the starting point for the algorithms described here. That
work provides a generic framework for construction of a device
graph based on colocation. The approach in [22] uses IP-colocation
i.e., the coexistence of two IDs on a given IP address, observed
longitudinally in time, to establish relations between IDs, which
was also summarized in Section 2.2. It then employs a community
detection method for creating cohorts that approximate groups
of IDs that belong to the same residential household. While this
method is the basis for the backfilling approach described here,
we only require that some grouping of persistent identifiers is
done – cohorts that approximate households are not required. The
second paper by Malloy et al. assumes that coarse associations
have been made using colocation, and further refines the graph to
create user and device level groupings. The approach relies on a
supervised machine learning approach – in particular, an extension
of Naive Bayes. Beyond these two publications, little academic or
no literature exists with the taxonomy ‘device graph’.

Commerical literature with the ’device graph’ taxonimy is much
more extensive, as commercial device graph offerings are widely
available e.g., [1, 4, 37]. Our work can be viewed as extension,
improvement, and formalization of many of the ideas encapsulated
in the commercial device graph literature. While there is limited
academic literature using the taxonomy ‘device graphs’ beyond
[16, 22], there is academic work under the taxonomy ’cross device
tracking’. [36] aims to provide a method to detect when cross device
tracking occurs, and its prevalence. A privacy focused analysis of
cross device tracking is presented in [38].



The ability to identifiy a user/browser has long been persued,
and led to the development of a variety of approaches beyond cook-
ies and advertising IDs. One example, the Evercookie, aims to store
information in a number of different client-accessible locations that
cannot be easily cleared by a client [18]. Adobe and Microsoft have
created similar functionality, which has since been discontinued
for privacy and security reasons [11, 25]. Other examples of altern-
tative identifiers include device fingerprinting techniques. These
techniques use features readily accessible for unique association at
both the browser level [13, 28] and device level (also termed cross-
browser identification) [8, 10]. Perhaps the most popular approach
is canvas fingerprinting, in which the browser draws an object on
the HTML canvas and hashes and encodes the result to create an
identifier [15, 29]. Cross-browser identification, the identification
of associated users across browsers on a single machine, has relied
on either IP address-based [8] or hardware and OS features [10],
and is known to have varying levels of accuracy [32].

6 SUMMARY AND FUTUREWORK
This paper extends the work of [16, 22] by proposing a technique
termed backfilling, that allows inclusion of the many ephemeral
IDs (i.e., web cookies and advertising IDs) in the device graphing
process. The approach operates as a bolt-on process to the previous
device graphing techniques, and drastically increases the scale of
the relationships identified between devices. The process operates
by associating cohorts of persistent IDs with a hashed IP address,
and then linking non-persistent IDs to those cohorts via hashed IP
address associations. We demonstrate our technique at internet
scale, and present details of the implementation. The resulting
dataset organizes and relates more than 2.6 billion IDs in the US, and
4.7 billion IDs worldwide, into cohorts that correspond to residential
households. To validate the approach, we show the process greatly
improves the accuracy of the device graphing process, exceeding
75% mean precision and mean 80% recall when testing against a
ground truth dataset. In total, processing of the graphing algorithms
including the backfilling process, validation, and evaluation phases
in the US complete in hours in a large Hadoop cluster. The device
graphing pipeline remains very modular - the backfilling process
can be bolted on to any number of core methods for building an
initial device graph using persistent IDs.
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