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ABSTRACT
We propose a practical yet rigorous near-optimal bidding strategy
for demand-side platforms (DSPs) that scales to thousands of adver-
tising campaigns programmatically bidding in real-time (RTB) in
billions of auctions per day. The strategy is logically derived from
two different —stylized but realistic— constrained global profit max-
imization problems, so there are no ad hoc rules for pacing, pricing,
etc. The approach relies on a few assumptions that we identify and
analyze, providing a basis for further extensions to other kinds
of problem/contract. It is expected to find a near-optimal solution
by solving a convex relaxation of the original hard combinatorial
problem. It is based on Lagrange duality so it has a sound, well-
known, theoretical foundation. Optimal bids for first/second-price
auctions can be cheaply computed in real-time given the shadow
prices of the problem constraints; on the other hand, shadow prices
are daily updated by a simple subgradient descent algorithm that
converges logarithmically. The algorithm should be robust in the
face of noisy real-life environments and of market seasonal oscil-
lations and structural breaks. For a special case, we also offer an
alternative derivation based on an intuitive continuous relaxation
argument that reinforces our confidence in the general solution
proposed here.
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1 INTRODUCTION AND PRELIMINARIES
Jampp is a demand-side platform (DSP) that manages thousands of
advertising campaigns for hundreds of clients (advertisers). Adver-
tising inventory coming from multiple sources is programmatically
bought by real-time bidding (RTB) in billions of (mostly second-
price) auctions per day. With each RTB auction certain information
about a user (audience) currently visiting a web site or mobile app
is made available for our bidder to infer1, in a few milliseconds,
the probabilities of getting different events of interest (clicks, app
installs, in-app events, return-on-ad-spend, etc.) and to choose a
campaign, an ad (banner) and a bid price on behalf of clients run-
ning campaigns that target the auction profile. As a firm operating
1The inference problem is interesting per se and far from trivial, but here we assume
we already have proper estimates at hand and take those estimates as a given from
now on in order to focus on the economical optimization problem. Our post “Learning
from the RTB market” in https://geeks.jampp.com/ gives further details about our
approach to the learning problem.

in a market economy, Jampp maximizes profit subject to constraints
imposed by the goals of its clients (e.g. restrictions on the volume
and cost of purchases). An auction has to be weighted not only by
the expected profit of assigning it to each campaign, but also by the
expected impact of that assignment on the constraint set of each
campaign; i.e. , the “shadow prices” of constraints have to be taken
into account. Given the huge number of non-divisible auctions to
be considered, this is a hard combinatorial optimization problem
that we can only expect to approximately solve in a relaxed form.
Finding a good relaxation of the constraints is our main task in
what follows, but first we need to establish a formal setting.

Definition 1 (Campaign).We have n advertising campaigns
(i, j ∈ [n] = {1, · · · ,n}) competing for the RTB market.

Definition 2 (Market). The RTB market consists ofm auctions
(k ∈ [m] = {1, · · · ,m}), each one characterized by:

• wk (b): the probability of winning the auction by bidding the
amount b.

• ck (b): the expected cost (or clearing price) of winning the auc-
tion by bidding the amount b. 2

• ek (i,a): the probability of getting an event of interest given that
we won the auction and displayed ad a in behalf of campaign i .

Bids belong to the interval (0,b]while ads belong to the finite set
[a] = {1, · · · ,a}. 3 For each auction, we have to decide whether we
ignore it or, otherwise, we assign it to some campaign and choose
a bid and an ad for it. This policy constitutes our bidding strategy:

Definition 3 (Bidding strategy). A bidding strategy x : [m] →

[n] × [a] × (0,b] ∪ {(0, 0, 0)} is a mapping from auctions to vectors
(i,a,b), where i is a campaign, a is an ad and b is a bid. As a conven-
tion, ignored auctions are mapped to the vector (0, 0, 0). We call X the
set of all possible strategies.

We also define some functions that aggregate auctions across
campaigns in order to simplify the exposition of optimization prob-
lems in the following sections.

Definition 4 (Aggregate functions). Given a strategy x and a
campaign i :

• Ci (x) =
∑
(k ,(j ,a,b))∈x | j=i wk (b) · ck (b) is the aggregate cost

function.
• Ei (x) =

∑
(k ,(j ,a,b))∈x | j=i wk (b) · ek (j,a) is the aggregate

event function.

2 MBFP AND FBMP BIDDING PROBLEMS
With the above definitions in place, we can now state a first version
of the bidding problem. In fact, Jampp daily deals with two different
types of problem:

Definition 5 (MBFP:MaximumBudget, Fixed Price). The client
sets an upper bound B̄i to the amount of money he wants to spend

2Which is always b for first-price auctions.
3Not all ads are available to every campaign, but here we can disregard this fact without
loss of generality.

https://geeks.jampp.com/data-science/learning-rtb/
https://geeks.jampp.com/data-science/learning-rtb/
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(the campaign budget) and a price p̄i he will pay for each goal event.
Formally:

max
x ∈X

∑
i ∈[n]

p̄iEi (x) −Ci (x) s.t.
∧
i ∈[n]

p̄iEi (x) ≤ B̄i

or, equivalently maxx ∈X |д(x )≤®0 f (x) where:

• f : X → R | f (x) =
∑
i ∈[n] p̄iEi (x) −Ci (x).

• д : X → Rn | д(x) = (p̄1E1(x) − B̄1, . . . , p̄nEn (x) − B̄n ).

Definition 6 (FBMP: Fixed Budget,MaximumPrice). The client
commits herself to pay a total amount b̄i in case we deliver enough
events to put her unitary price below P̄i . Moreover, we are not allowed
to get a margin over costs above M̄i

4. Formally:

max
x ∈X

∑
i ∈[n]

b̄i −Ci (x) s.t.
∧
i ∈[n]

b̄i
Ei (x)

≤ P̄i ∧ 1 ≤
b̄i

Ci (x)
≤ 1 + M̄i

or, equivalently maxx ∈X |д′(x )≤®0 f ′(x) where:

• f ′ : X → R | f ′(x) =
∑
i ∈[n] b̄i −Ci (x).

• д′ : X → R3n |

д′(x) = (b̄1 − P̄1E1(x), C1(x) − b̄1, b̄1 −C1(x)(1 + M̄1), . . . ,

b̄n − P̄nEn (x), Cn (x) − b̄n, b̄n −Cn (x)(1 + M̄n ))

Notice that, in both cases, the objective is our profit. This means
we can additively aggregate MBFP and FBMP problems in a way
that makes economical sense, i.e. by using a monetary measure
(profit) that works the same no matter the kind of contract. Hence,
our entire strategy can be derived from a single company-wise
optimization problem.

3 MBFP CONTINUOUS RELAXATION
Consider a simpler version of MBFP with just one campaign i
and both bid b and ad a fixed in advance. A strategy can then be
represented as a {0, 1}m vector indicating which auctions will be
selected for bidding. Let’s refer to piwk (b)ek (i,a) = pwkek = ωk as
the weight of auction k and towk (b)(piek (i,a) −ck (b)) = wk (pek −
ck ) = νk as the value of auction k . We can also think of the budget
B̄i = B̄ = W̄ as the weight capacity of the campaign. Thus we
have reformulated a simplified version of MBFP as an instance
of the famous 0-1 knapsack problem, which is a combinatorial
optimization problem known to be NP-hard. The problem is hard
because we are packing indivisible chunks of arbitrary weight and
value. One might think of packing these chunks in decreasing
“specific value” ρk = νk/ωk order but, in general, there will be a
next chunk k∗ to be packed that does not fit the knapsack anymore,
leaving wasted space that could have been put to better use by some
other permutation of chunks. But if chunks were divisible, chunk k∗
could have been split in a way that the allotted portion exactly filled
the knapsack. Indeed, this is Dantzig’s solution for the continuous
relaxation of the 0-1 knapsack problem (see [5] and [8]).

Still, knapsack is just a simplified instance of MBFP. In our way
back to recover full MBFP we start by reintroducing an arbitrary
number of campaigns. Value νik , weight ωik and specific value ρik
will again depend on both auction k and campaign i . Now, consider
campaigns i and j and an amount of infinitely divisible auctions
assigned to each one of them in a way that exactly exhausts budgets

4This clause is necessary because an ensured income b̄i would induce a profit maxi-
mizing agent to reduce costs until barely meeting constraint P̄i .

Bi and Bj and is consistent with our ρ-ranking when looking at
each campaign on its own. Consider also an auction k that was
totally or partially assigned to campaign i . Was this assignment the
right one? If a fraction α of k with weight αωik is transferred to
campaign j, campaign i will have to compensate its loss by buying
the same weight at its “margin” ρik∗

i
; conversely, campaign j will

have to forgo weight αωjk at its own “margin” ρ jk∗
j
. All in all, the

net value of the transfer will be αωik (ρik∗
i
−ρik )+αωjk (ρ jk −ρ jk∗

j
).

If this net value is above zero, then the transfer is profitable and
the original assignment was suboptimal. The condition is readily
reformulated as ωjk (ρ jk − ρ jk∗

j
) > ωik (ρik − ρik∗

i
). The resulting

rule is: pick the campaign i with highest positive ωik (ρik − ρik∗
i
),

in case there is one; pick no campaign otherwise.
We are still supposing divisibility but, because each auction

is so small and the market is composed of so many billions of
auctions, this is a natural way of modelling the RTB market. We
are also assuming that campaign i can always extend its “margin”
of purchase by buying some fraction of an auction with specific
value quite close to ρik∗

i
; again, given the sheer volume and variety

of RTB markets, this seems a relatively mild assumption. Finally,
throwing bids and ads again into the mix adds nothing conceptually
new: we simply pick the bid and ad pair that maximizes ρik . So,
given a vector ρ = (ρ1k∗

1
, . . . , ρnk∗

n
) of “worst specific values” for

each campaign, so to speak, we have designed a rule to optimally
assign auctions to campaigns. Of course, the focus has now changed
to finding the optimal ρ that exactly exhausts budgets, but this is
easier than permuting billions of auctions. In practice, we adjust ρ
a bit every day in the direction that most promotes the completion
of budgets, as will be detailed in sections 7 and 8.

4 MBFP DUAL PROBLEM
Something along the lines presented in the previous section was our
main bidding strategy during the last two years. But the increasing
number of FBMP campaigns and the difficulty of reasoning about
the FBMP problem in a similar fashion, plus the lack of theoretical
convergence results, pressed us for a different foundation that sup-
ported both MBFP and FBMP and provided some basic theoretical
warranties. Fortunately, the Lagragian relaxation framework satis-
fies those requirements. Interestingly enough, as we shall soon see,
the algorithm derived above is recovered in a much more straight-
forward —though perhaps less intuitive— manner as the solution to
a dual problem, thus reinforcing our confidence in the algorithm.

From definition 5 above it is clear that the Lagrangian of MBFP is:

L(x, θ∗) = f (x) + ⟨θ∗,д(x)⟩

=
∑
i ∈[n]

p̄iEi (x) −Ci (x) + θ
∗
i (p̄iEi (x) − B̄i )

Reminding the definition 4 of aggregate functions, we realizeL(x, θ∗)
is a sum over a large number of terms, one term for each auction
(plus some terms θ∗i B̄i which don’t depend on strategy x ):

uk (i,b,a) = wk (b)(p̄iek (i,a) − ck (b)) + θ
∗
i wk (b)p̄iek (i,a)

This additive structure implies that the expected contribution of
each auction to the aggregate may be computed disregarding other
auctions. It should be clear that, if we wanted to maximize L over
X for a given θ∗, we would better play by the following rule:

https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/NP-hardness
https://en.wikipedia.org/wiki/Lagrangian_relaxation
https://en.wikipedia.org/wiki/Lagrange_multiplier
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Definition 7 (MBFP Rule). Assign auction k to campaign i∗ with
bid b∗ and ad a∗ such that i∗,b∗,a∗ = arg maxi ,b ,a uk (i,b,a) if and
only if uk (i∗,b∗,a∗) > 0.

In order to find i∗,b∗,a∗ we can iterate over relevant (campaign,
ad) pairs and compute the optimal bid for each one of them. In
practice, we pre-rank these pairs using a cheap ranking metric,
inject some noise into the ranking, and then perform the full op-
timization prescribed by rule 7 just for the first few ones. This is
mainly because getting estimates conditional to both the full con-
text of the auction and the history of the device is rather expensive.
On the other hand, computing b∗ given i and a is cheap, specially
in the case of second-price auctions. This becomes evident after
re-expressing uk aswk (b)[(1 + θ∗i )p̄iEk (i,a) −Ck (b)]. Here, we see
that finding the optimal bid for a second-price auction is just a
matter of taking b∗ = (1 + θ∗i )p̄iEk (i,a). For first price auctions
the solution has to be numerically obtained except for the simplest
statistical models of Ek and Ck . Still, it can be quickly computed in
real-time for reasonably complex models. Note that, as a matter of
fact, rule 7 codifies a simple algorithm to compute the MBFP dual
function q, based on which we can define a dual problem:

Definition 8 (MBFP Dual Function). Given θ∗, the MBFP dual
function q(θ∗) maximizes the Lagrangian L(x, θ∗) over the set of
strategies X , i.e. q(θ∗) = supx ∈X L(x, θ∗).

Definition 9 (MBFP Dual Problem). Given the MBFP dual func-
tion q(θ∗), the MBFP dual problem consists in minimizing it over the
non-positive orthant, i.e. infθ ∗≤®0 q(θ

∗).

For now, it suffices to state that by minimizing q over the non-
positive orthant we get an approximate solution to MBFP. How
good is this approximation and how to effectively carry out that
minimization task are questions that will be answered from section
6 onwards. Nevertheless, before concluding this section, we want
to show that rule 7 is essentially the “distance from current ρi to
worst ρi ” rule that was previously derived by using a —somewhat
hand-waved— continuity/divisibility argument:

uk (i,b,a) = wk (b)(p̄iek (i,a) − ck (b)) + θ
∗
i wk (b)p̄iek (i,a)

= wk (b)p̄iek (i,a)

(
wk (b)(p̄iek (i,a) − ck (b))

wk (b)p̄iek (i,a)
+ θ∗i

)
= ωik (ρik + θ

∗
i ) =

θ ∗
i B−ρik∗i

ωik (ρik − ρik∗
i
)

5 FBMP DUAL PROBLEM
Computing the FBMP dual function follows the same pattern as
computing the MBFP dual function. As before, we start by writing
down the Lagrangian:

L′(x, θ∗) = f ′(x) + ⟨θ∗,д′(x)⟩ =∑
i ∈[n]

b̄i −Ci (x) + θ
∗
1i (b̄i − P̄iEi (x))+

θ∗2i (Ci (x) − b̄i ) + θ
∗
3i (b̄i − (1 + M̄i )Ci (x))

Again, because of the additive structure of L′, the expected contri-
bution of auction k to the aggregate when assigned to campaign i
with bid b and ad a can be expressed without regarding any other
auction:

u ′k (i,b,a) = −wk (b)ck (b) − θ∗1i P̄iwk (b)ek (i,a)

+ θ∗2iwk (b)ck (b) − θ∗3i (1 + M̄i )wk (b)ck (b)

By the same token as before, we derive a bidding rule based on this
definition of u ′k for FBMP:

Definition 10 (FBMP Rule).Assign auction k to campaign i∗

with bid b∗ and ad a∗ such that i∗,b∗,a∗ = arg maxi ,b ,a u ′k (i,b,a)
if and only if u ′k (i

∗,b∗,a∗) > 0.
Regrouping u ′k we arrive at:

u ′k (i,b, r ) = wk (b)[−θ
∗
1i P̄iek (i,a) − ck (b)(1 − θ∗2i + θ

∗
3i (1 + M̄i ))]

Given θ∗2i , θ
∗
3i and M̄i such that 1 − θ∗2i + θ∗3i (1 + M̄i ) > 0 the

maximizers of u ′k will be the same than the maximizers of: 5

wk (b)

(
−θ∗1i P̄iek (i,a)

1 − θ∗2i + θ
∗
3i (1 + M̄i )

− ck (b)

)
Therefore, the optimal amount b∗ to bid for a campaign i and an ad
a in a second-price auction is easily computed as:

b∗ =
−θ∗1i P̄iдk (i,a)

1 − θ∗2i + θ
∗
3i (1 + M̄i )

Again, for first-price auctions a moderate increase in computational
complexity could be expected, but there is no additional conceptual
complexity.

Finally, we give analogous definitions for the FBMP dual function
and the FBMP dual problem:

Definition 11 (FBMP Dual Function). Given θ∗, the FBMP dual
function q′(θ∗) maximizes the Lagrangian L′(x, θ∗) over the set of
strategies X , i.e. q′(θ∗) = supx ∈X L′(x, θ∗).

Definition 12 (FBMP Dual Problem).Given the FBMP dual
function q′(θ∗), the FBMP dual problem consists in minimizing it over
the non-positive orthant, i.e. infθ ∗≤®0 q

′(θ∗).

As before, the idea is that by minimizing q′ over the non-positive
orthant we get an approximate solution to FBMP, as we shall see
in the following section.

6 CONVEX RELAXATION
Now consider the more general problem:

p(θ ) = min
x |д(x )≤θ

−f (x) = − max
x |д(x )≤θ

f (x)

where, for technical reasons and since it is customary, we are re-
hashing a maximization problem as a minimization one. Here f
and д are arbitrary vector functions. By varying θ one can tighten
or relax the constraints. It is evident that p is non-increasing on
any component θi of θ , since by increasing any θi we are enlarging
the feasible set of the problem. We are mainly interested in θ = ®0
—or, more precisely, in those x that solve p(®0)— but, instead of di-
rectly solving p(®0), we are going to work with an approximation
p∗∗(®0), where p∗∗ is a “convexified” version of p (hence the name
“convex relaxation”). In our way to get p∗∗ we first take the Fenchel
conjugate of p:
p∗(θ∗) = sup

θ
{⟨θ∗, θ⟩ − p(θ )} = sup

θ
{⟨θ∗, θ⟩ − min

x |д(x )≤θ
−f (x)}

= sup
θ

max
x |д(x )≤θ

{⟨θ∗, θ⟩ + f (x)} = sup
x ,δ ≥®0

{⟨θ∗,д(x) + δ⟩ + f (x)}

= sup
x

{ f (x) + ⟨θ∗,д(x)⟩} + sup
δ ≥®0

⟨θ∗, δ⟩ =
θ ∗≤®0

q(θ∗) + 0 = q(θ∗)

5In general, we expect this condition to hold for a solution, since otherwise uk would
favor strategies that ignore costs or, worse, that prefer higher costs to lower ones.

https://en.wikipedia.org/wiki/Vickrey_auction
https://en.wikipedia.org/wiki/Convex_conjugate
https://en.wikipedia.org/wiki/Convex_conjugate
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p

p(θ )

θ

−p∗(θ ∗)

(1, θ ∗)

(1.a) −p∗(θ ∗) is the intercept of a supporting hyperplane of epip .

p∗∗(®0)
p(®0)

p

p∗∗ = clp

(1.b) p∗∗ results from the convex closure of epip .

Aswe can see,q is the dual function of problemmaxx |д(x )≤θ f (x)
as was earlier defined. Some thinking will reveal that −p∗(θ∗) =
−q(θ∗) gives the intercept of the supporting hyperplane of the epi-
graph of p with slope θ∗, as shown in figure 1.a. Thus p∗ can be
seen as encoding an alternative representation of p by mapping
slopes to intercepts. Notice also that, since p is non-increasing on
every θi , we are only interested in slopes θ∗ in the non-positive
orthant. The encoding will be loseless only when p is convex; in
that case, recovering p from p∗ is just a matter of conjugating it
again, i.e. p = p∗∗. More generally, p∗∗ will be a function clp related
to p by taking the convex closure (or hull) of the epigraph of p, as
illustrated in figure 1.b.

Based on well known properties of the Fenchel conjugate p∗ we
can easily infer analogous properties of q that will be used in the
next section: 6

Proposition 1. q is convex.
Proof. q = p∗ and p∗ is always convex (even if p is not). □

Proposition 2. д(x∗) ∈ ∂q(θ∗), i.e. д(x∗) is a subgradient of q at
point θ∗, where x∗ is a solution for q(θ∗).

Proof. Weuse Fenchel-Young inequality, which states thatp(θ )+
p∗(θ∗) ≥ ⟨θ∗, θ⟩. We also use that, when Fenchel-Young result holds
with equality, it implies θ ∈ ∂p∗(θ∗) (as well as θ∗ ∈ ∂p(θ ), which
we don’t need here). Take θ = д(x∗), then:

(1) Because of Fenchel-Young inequality:
p∗(θ∗) ≥ −p(θ ) + ⟨θ∗,д(x∗)⟩

(2) And because of the definition of x∗ and p:
p∗(θ∗) = q(θ∗) = f (x∗) + ⟨θ∗,д(x∗)⟩ ≤

max
x |д(x )≤д(x ∗)

{ f (x)} + ⟨θ∗,д(x∗)⟩ = −p(θ ) + ⟨θ∗,д(x∗)⟩

But 1 and 2 imply that p∗(θ∗) + p(θ ) = ⟨θ∗,д(x∗)⟩. Therefore θ =
д(x∗) ∈ ∂p∗(θ∗). □

Finally, let’s conjugate p∗ again in order to (maybe approxi-
mately) recover our initial p:

p∗∗(θ ) = sup
θ ∗≤®0

{⟨θ∗, θ⟩ − p∗(θ∗)}

= sup
θ ∗≤®0

{⟨θ∗, θ⟩ − sup
x

{ f (x) + ⟨θ∗,д(x)⟩}

= − inf
θ ∗≤®0

sup
x

f (x)⟨θ∗,д(x) − θ⟩ =
θ=®0

− inf
θ ∗≤®0

q(θ∗)

What we have here is that, while −p(®0) is the maximum we were
initially looking for, i.e. maxx |д(x )≤®0 f (x), −p∗∗(®0) is instead the
result of our dual rehashing of the problem, i.e. infθ ∗≤®0 q(θ

∗). So by
studying the relationship between −p and −p∗∗ we can learn about
6If you want to dig deeper into this subject, we strongly recommend [9].

the relationship between primal and dual solutions. As before, we
rely on well known facts about Fenchel conjugacy in what follows.

Proposition 3. If −p is concave, then both primal and dual optima
for maxx |д(x )≤®0 f (x) are the same: −p(®0). If not, the dual optimum

is instead −(clp)(®0) ≥ −p(®0), where clp is the function with epigraph
equal to the convex closure of the epigraph of p (equivalently, −(clp)
is the function with hypograph equal to the convex closure of the
hypograph of −p). The difference between both optima is called the
duality gap.

Proof. We use the aforementioned fact that p∗∗ = clp. This
implies:

(1) If p is convex, then p∗∗ = p, since clp = p.
(2) p∗∗(θ ) ≤ p(θ ) for all θ , since clp ≤ p.

(see figure 1.b for an illustration of these properties). Finally, substi-
tute concave for convex and ≥ for ≤, given that we are interested
in −p∗∗(®0) and −p(®0). □

By solving the dual it is as if we were maximizing a concavi-
fied version of our original problem. More precisely, of a function
−p(θ ) = maxx |д(x )≤θ f (x) that relates a perturbation θ of the con-
straints to a solution of the perturbed problem. Hence, if −p is
concave enough it is expected that −p∗∗ will be close to it. Notice
that every constraint in MBFP and FBMP imposes limits on the
sum of billions of small auctions showing a great degree of sub-
stitutability between them. Therefore, if we progressively relaxed
one of these constraints by changing component θi , the optimizer
would pick opportunities with high “specific value” for constraint i
first, thus yielding decreasing marginal returns as the constraint is
relaxed. So, as a function of θi , we expect −p to be approximately
concave. Analogously, we could consider relaxations along any line
θ + tv for some slope v to the same effect. In consequence, we
expect −p to be approximately concave.

7 SUBGRADIENT DESCENT FOR THE DUAL
Recall that, according to propositions 1 and 2 above, the dual func-
tion q is convex and there is a cheap method for computing a
subgradient of it at point θ∗: simply evaluate the constraint func-
tion д at a maximizer x∗ such that L(x∗, θ∗) = supx ∈X L(x, θ∗).
Recall also that, given θ∗, we compute this optimal strategy x∗ by
picking arg maxi ,b ,a uk (i,b,a) for each auction k . Thus, we could
iteratively descend along a sequence of multipliers θ∗1 (x

∗
0 ), θ

∗
2 (x

∗
1 ),

. . . , θ∗t (x
∗
t−1), . . . in an “outer loop”, so to speak, while implement-

ing a sequence of optimal strategies x∗1 (θ
∗
1 ), x

∗
2 (θ

∗
2 ), . . . , x

∗
t (θ

∗
t ), . . .

in the “inner loop”, this until convergence, which —as we shall soon
see— is guaranteed under rather mild assumptions. The assertion

https://en.wikipedia.org/wiki/Supporting_hyperplane
https://en.wikipedia.org/wiki/Subderivative
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“we could iteratively descend” demands some qualification: a sub-
gradient, like a gradient, gives an affine global underestimator of
its function but, unlike a (non-zero) gradient, its negative does not
necessarily point towards a descent direction, as you can see in
figure 2.a. Nevertheless, a negative subgradient still is a descent
direction in a different sense. Consider points θ∗ and θ

¯
∗ such that

q(θ
¯
∗) < q(θ∗); that is, q descends from θ∗ to θ

¯
∗. Every time there is

such a θ
¯
∗, it is true that −д is a descent direction for | |θ∗ − θ

¯
∗ | |2 if

д ∈ ∂q(θ∗). In other words, we are not necessarily moving down
along q, but at least we are getting closer to a point where q is lower
if both (i) there is such a point and (ii) we move slowly enough, i.e.
| |θ∗ − αд − θ

¯
∗ | |2 < | |θ∗ − θ

¯
∗ | |2 for some small learning rate α . Intu-

itively, since the subgradient gives an affine global underestimator,
the corresponding hyperplane passes under q at θ

¯
∗, thus it has a

negative slope in the trajectory from θ∗ to θ
¯
∗, hence the vector

θ
¯
∗ − θ∗ and the subgradient form an angle with negative cosine or,

in other words, θ
¯
∗ − θ∗ and the negative subgradient form an angle

with positive cosine, therefore the negative subgradient direction
is somewhat aligned with θ

¯
∗ − θ∗ and, in this direction, we will be

moving closer (in L2-norm) to θ
¯
∗ if the step is appropriately chosen

in relation to the angle (see figure 2.b). The next proposition states
and proves this fact; it also provides a condition on α that ensures
descent in the sense described above.

Proposition 4. Take δ = q(θ∗)−q(θ
¯
∗) and assumeG upper bounds

in L2-norm the set of all subgradients of q. Then if δ > 0, д ∈ ∂q(θ∗)

and 0 < α < 2δ
G2 , it is the case that | |θ∗ − αд − θ

¯
∗ | |2 < | |θ∗ − θ

¯
∗ | |2.

Moreover, θ∗ − αд is at least 2αδ − α2G2 closer to θ
¯
∗ than θ∗.

Proof. We first apply the law of cosines to get:
| |θ∗ − αд − θ

¯
∗ | |22 = | |θ∗ − θ

¯
∗ | |22 − 2α ⟨д, θ∗ − θ

¯
∗⟩ + α2 | |д | |22

Thenwe note that, sinceq(θ∗)+⟨д, ␣−θ∗⟩ is a global underestimator
of q, it must be that −⟨д, θ∗ − θ

¯
∗⟩ ≤ −(q(θ∗) − q(θ

¯
∗)) = −δ . Hence,

the expression above is not greater than | |θ∗−θ
¯
∗ | |22 −2αδ +α2 | |д | |22 .

Therefore:
| |θ∗ − θ

¯
∗ | |22 − ||θ∗ − αд − θ

¯
∗ | |22 ≥ 2αδ − α2 | |д | |22 ≥ 2αδ − α2G2

For α > 0, this expression is positive if and only if 2δ − αG2 > 0,
thus we get the condition 0 < α < 2δ

G2 . □

Proposition 4 means that when we are far enough from the
minimum value, which is to say that δ is large, we will be moving
towards theminimizer on each step if neitherα nor the subgradients
found along the way are too large. In this case, each step leaves us
2αδ − α2G2 closer to the minimizer; notice here that a small α ≪ 1
more strongly penalizes G2 than 2δ . It is not difficult to infer from
this simple result that a small and constant α will leave us pretty
close to the minimizer, moving faster towards it the furthest the
current value is from the minimum value. This is an encouraging
conclusion, but more useful convergence results can be read from
the next, slightly more complex, proposition.

Proposition 5. Call θ∗t the θ∗ reached at step t . Besides, call θ
¯
∗
t

the θ∗ with lower q(θ∗) found up to step t ; that is, the best θ∗ found
until t . Finally, take θ

¯
∗ to be a global minimizer. Then, following a

learning rate schedule α1,α2, . . . ,αT , we have:

q(θ
¯
∗
T ) − q(θ

¯
∗) ≤

||θ∗1 − θ
¯
∗ | |22 +G

2 ∑T
t=1 α

2
t

2
∑T
t=1 αt

Proof. As before, we start by applying the law of cosines and
the global underestimator property of the subgradient, to get:

| |θ∗t+1 − θ
¯
∗ | |22 = | |θ∗t − αtдt − θ

¯
∗ | |22

= | |θ∗t − θ
¯
∗ | |22 − 2αt ⟨дt , θ∗t − θ

¯
∗⟩ + α2

t | |дt | |
2
2

≤ ||θ∗t − θ
¯
∗ | |22 − 2αt (q(θ∗t ) − q(θ

¯
∗)) + α2

tG
2

Then, by applying the same procedure recursively:

| |θ∗T − θ
¯
∗ | |22 ≤ ||θ∗1 − θ

¯
∗ | |22 − 2

T∑
t=1

αt (q(θ
∗
t ) − q(θ

¯
∗)) +G2

T∑
t=1

α2
t

And since the left hand side of the inequality is non-negative:

2(q(θ
¯
∗
T ) − q(θ

¯
∗))

T∑
t=1

αt ≤ 2
T∑
t=1

αt (q(θ
∗
t ) − q(θ

¯
∗))

≤ ||θ∗1 − θ
¯
∗ | |22 +G

2
T∑
t=1

α2
t

Hence, we conclude:

q(θ
¯
∗
T ) − q(θ

¯
∗) ≤

||θ∗1 − θ
¯
∗ | |22 +G

2 ∑T
t=1 α

2
t

2
∑T
t=1 αt

□

From proposition 5 we can easily deduce convergence results for
different schedules α1,α2, . . . ,αT

7. Here, we are mostly interested
in the simple case of a constant learning rate schedule, for which it
is easy to give an upper bound to the number of steps required in
order to be near the optimal:

Proposition 6.With constant rate schedule αt = α , A converges
sublinearly and logarithmically within ε + αG2/2 of the optimum in
no more than

⌈
| |θ∗1 − θ

¯
∗ | |22/2αε

⌉
steps.

Proof. Using proposition 5 we can show that:

q(θ
¯
∗
T ) − q(θ

¯
∗) ≤

||θ∗1 − θ
¯
∗ | |22 +G

2 ∑T
t=1 α

2
t

2
∑T
t=1 αt

=
| |θ∗1 − θ

¯
∗ | |22 +G

2Tα2

2Tα
=

| |θ∗1 − θ
¯
∗ | |22

2Tα
+
αG2

2
It is clear from this expression that A converges within αG2/2 of
the optimum sublinearly (in particular, logarithmically). To be no
more than ε + αG2/2 far from the optimum we need the first term
not to be larger than ε :

| |θ∗1 − θ
¯
∗ | |22

2Tα
≤ ε ⇔ T ≥

||θ∗1 − θ
¯
∗ | |22

2αε
□

8 SUBGRADIENT DESCENTWITH NOISE
As promised, we present a descent schema adapted to real-life noisy
environments. Recall that, at the moment of bidding for auction k ,
we only have estimates of conditional meanswk , ck , ek and not yet
the realizations of the respective random variables. Now consider
G(x∗), in which we replace wk , ck , ek in д(x∗) for their random
counterparts Wk ,Ck , Ek ; analogously, consider д̃(x∗), in which
we replace the random variables for their realizations w̃k , c̃k , ẽk .
Unfortunately, at the moment of descent our bidder only reports
an aggregate д̃(x∗) for the last period, which is not the д(x∗) we
want. Yet, fortunately, if we assume that д(x∗) is the mean of G(x∗),
7See [2] and [1, §8.2] for further details.
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q(θ∗)

q(θ∗0 ) + ⟨д1, θ∗ − θ∗0 ⟩
q(θ∗0 ) + ⟨д2, θ∗ − θ∗0 ⟩

−д1−д2

θ∗0

(2.a) Negative subgradients pointing towards ascent directions.

θ∗

θ
¯
∗

θ∗ − αд

д

−д

(2.b) | |θ
¯
∗ − θ ∗ | |2 decreases along negative subgradient direction.

i.e. that д̃(x∗) is an unbiased estimate of д(x∗), then the results of
propositions 5 and 6 are preserved for E[q(θ

¯
∗
T )] (instead ofq(θ¯

∗
T )), as

detailed in proposition 7 below. And the assumption seems tenable
because, according to definition 4, д(x∗) has a linear structure in
problems MBFP and FBMP: it consists of a linear combination of a
large number of mean values8 wkck andwkek , so the expectation
operator passes through G(x∗) down toWkCk andWkEk .

Proposition 7. Define everything as in proposition 5. Assume that,
at each step t , we have access to an unbiased estimate д̃t ≤ G̃ of дt
that we use in place of дt . Then, following a learning rate schedule
α1,α2, . . . ,αT , we have:

E[q(θ
¯
∗
T )] − q(θ

¯
∗) ≤

||θ∗1 − θ
¯
∗ | |22 + G̃

2 ∑T
t=1 α

2
t

2
∑T
t=1 αt

Proof. The proof proceeds as in 5 but, additionally, uses linear-
ity of E[·] and Jensen’s inequality. In particular, Jensen’s inequality
is used to show that, because of concavity of the minimum:(

E[q(θ
¯
∗
T )] − q(θ

¯
∗)

) T∑
t=1

αt =

(
E[

T
min
t=1

q(θ∗t )] − q(θ
¯
∗)

) T∑
t=1

αt

≤

T∑
t=1

αt
T

min
t=1

E[q(θ∗t ) − q(θ
¯
∗)] ≤

T∑
t=1

αtE[q(θ
∗
t ) − q(θ

¯
∗)]

For further details, we refer to [3]. □

Nevertheless, to be able to extrapolate gradient estimates from
current to future periods, we still need some kind of stationar-
ity/ergodicity assumption. In practice, we simply consider the real-
ization д̃(x∗) corresponding to the last day as a good estimate for the
following days. Of course, it is true that there are weekly seasonal
effects not accounted by this method, but most heterogeneity occurs
within a day and not between days. Moreover, by keeping our learn-
ing rate above some threshold we ensure the optimizer remains
adaptive to longer seasonal cycles and reactive to structural breaks
that have to be expected in ever changing RTB markets9. Therefore,
a reasonable algorithm might consist in computing x∗ each day
—given the θ∗ for that day— by picking arg maxi ,b ,a uk (i,b,a) for
every auction k seen and then, at the end of the day, recomputing
θ∗ by a descent step based on the observed constraints д̃(x∗) and a
not too large constant learning rate α .

8Remember that ck and ek are conditional to the fact that we won auction k .
9On the downside, this prevents exact convergence to the optimum.

9 CONCLUSION AND FUTUREWORK
We think that we have achieved the goal set for this work, i.e. to
put forward a strong theoretical framework that relies on very few
assumptions for the problem of optimal bidding for two —stylized
but realistic— kinds of contract. We also believe to have advanced
cogent arguments for the assumptions made. Moreover, for one of
the contract types we formally linked the proposed solution to a
successfully working (for more than two years now) solution.

Although it was suggested to us as a natural extension of what
we were already doing in practice for MBFP, we later realized that
the convex/Lagrangian relaxation approach is not totally novel in
RTB (see [6]). We feel that our modest contributions here are: the
extension to different contractual constraints, the identification and
analysis of the assumptions behind this extension (hopefully hinting
to further extensions), the interesting link with the continuous case,
the generalization to first and second-price auctions and the support
for a realistic, noisy environment.

Still, we are fully aware that the main weakness of our proposal
is its lack of empirical support. We are currently at an advanced
stage in the implementation and A/B testing of Gloval, an optimizer
module for our bidder along the lines proposed here. Over the next
months, we plan to publish a follow-up paper reporting bounds for
the duality gap, empirically calibrated values for the learning rate
and other hyper-parameters, and overall economical performance
of the algorithm.
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