Delayed Feedback Model with Negative Binomial Regression for Multiple Conversions

Youngmin Choi, Mugeun Kwon, Younjin Park, Jinsoo Oh, Suyoung Kim LINE PLUS

OUTLINE

INTRODUCTION

PROPOSED MODEL

EXPERIMENT RESULTS

RECAP

INTRODUCTION

Goal

- Predict the **eventual number of conversions** accurately.
- Input X: feature(User, Site, Ad), Target Y: the number of conversions

Challenge

- Long delay between click and conversions
- Multiple occurrences of conversions

Contribution

- Cover multiple conversions and delay simultaneously
- Reasonable and easy to be implemented

Conversion Type	Non-binary ratio(%)	
Type A	26.4%	
Type B	1.1%	
Type C	0.0%	
Type D	59.3%	

Modeling Delayed Feedback in Display Advertising (Chapelle, 2014)

	Conversion	Delay	
DFM	Binary Logistic Regression	An exponential distribution	
NBDFM (Our Model)	Countable Negative Binomial Regression	Order Statistics	

PROPOSED MODEL

PROPOSED MODEL - Notation

X: a set of features

 $Y \in \{0, 1, ...\}$: the number of conversions at the current timeY = 2 $C \in \{0, 1, ...\}$: the number of eventual conversionC = 4 D_k : the delay between click and the k^{th} conversionC = 4

E : the elapsed time since the click

PROPOSED MODEL - NBDFM

Objective Function

- Negative log-likelihood of observed samples
- Suppose we observe n samples, $\{x_j, a_j, d_{j1}, \dots, d_{ja_j}\}_{j=1}^n$

•
$$L(w_c, w_d) = -\sum_{j=1}^n \log(\Pr(Y_j = a_j, D_{j1} = d_{j1}, \dots, D_{ja_j} = d_{ja_j} | X_j = x_j, E_j = e_j))$$

Optimization

- Estimate parameters by minimizing our objective function
- Use L-BFGS as an optimizer

Prediction

•
$$E(C|X = x) = \frac{p(x)}{1 - p(x)}$$
, where $p(x) = (1 + \exp(-w_c x))^{-1}$

PROPOSED MODEL - Models

Probability of conversion Pr(C = k | X = x)

• A standard negative binomial regression model

•
$$Pr(C = k | X = x) = p(x)^{k}(1 - p(x))$$
 with $p(x) = (1 + exp(-w_{c}x))^{-1}$

Joint probability of delays between click and multiple conversions D_1, \dots, D_k

• Order statistics of i.i.d random variable following an Exponential distribution

•
$$Pr(D_1 = d_1, \dots, D_k = d_k | X = x, C = k) = k! \lambda(x) \exp\left(-\lambda(x) \sum_{i=1}^k d_i\right)$$
 with $\lambda(x) = exp(w_d x)$

parameter vector

PROPOSED MODEL - Sketch to calculate log-likelihood

PROPOSED MODEL - Sketch to calculate log-likelihood

$$\begin{aligned} \text{line 1} \quad Pr(Y = a, D_1 = d_1, \dots, D_a = d_a | X = x, E = e) \\ \text{line 2} \quad = \sum_{k=a}^{\infty} \left\{ Pr(Y = a, D_1 = d_1, \dots, D_a = d_a | C = k, X = x, E = e) \right\} \\ \text{line 2-a} \quad Pr(Y = a, D_1 = d_1, \dots, D_a = d_a | C = k, X = x, E = e) \\ \text{line 2-b} \quad = Pr(D_1 = d_1, \dots, D_a = d_a, E < D_{a+1} < \dots < D_k | C = k, X = x, E = e) \\ \text{line 2-c} \quad = k! \lambda(x)^a exp(-\lambda(x) \sum_{i=1}^a d_i) \int_e^{\infty} \dots \int_{d_{k-1}}^{\infty} \lambda(x) exp(-\lambda(x) d_k) \dots d(d_k) d(d_{a+1}) \\ \text{line 2-d} \quad = a! \lambda(x)^a exp(-\lambda(x) \sum_{i=1}^a d_i) \left(\frac{k}{k-a}\right) exp(-(k-a)\lambda(x)e) \end{aligned}$$

line 3 =
$$\sum_{k=a}^{\infty} a! \lambda(x)^a exp(-\lambda(x) \sum_{i=1}^a d_i) {k \choose k-a} exp(-(k-a)\lambda(x)e)p(x)^k(1-p(x))$$

By the negative binomial theorem

LINE

$$\lim 4 = a! \,\lambda(x)^a exp(-\lambda(x)\sum_{i=1}^a d_i) \,(1-p(x)) \left(\sum_{j=0}^\infty \binom{j+(a+1)-1}{j} (p(x) exp(-\lambda(x)e))^j \right) \longrightarrow \left(\begin{array}{c} (1-p(x) exp(-\lambda(x)e))^{-(a+1)} \\ (1-p(x) ex$$

EXPERIMENT RESULTS

EXPERIMENT RESULTS - Dataset Settings

- **No public dataset** for evaluate multiple conversions
- Thus, we used LINE's real-traffic logs
- 21 days for training set, following day as test set
- **Repeated 7 times** to check consistency of the results

EXPERIMENT RESULTS - Metrics and Competing Models

Evaluation Metrics

Mean Squared Error (MSE)

MSE =
$$\frac{1}{n} \sum_{j=1}^{n} (c_j - E_j)^2$$

Calibration

Calibration = $\frac{\sum c_j}{\sum E_j}$

Competing Models

- DFM
- GLMs
 - Logistic / Poisson / Negative Binomial
- DFM + Poisson: Heuristic
- Oracle GLMs: Upper bound

Training Data

Overall weighted metric

- Results of different models on 7 test days
- The column 'Diff' shows the difference of MSE between the given model and DFM

		MSE	Diff	Calibration(%)
Delay only	DFM	0.09219		141.77
	Logistic	0.09231	-0.00012	146.60
Count only	Poisson	0.08681	0.00537	108.85
	Negative Binomial	0.08682	0.00536	108.19
	DFM + Poisson	0.08723	0.00496	106.25
Count + Delays	NBDFM	0.08454	0.00764	101.12
	Oracle Logistic	0.09223		140.82
Upper bound	Oracle Poisson	0.08298		100.34
	Oracle Negative Binomial	0.08248		99.29

Multiple Conversions

Multiple Delays

Together

- Solve the real-world conversion prediction problem, the key to successful RTB auction
- Introduce a method NBDFM which allows to model both multiple conversions and delays jointly
 - Negative Binomial
 - Order Statistics
- Achieve a **significant improvement** in experiments
- Powerful but **simple to deploy** on production services

Thanks

