AdKDD August 23, 2020

Contextual Bandits for Advertising Budget Allocation

Benjamin Han Applied Machine Learning

Jared Gabor Data Science

Driver Acquisition at Lyft

Lyft Advertising

Drive with Lyft Sponsored · @

For a limited time, earn a \$1,000 bonus after 500 rides when you become a Lyft Driver.

lyR Science

Objective

- Maximize total payouts f(x) over N campaigns given total budget B
- Equivalently, maximize total payouts given minimum marginal ROI, $\frac{df(x)}{dx}$

Maximum Budget Constraint

lyR Science

Objective

- Maximize total payouts f(x) over N campaigns given total budget B
- Equivalently, maximize total payouts given minimum marginal ROI, $\frac{df(x)}{dx}$
- Equivalently, maximize total payouts given maximum Cost Per Incremental Acquisition, $\left(\frac{df_i(x_i)}{dx}\right)^{-1}$

Maximum Budget Constraint

Maximum Cost Per Incremental Acquisition

$$\begin{array}{ll} \underset{x \in \mathbb{R}}{\operatorname{maximize}} & \sum_{i=1}^{N} f_{i}(x_{i}) \\ \text{subject to} & \left(\frac{df_{i}(x_{i})}{dx}\right)^{-1} \leq C, \qquad i \in \{1, ..., N\} \\ & x_{i} \geq 0, \qquad \qquad i \in \{1, ..., N\} \end{array}$$

lyR Science

$$\begin{array}{ll} \underset{x \in \mathbb{R}}{\text{maximize}} & \sum_{i=1}^{N} f_i(x_i) \\ \text{subject to} & \left(\frac{df_i(x_i)}{dx}\right)^{-1} \leq C, \quad i \in \{1, \dots, N\} \\ & x_i \geq 0, \quad i \in \{1, \dots, N\} \end{array} \longrightarrow \begin{array}{l} \frac{df_i(x_i)}{dx} = C^{-1}, \quad i \in \{1, \dots, N\} \\ & i \in \{1, \dots, N\} \end{array}$$

- Value of Driver = (Net Profit per Ride)(Incremental Rides generated by Driver)
 - Profitable if value exceeds Cost Per Incremental Acquisition (CPIA)
- Regional CPIA Targets are set externally based on forecast supply/demand

Problem: Given historical campaign performance and regional CPIA targets, Spend Allocator must yield a daily budget for each campaign. Our goal is to **maximize total acquisition**.

Intuition: Strongly performing campaigns should get large budgets, weak campaigns should get reduced budgets and eventually removed.

What about new or inconsistent campaigns with high risk or uncertainty?

Spend Allocator

- 1. Contextual Payout Modeling (interpolation)
- 2. Bayesian Linear Regression (extrapolation)
- 3. Thompson Sampling (exploration/exploitation)

Contextual Payout Modeling (interpolation)

Use ad context and proposed budget to predict future acquisition

- Dominating feature is proposed budget (more spend, more acquisition). Also yesterday's acquisition, age of creative, target demographic, impressions/clicks/leads, incentive, day of week
- Global model trained on entire performance history, across regions and campaigns
- Excellent performance *near-sample*

Approach	Bias	MAE	MSE
мсмс	0.1575	0.2144	0.5881
RF	<mark>-0.0340</mark>	<mark>0.0788</mark>	<mark>0.0656</mark>
LGBM	-0.0764	0.1894	0.3463

Limitations

- Predictions are not differentiable
- Don't always extrapolate well (especially tree models)

lyR Science

Desirable Payout Function Properties

Differentiable

Can be solved using the proposed portfolio maximization strategy

Monotonically Increasing

More allocated budget forecast more driver activations

Diminishing Returns

Cannot expect linear (or superlinear) driver activations as a function of budget. response rates after repeat exposures.

$$y = w_1 x^{w_2}$$
$$\log(y) = w_1 + w_2 \log(x)$$

Activations vs Spend: c75a1d7ec098377ed423b60dd13cf590

Budget vs CPIA Targets: c75a1d7ec098377ed423b60dd13cf590

lyA Science

Bayesian Linear Regression (extrapolation)

Linear Regression using historical observations augmented by model point-predictions

luR Science

Bayesian Linear Regression yields Curve Distribution with measure of uncertainty

Thompson Sampling (exploration/exploitation)

What about new or inconsistent campaigns with high variance or risk?

Exploitation

Campaigns with established history are more predictable and can be priced accurately.

Exploration

Campaigns with inconsistent performance or with

limited history have greater uncertainty.

IyR Science

Han and Gabor. 2020. Contextual Bandits for Advertising Budget Allocation.

Experimental Results

22% CPA Savings, or 1.5¢ Profit per ride

 (21.8 +/- 10.2)% reduction in mean Cost Per (driver) Activation controlling for location, (21.5 +/- 13.1)% controlling for time

(Post Period / Pre Period) Spend Efficiency (higher is better): Mean Treatment Q: 0.8316 +/- 0.0654 Mean Control Q: 0.6842 +/- 0.0503 Relative Improvement Q: 1.215408 +/- 0.130842

region		
BOS	1.137084	0.240171
СНІ	1.325651	0.572299
DCA	1.099174	0.234972
DEN	0.988644	0.119454
РНІ	1.155682	0.208775
PIT	1.790309	0.107267
SFO	1.030943	0.099320

Mean Regional improvement: 1.218212 +/- 0.102981

- Solve profitable budget allocation for known returns
 using Cost per Incremental Acquisition (CPIA)
- For unknown payouts, **RF_BLR** to explore uncertainty
 - Random Forest model provides accurate point estimates near-sample
 - Bayesian Linear Regression provides differentiable curve far-from-sample
 - Thompson Sampling explores budget-action space based on uncertainty
- Measured a 22% mean Cost Per Acquisition reduction, or ~\$30 million annually, over MCMC
- Deployed globally, managing hundreds of millions of dollars annually

Iy R Science

Lyft is hiring!

Benjamin Han Applied Machine Learning <u>bhan@lyft.com</u> <u>benjamin.han90@gmail.com</u>

Please reach out with questions/comments/feedback

IyR Science