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Driver Acquisition at Lyft
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ObJeCtlve Maximum Budget Constraint
e Maximize total payouts f(x) over N

max1mlze fi(xi)
campaigns given total budget B Z

N
. .. subject to xi <B
e [Equivalently, maximize total payouts ;

given minimum marginal ROI, @ xi >0, ie{l,..,N}
T

Budget management

D'Elia, AdKDD 19
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Budget How many
allocation Actions?

Align marginal ROIs What is the revenue of
the Ad campaign?

What should we

predict?

04 06
Normalized Ad spend
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Objective

e Maximize total payouts f(x) over N
campaigns given total budget B

e [Equivalently, maximize total payouts
given minimum marginal ROI, @

e [Equivalently, maximize total payouts
given maximum Cost Per Incremental
Acquisition, (Yte)
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Maximum Budget Constraint

N
maximize Z fi(xi)
x€R =

N
subject to in <B
i=1
x; >0, i€{l,..,N}

Maximum Cost Per Incremental Acquisition

N
maximize Z fi(xi)
x€R =

dfi(x:)\ 1
subject to ( fl(xl)) <C, i€ef{1,..,N}
dx
x; >0, ie{1,..,N}
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N
maximize fixi)
CPIA 2 o) _
. dfi(xi)\ ™! . dx ’
subject to “dr <C, ie{1,..,N}
xi >0, ie{1,..,N}

1 € {1, e f\"v}

e Value of Driver = (Net Profit per Ride)(Incremental Rides generated by Driver)
o Profitable if value exceeds Cost Per Incremental Acquisition (CPIA)
e Regional CPIA Targets are set externally based on forecast supply/demand

Problem: Given historical campaign performance and regional CPIA targets, Spend
Allocator must yield a daily budget for each campaign. Our goal is to maximize total
acquisition.

Intuition: Strongly performing campaigns should get large budgets, weak campaigns
should get reduced budgets and eventually removed.

What about new or inconsistent campaigns with high risk or uncertainty?
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Spend Allocator

1. Contextual Payout Modeling (interpolation)
2. Bayesian Linear Regression (extrapolation)
3. Thompson Sampling (exploration/exploitation)



Contextual Payout Modeling (interpolation)

Use ad context and proposed budget to predict Limitations

future acquisition
9 e Predictions are not differentiable

« Dominating feature is proposed budget (more

spend, more acquisition). Also yesterday’s « Don't always extrapolate well (especially tree

acquisition, age of creative, target demographic, models)
impressions/clicks/leads, incentive, day of week . «
P ’ i min(y;) < 3(6, x) < max(y;)
* Global model trained on entire performance — ronl
history, across regions and campaigns predicted in-sample
80 - predicted hold-out
» Excellent performance near-sample
P 60 4
Approach Bias MAE MSE S
]
MCMC 0.1575 0.2144 0.5881 = 01
RF -0.0340 0.0788 0.0656 20
LGBM -0.0764 0.1894 0.3463 i
i . . . 0 2 . a 6 8 10
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Desirable Payout Function Properties

Activations vs Spend: c75ald7ec098377ed423b60dd13cf590

x % history (before 2019-06-03)
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Budget vs CPIA Targets: ¢75a1d7ec098377ed423b60dd13cf590
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Bayesian Linear Regression (extrapolation)

Linear Regression using historical observations Bayesian Linear Regression yields Curve
augmented by model point-predictions Distribution with measure of uncertainty

Activations vs Spend: c75a1d7ec098377ed423b60dd13cf590
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Thompson Sampling (exploration/exploitation)

What about new or inconsistent campaigns with high variance or risk?

Exploitation Exploration
Campaigns with established history are more Campaigns with inconsistent performance or with
predictable and can be priced accurately. limited history have greater uncertainty.
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Experimental Results

22% CPA Savings, or 1.5¢ Profit per ride

e (21.8 +/-10.2)% reduction in mean Cost Per (driver)
Activation controlling for location, (21.5 +/- 13.1)%

10 4
controlling for time
05
(Post Period / Pre Period) Spend Efficiency (higher is better):
Mean Treatment Q: 0.8316 +/- 0.0654

40 A1

Observed Driver Activations

Mean Control Q: 0.6842 +/- 0.0503

Relative Improvement Q: 1.215408 +/- 0.130842
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treatment control

354

301

25 4

204

15 1

— pre_fit
” control
x  treatment
1000 1500 2000 2500 3000 3500
Region Spend (cents)
region

BOS 1.137084 0.240171
CHI 1.325651 0.572299
DCA 1.099174 0.234972
DEN 0.988644 0.119454
PHI 1.155682 0.208775
PIT 1.790309 0.107267
SFO 1.030943 0.099320

Mean Regional improvement: 1.218212 +/- 0.102981
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Summary

- Solve profitable budget allocation for known returns
using Cost per Incremental Acquisition (CPIA)
- For unknown payouts, RF_BLR to explore uncertainty
— Random Forest model provides accurate point estimates
near-sample
— Bayesian Linear Regression provides differentiable curve
far-from-sample
— Thompson Sampling explores budget-action space based
on uncertainty

« Measured a 22% mean Cost Per Acquisition
reduction, or ¥$30 million annually, over MCMC

- Deployed globally, managing hundreds of millions of
dollars annually

lgﬁ Science Han and Gabor. 2020. Contextual Bandits for Advertising Budget Allocation.



Thank you!

Lyft is hiring!

Benjamin Han
Applied Machine Learning
bhan@lyft.com

337

benjamin.han90@gmail.com

Please reach out with
questions/comments/feedback
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