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Mobile Game
Advertising

— Unity Ad

— Game Monetization Solution

— Optimize the conversion
prediction accuracy

— Show the most valuable ads to
wide variety of users
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User Behavior Sequence

User historical behavior is crucial to improve conversion prediction
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User Behavior Sequence

Encode user behavior sequence into meaningful representation

Conversion Prediction
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Sequential Representation Learning

Challenges

o Learn on outcomes (installs)

m Installs are sparse

m Ignore other signals about user's journey

to conversion

o Predict next items

m [tems are many
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Self-supervised Pre-training

Self-supervised learning

— Extract useful information from the data itself without any labels

Motivations

— Pre-train the representation with the most updated history without waiting for
conversion windows
— The downstream task - conversion prediction does not train from scratch



Pre-text Task

Predicting the relative probability of the correct next item instead
of reconstructing the exact next item
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Knowledge Transfer to Downstream Task
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Self-supervised Pre-text Task
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Experiment Settings

Data

— One month of user behavior history
— Most updated 30 events

Network

— Dense + RNN with GRU
— Optimizer: Adam (learning rate: 0.001)
— Batch size: 5,000

Evaluation Metrics

— Log-loss
— AUC
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training data size
validation data size
test data size

average sequence length
number of unique target items

20,000,000
4,000,000
4,000,000
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Visualization and Linear evaluation

Visualize pre-trained sequence representations for
four target items (2,000 samples are selected)

Compare log-loss and AUC for models with and w/o

pre-training
Test case | Pre-trained | Logloss Impr | AUC Relalmpr
Linear 0.07188 0.7701
evaluation v 0.07105 1.15%|0.7831 4.81%
Full 0.06934 3.53% | 0.8048 12.85%
labeled data v 0.06924 3.67% | 0.8062 13.37%
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Training with Different Proportions of labeled samples

— Information gain from pre-training is large when labeled data is sparse
— Achieve comparable log-loss and AUC with pre-training with less labeled data
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Conclusion

Introduce a self-supervised pre-training scheme for modeling user
behavior sequence in conversion prediction task

Models with the proposed self-supervised pre-training scheme
converge quicker, achieve better log-loss and AUC score, and are
label efficient

Other more efficient pre-text tasks of self-supervised learning can
be further researched in the future
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Thank You!



