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ABSTRACT
Measuring the incrementality (effectiveness) of advertising is a crit-
ical task for advertisers for financial planning and optimal budget
allocation among different online channels. Recent literature has
consistently recommended the use of experiments to estimate ad-
vertising effectiveness reliably. Closed Ad networks often prevent
advertisers from having direct access to user-level traffic for busi-
ness privacy reasons. As a result, running experiments by random-
izing users is rarely feasible for advertisers. We present a controlled
experiment design and an effect estimation framework focused on
advertisers’ side by leveraging geo-targeted spend interventions
at market-level. Our method is based on the selection of the best
pair of markets for testing, conditional on a pre-determined effect
estimation method, preventing any model tuning bias. We use a
Bayesian structural time series to predict the treatment conversions
counterfactual based on the observed control market conversions.
We present the results of a field experiment of a Universal App
Campaign (UAC), a recent mobile ad campaign format. We find evi-
dence that this advertising format causes incremental conversions,
despite the limited campaign customization options. We measure a
6.57% decrease of conversions (statistically significant) when UAC
spend is suspended. To our knowledge, our work is one of the ear-
liest studies that successfully measures the incremental value of
UAC with controlled experiments.
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1 INTRODUCTION
Advertisers often run a portfolio of media channels, including pro-
grammatic native advertising, social advertising, sponsored search,
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video advertising, among others. In these heterogeneous ecosys-
tems, relying on last-touch attribution poses significant issues be-
cause of the bias towards channels closer to conversion in the funnel
(demand capture channels), e.g. sponsored search, versus demand
generation channels, e.g. display advertising. Thus, measuring the
incrementality of advertising spend is critical for advertisers’ finan-
cial planning and optimal budget allocation [14].

Previous literature in the evaluation of online campaigns has
focused mainly on the effectiveness of display advertising [11], how
ad targeting incentives play a role in the evaluation [2], and the dif-
ficulty of measuring the effect of this advertising format [15]. Other
studies have evaluated paid search [12], and social advertising [9].
Most of these results rely on the ability to randomize users and de-
tailed user tracking data in all treatment groups. Another stream of
research to solve this problem is running user-level observational-
based methods, including propensity score-based methods [16],
from logged data post-campaign. However, Gordon et al. concluded
that these methods, even in the presence of rich user-level data,
do not provide a reliable estimate of the advertising effectiveness
[9]. The most widely accepted approaches by the research com-
munity, as well as by the ad tech industry, to measure advertising
incrementality are to use controlled experiments [4, 8, 11].

Evaluating campaigns for optimal budget allocation implies mea-
suring the incremental value using advertiser side data and inter-
ventions. Product conversions (user responses) are generally well-
identified within markets by advertisers. However, in the online
advertising ecosystem, ad networks typically manage user-level tar-
geting and ad delivery. Thus, advertisers are often prevented from
having direct access to user level traffic, especially when campaign
ads are not displayed. As a result of this limited access, running
incrementality experiments by randomizing users is rarely feasible
outside the ad network. Therefore, advertisers are left with aggre-
gated time series response signals and spend intervention levers,
which can be targeted at the market level. This time-series data
lead to the deployment of Media Mix Models, which suffer from the
lack of rigorously controlled experiment results in the estimation
of the advertising budget effectiveness [7].

Designed Market Area (DMA) based targeting in the US is a
testing strategy that uses aggregate time series and counterfactual
prediction [4, 13]. DMAs are geographical regions in the US de-
signed based on marketing similarities1. Kerman et al. and Blake
et al. recommend to randomize DMAs, or any other geo segmen-
tation outside the US, aggregate the observed responses overall
regions, and perform a pre/post-intervention analysis based on
difference-in-differences [4] or Bayesian Structural time series [13].
1Nielsen DMA Regions. https://www.nielsen.com/intl-campaigns/us/dma-maps.html
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One fundamental limitation of this design is the need to pause
the advertising strategy in a given country for the test. Since the
audience for an advertising channel format (e.g. social advertising)
is likely to overlap with other media channels in the media mix (e.g.
programmatic display), the risks of channel cannibalization might
bias the experiment. Pausing the advertising strategy in the entire
country is rarely feasible in ongoing advertising spend planning.

Blake et al. address geographical spillovers among DMAs, and
the difficulties from merely randomizing DMAs leading to a simple
correlation analysis to identify the best control group, i.e., not
at random. Also, the experiment required close to two-thirds of
DMAs. However, the authors do not address the bias of other media
channels spend, and the spend levels heterogeneity of the markets
before the experiment intervention.

1.1 Our Contribution
We introduce a controlled geo-experiment design and an effect
estimation framework focussed on advertisers’ needs. We model
the treatment effect using a Bayesian structural framework with
time series and a regression component (matched control market
conversions), to predict the treatment conversions [5] within the
family of synthetic control based methods [1].

We focus primarily on the controlled geo-experiment design.
Thus, given the causal effect estimation method, we perform sev-
eral placebo tests (i.e., A/A tests) using the experiment response
signal and the typical markets for the advertiser. Based on these
tests, we select the best market matched pairs, as opposed to a sim-
ple correlation analysis proposed by Blake et al. [4]. This process
guarantees unbiased model selections or tuning post-experiment
since we design the controlled experiment specifically for the user
response of interest and the given causal effect estimation.

We present the results of a controlled experiment of a Universal
App Campaign (UAC), a recent mobile ad campaign format2. In this
format, the ad network manages and optimizes UAC campaigns
within its properties. However, advertisers often expressed concern
about limited settings and transparency. The current experiment
was performed by Uber as an advertiser, where Uber cities were
used as geo-market units. We provide evidence that this advertising
format is effective in driving incremental customer acquisition
conversions, i.e., signups. To our knowledge, our work is one of
the earliest studies to be published that successfully measures the
incremental value of UAC with controlled experiments.

Running market matched controlled experiments comes with
a significant amount of experiment design tuning and recommen-
dations to improve the precision of the measurement. Challenges
include confounding factors such as spend in other media channels,
different effects of holidays on target markets, decreased marginal
effects of additional spend (diminishing returns [7]), among others.
We provide detailed recommendations and discussions about the
practical challenges.

2 METHODOLOGY
We propose a controlled market match based experiment design
where we identify the best market pair matching. This design is

2About Universal App Campaigns. https://support.google.com/google-ads/answer/
6247380?hl=en

based on the causal estimation of placebo tests (A/A tests) and their
credible intervals. Thus, we first describe the causal estimation
methodology followed by the controlled experiment design.

2.1 Causal Estimation
Given a pair of markets, we use the conversion time series in both.
We consider these markets as treatment and control cells and use
the control cell as a predictive variable of the treatment cell.

We model the treatment effect using a Bayesian structural frame-
work with time series and a regression component (matched control
market conversions), to predict the treatment conversions (syn-
thetic control). We consider the following structural equation:

y
(tr eat )
t = Fθt + x

(control )T
t β + ϵt , ϵt ∼ N (0,σ 2),

θt = Gθt−1 + ωt , ωt ∼ N (0,W ),
(1)

where t is the week index, y (tr eat )t is the weekly number of conver-
sions in the treatment market, x (control )t is the weekly number of
conversions in the control market, θt is the time series latent state
ofy (tr eat )t , F andG are the state design matrices, β is the regression
parameter vector of control conversions, and σ 2,W are the vari-
ance parameters. This state-space time series modeling is flexible to
integrate various seasonal and trend components based on model
superposition in the definition of F and G. Different components
have been modeled before in the effect estimation of online display
campaigns [3]. We note the flexibility of the estimation framework
and the family of model selections it covers.

We model a local linear trend, a spike-and-slab prior distribution
for β , diagonal covariance matrixW , and standard non-informative
conjugate inverse gamma priors of the variance parameters. The
model is fitted using a Markov Chain Monte Carlo (MCMC) sam-
pling approach for β [10], and a faster alternative to the standard
forward-filtering, backward-sampling approach in state-space mod-
els [5]. The spike-and-slab prior distribution for β provides an
automatic variable selection for cases when the control time series
is approximately uncorrelated to the treatment series.

We consider historical conversion time series for both treatment
and control groups to fit themodel. Then, at the time of intervention,
we predict the treatment conversions by the evolution of the time
series components and the control conversion observations. Let
Θ = {σ 2,W , β } be the model parameters to be fitted, given pre-
intervention historical conversions,D1:T−1 = {y

(tr eat )
1:T−1 ,x

(control )
1:T−1 },

where T is the time of intervention. After fitting the model, we
have the posterior distribution samples Θs given D1:T−1 where
s = 1, . . . ,Ns and Ns is the number of MCMC samples. We predict
the treatment conversions after intervention as follows:

ŷs
(tr eat )
ti = Fθsti + x

(control )T
ti βs |{D1:T−1,x

(control )
ti } (2)

for ∀s ∈ {s = 1, . . . ,Ns } and ∀ti ∈ {T , . . . ,Ti }, where ti is the time
index after intervention and Ti is the latest observation. Based on
these ˆy1:Ns

(tr eat )
T :Ti posterior samples, and the actual observations

for the treatment group after intervention y
(tr eat )
T :Ti , we estimate

https://support.google.com/google-ads/answer/6247380?hl=en
https://support.google.com/google-ads/answer/6247380?hl=en
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Algorithm 1 Control/Treatment Market Pair Selection
1: Ω: Set of Markets to consider
2: Φ: Set of placebo intervention times
3: ∆t : Time length of historical data
4: ∆ti : Time after placebo intervention
5: for all treatment market:m ∈ Ω do
6: for all control market: n ∈ {Ω −m} do
7: for all intervention time: d ∈ Φ do
8: Fit the synthetic control model of Eq 1:
9: Find Θs , s = 1, . . . ,Ns , given {y

(m)
d−∆t :d−1

,x
(n)
d−∆t :d−1

}

10: Predict ŷs (m)
ti , ∀s ∈ {s = 1, . . . ,Ns } after intervention,

∀ti ∈ {d, . . . ,d + ∆ti }
11: Estimate Credible Intervals (CI) li f tcum (d+∆ti )

, Eq 3
12: end for
13: end for
14: n∗,d∗ ← tightest CI that include li f tcum (d+∆ti )

= 0
15: Append best control/treatment/time V = {V , (m,n∗,d∗)}
16: end for
17: return V

intervention attribution change as:

ysAttr (ti )
= y

(tr eat )
ti − ŷs

(tr eat )
ti ,

yscumAttr (ti )
=

∑
t ∈T , ...,ti

ysAttr (t ) ,

li f tscum (ti )
=

yscumAttr (ti )∑
t ∈T , ...,ti

ŷs
(tr eat )
ti

,

(3)

whereysAttr (ti ) is the conversion change attributed to the treatment
intervention at time ti , yscumAttr (ti )

is the cumulative attributed
conversions up to time ti , and li f tscum (ti )

is the cumulative lift up
to ti , all for the s sample. Posterior credible intervals are estimated
based on the Ns effect estimate samples. For the effects of the cur-
rent experiment analysis, we use the CausalImpact implementation
in the interest of result replicability [6].

Compared to the time-based regression approach for analyzing
geo experiments proposed by Kerman et al. in [13], which uses only
the control markets in the treatment prediction, we also integrate
the time series predictive components. We note that these compo-
nents reduce the variance introduced by noisy observations in the
control market time series. Compared to the difference-in-difference
based approach deployed by Blake et al. in [4], we integrate time
series components and rely on the control predictive power of the
treatment observations. Brodersen et al. provide evidence where
state-space methods are more accurate than difference-in-difference
techniques to measure the effect of interventions [5].

2.2 Controlled Experiment Design
We identify control and treatment groups based on market-level

weekly conversions and market-pair matching combinations. For a
given market pair matching, we find the treatment effect without
intervention (placebo tests), as described in section 2.1.

Figure 1: Universal App Campaigns (UAC) media formats
within the Ad Network ecosystem. These creative designs
are shown for illustrative purposes and do not represent
the actual creatives used in the current study. Image source:
How to Reach Your App Promotion KPIs.

Algorithm 1 illustrates the process to determine the best control
market for a given treatment market. For a given set of markets
Ω, a set of possible intervention times Ω, a length of historical
data for model fitting ∆t , and a potential experiment duration after
intervention ∆ti , we run placebo tests (Algorithm 1 lines 8-11).

We consider individual combinations with tighter credible in-
tervals around zero effect to be superior candidates since they
diminish the probability of false positives in the hypothesis testing
of intervention effects. We keep a subset with the tightest credible
intervals that include zero (Algorithm 1 lines 14-15). We filter the
best matches where we can maximize our control of advertising
spend. The final match selection is chosen before the controlled ex-
periment begins and represents ideal markets based on conversion
and spend customization.

Compare to other geo-experiment tests, where the control mar-
kets are identified based on correlation [4], we set up the effect
estimation method first, and use it to determine the control markets.
We note that using the same causal estimation methodology in the
market pair selection improves the robustness of the controlled
experiment design.

3 MEASURING UAC INCREMENTALITY
3.1 Universal App Campaigns
Universal App Campaigns (UAC) unify ad network’s traffic inven-
tory, across the Search Network, Display Network, Youtube, App
Store, and Mail. When launching a campaign, the advertiser sup-
plies copy and creative that are reformatted across these various
inventory sources. Figure 1 depicts the typical media types within
UAC and some ad formats.

UAC claims to have more diverse data points than traditional
media channels as a result of its heterogeneity of media types.
Due to the access to the app store, UAC campaigns are updated
automatically when a given user has installed the advertiser’s app.
This data advantage makes the audience suppression significantly
more efficient for UAC than for other types of advertising.

Despite all the data leverage and the media-type diversity of the
UAC ecosystem, advertisers have few customization levers. Even
if aggregate user-level ad exposures were provided, non-exposed
user populations would be needed to approximate the counterfac-
tual response (see [9] for a survey of observational studies with
limited success of measuring incrementality). Therefore, user-level
randomization is not possible for testing UAC. Given the increasing

https://www.slideshare.net/Estudio34/estudio34-in-appevent-grow-your-app-with-google/28
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popularity of UAC as a different advertising media, evaluating the
incrementality of this channel becomes increasingly relevant to the
industry.

3.2 Treatment Intervention
To estimate the effectiveness of the UAC media channel, we design
the experiment to cut the channel spend in the treatment markets
from the ongoing regular advertising strategy. UAC provides the
ability to target spend at the DMA level and zip code level. For the
current study, we use Uber-cities market design based on the zip
codes each one covers. Therefore, we, as an advertiser, have control
over weekly spend based on the geo-targeting capabilities of the
channel.

Assuming diminishing returns of additional advertising spend
[7], we determine that we have a more substantial probability of
measuring the channel effects by cutting the spend than by increas-
ing it. This strategy gives us a direct estimation of the incremental
conversions generated by the channel, similar to the experiment
run by Blake et al. for paid search [4].

Due to the UAC mixture of demand-generating and demand-
capture media types, changes in UAC spend are likely to have an ef-
fect on other channels in the firm advertising media mixture. These
spillover effects occurred because there is a significant overlap of
audiences among media channels. Thus, other channels’ spend is
likely to increase to cover the gap of the spend cut of the focal chan-
nel, i.e. UAC, decreasing the power of the test and under-estimating
the value of the channel. Therefore, to avoid spillover effects from
other channels, we control the other channels spend to keep the
same levels, i.e. constant cost-per-attributed-signup (CPA), during
the stabilization period in both market groups. We also carefully
control the UAC channel spend in both market groups by setting
a similar bidding and intra-channel allocation strategy. These po-
tential confounding factors are overlooked in previously proposed
geo-experiment designs [4, 13].

We note that the overall controlled experiment design is resource-
consuming and potentially expensive. Controlling for other chan-
nels’ spend to diminish the risk of spillovers requires pausing the
complete advertising strategy for the treatment and control markets.
That is, spend optimization should be suspended to maintain similar
pre-experiment spend levels in both markets. Also, the intervention
needs to be significantly large to be detectable in the aggregate
conversion (signups) time series. Thus, the spend cut intervention
needs to be performed in some of the top-spending markets for the
firm. That is likely to represent a sizable strategic price of the test.
Despite the cost and effort, this design maximizes the likelihood of
successfully measuring the effect of the media channel. Even when
we expect an incremental effect of the channel a priori, in practice,
proving channel incrementality rigorous estimates is challenging
(see [9, 15] for empirical evidence of the difficulties). As a result,
special care needs to be taken in the intervention design.

4 SETUP AND VALIDATION
To identify the best market matchings, we run placebo tests (Al-
gorithm 1) for a sample of 50 most representative Uber markets
(Ω), leading to 2,450 market matching combinations. We consider a
set of different intervention dates and training periods to decrease

Figure 2: Placebo effect distribution to select best control
markets. x-axis represents lift (%) effect point estimates.

the effect of arbitrary choices of an intervention date for placebo
treatments. We test for 5 intervention times (Φ): winter, spring,
summer, fall, and holidays. We consider 6 months of historical data
prior to the intervention date for training (∆t ) and 2 months of
experiment duration after the intervention (∆ti ). Figure 2 shows the
distribution of lift effect point estimates of Algorithm 1 lines 8-11.
We observe a large variability of effects, including values different
from zero. This process illustrates the need for a more sophisticated
market matching than a simple correlation analysis (as proposed
by [4]).

We identify that holidays are often problematic as conversions
behave differently for each market. These different behaviors in-
crease the variability of our estimates, making it more challenging
to measure the effectiveness of the channel accurately. To avoid
the impact of holidays, we execute the experiment intervention
on March 19th, 2018, after stabilizing the channel spend in both
cells starting on January 15th, 2018. The experiment ended on May
15th, 2018. Figure 3(a) shows the historical spend for both markets,
the spend stabilization period, and the spend cut at the time of
intervention.

Based on Algorithm 1 lines 14-15, we optimize the market pair
selection to minimize the probability of a false positive effect de-
tection. For the current experiment, we find a minimum detectable
lift of 0.83% based on the best control for the selected treatment
market, and the settings we set above.

5 RESULTS
Figure 3 shows the experiment spend intervention, the treatment
conversions against the predictive control conversions, and the
cumulative effect of the treatment, based on the metric definitions
of Equation 3.

We observe in Figure 3(b) noisier observations before the spend
normalization period. Here, the treatment scaled conversions show
slight differences with the predicted scaled conversions without
intervention. Reasons for these variations include different histori-
cal spend from other channels and the Christmas holidays. Testing
based purely on synthetic control solutions need to handle this
variability and increase of variance in the effect estimation [1].
We note that during the spend stabilization (01/15/18 - 03/12/18)
observed and predicted treatment scaled conversions are closely
aligned. This stabilization is one of the primary benefits of our con-
trolled experiment design because it decreases the variance of the
effect estimations improving the power of the experiment design.
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(a) (b) (c)
Figure 3: Treatment and control weekly time series for: (a) UAC spend, x (control )Tt . (b) UAC treatment scaled signups, y (tr eat )t ,

and control predictive scaled signups, ŷs (tr eat )t , with 95% credible intervals. (c) Cumulative estimated impact,yscumAttr (ti )
, with

95% credible intervals. Training period, t ∈ 1, . . . ,T − 1: 09/09/2017 - 03/12/208. Spend stabilizing period: 01/15/18 - 03/12/18.
Spend cut intervention date, T : 03/19/18. Ending date, Ti : 05/13/18. Test duration: 8 weeks. MCMC samples Ns = 15, 000.

Table 1: UAC Campaign Controlled Experiment Results.

Estimation Metric Treatment P-Value Credible Interval Incremental Cost per
Method Lift Lower Bound Upper Bound Scaled Units Incremental Unit
Proposed Estimation Method Scaled Signups -6.57%*** 0.0064 -11.66% -1.43% -1.29 39.30 money units
Synthetic Control Scaled Signups -5.03% 0.2180 -13.73% 3.66% -1.01 50.20 money units
Proposed Estimation Method Spend Units -72.33%*** 0.0010 -82.40% -61.28% -50.70 -

As depicted in Figure 3(b), we observe a consistent drop in the
treatment scaled conversions after the intervention during the ex-
periment when compared to the predicted scaled conversions. The
drop is within the credible intervals of the predicted treatment
scaled conversions on a week-by-week basis. Similar to the case
of display advertising effectiveness measurement [15], detecting
statistically significant effects due to UAC advertising spend is
difficult. Despite the demand-capturing components in the UAC
intra-channel mix (i.e. sponsored search, app store), and the drastic
intervention by cutting the spend close to zero, measuring the effec-
tiveness of the channel remains challenging. Figure 3(c) shows the
cumulative effect of the spend cut, which becomes significant in
the last two weeks of the experiment. We observe an increasingly
significant impact, which is the result of a consistently negative
effect on the week-by-week point estimates.

We report the cumulative effect lift results, li f tscum (ti )
, after

concluding the experiment in Table 1. Based on this cumulative
result, we conclude that the channel is incremental and that UAC
spend would have caused 6.57% of the scaled conversions that
would have been observed in the average. We observe in Figure
3(a) that the spend is not completely zero. That is because of tailing
ad exposures that require spend delivery to the ad network during
the experiment. Therefore, to find the cost per incremental scaled
conversion, we estimate the effect of the intervention on spend.
We report an effect on spend of −72.33% in Table 1. As a result,
the cost per incremental scaled conversion becomes the ratio of
incremental spend over incremental scaled conversions (CPIA). We
report a CPIA of 39.30 money units, which reflects the return on
investment of UAC advertising spend in the current experiment.

For comparison, we use an internal synthetic-control based
method off-the-shelf 3. This method uses a standard synthetic con-
trol approach [1] based on the control market conversions used by
the proposed method. Based on the results of Table 1, we observe
that this synthetic-control based estimation provides a similar point
estimate but with larger p-value, without achieving statistical sig-
nificance. We attribute the more substantial variability to the lack
of spend stabilization and the dependence on historical spend in
the predictive markets, despite the usage of more conversion time
series predictors. This increase in the precision of the results shows
the value of spend stabilization to successfully measure the effect
of the campaign with statistically significant results.

6 LIMITATIONS
Accurately measuring the effect of advertising on a given conver-
sion metric is critical for successful advertising spend planning.
Identifying these effects is hard, and often leads to a large per-
centage of inconclusive campaign experiments [15]. Comparisons
between aggregate market conversions require large intervention
effects. Without user-level data, we are unable to identify the user
population exposed to the campaign ads and isolate their conver-
sions. The smaller the exposed population of a given market, the
more diluted the spend effect is. Adding any filter on the users who
we are confident are not exposed to ads improves the likelihood
of successfully measuring a significant effect. As a result, the pro-
posed design and estimation framework require interventions with
large expected effects. Since the incremental value of additional
advertising spend over ongoing spend levels is smaller, assuming

3Under the Hood of Uber’s Experimentation Platform. Published: https://eng.uber.com/xp

https://eng.uber.com/xp
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diminishing returns of incremental budget [7], we recommend sus-
pending spend instead.

Holidays and unexpected events are problematic to model in
market-based experiments. The seasonal effects of holidays are of-
ten confounded with market intrinsic properties, which make them
difficult to predict their conversions. Consequently, the experiment
precision decreases, increasing the likelihood of false positives in
the hypothesis testing of effects. The general recommendation is to
discard and assume holidays as missing values [13]. In the current
experiment, we decide the experiment dates in the market match
procedure based on thousands of placebo tests.

The current controlled experiment design is not orthogonal to
other channel’s spend in any of the treatment or control markets.
Given the typical overlap in user audiences among channels, paus-
ing all advertising spending in the treatment market creates a mar-
keting gap that is easily picked by other channels. Thus, the adver-
tising optimization strategy needs to be controlled in both treatment
and control markets during the spend stabilization period. There
are cases where a market match test is preferred over a randomized
A/B experiment. Cases when negative brand perceptions are likely
to spread if users without access to the advertising offer become
aware that they have been excluded. We recommend randomized
A/B experiments with user-level exposures and responses when-
ever possible. Unfortunately, often ad networks do not provide this
capability, and UAC exemplifies these constraints.

7 CONCLUSION AND MANAGERIAL
IMPLICATIONS

We have presented a controlled experiment design and effect es-
timation framework with advertiser side spend levers when user
level randomization is not possible. We have detailed and discussed
the day-to-day constraints faced by advertisers to effectively mea-
sure advertising channel incrementality with experiments. These
constraints contrast with the majority of the current literature in
ad effectiveness which assumes the ability to randomize users.

We approached the incrementality testing problemwith amarket
matched based experiment and by targeting advertising spend at
the market level. We have provided practical recommendations to
successfully measure channel incrementality with advertiser spend
levers without user level exposure data. We have demonstrated that
the proposed method is more effective in detecting and estimating
the effect of channel spend than standard synthetic control based
approaches.

We have provided evidence from a large-scale field experiment
that UAC, a recent online advertising format, shows incremental
value as a media channel, despite the limited customization levers.
We hypothesize that the diversity of the media type within UAC is
one of the main reasons the channel is effective. The combination
of demand-generating and demand-capturing advertising media
suggests a powerful set of advertising levers. Also, the use of app
store within UAC is a powerful tool to automatically blacklisted
users who have been acquired, when compared to other media
types. As future work, we encouragemore testing of UACmarketing
campaigns. Measuring the effects of this channel in other types of
conversions, apart from customer acquisition, would shed light on
the effectiveness of UAC more broadly.

Testing without user-level randomization is expensive, but it is
the only option without user randomization. Although some ad net-
works provide incrementality tools, particularly in ad exchanges
and programmatic display, the fragmented nature of the online
advertising industry still poses significant constraints. In ongoing
advertising evaluation and optimization planning, rigorously de-
signed experiments provide valuable data to build channel response
curves for incremental conversions and to Media Mix Models. We
recommend running experiments to calibrate those models. Making
rigorous experimentation for advertisers more effective and across
multiple media channels remains an open research topic.
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