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ABSTRACT
Conventional bidding strategies for online display ad auction heav-

ily relies on observed performance indicators such as clicks or

conversions. A bidding strategy naively pursuing these easily ob-

servable metrics, however, fails to optimize the profitability of the

advertisers. Rather, the bidding strategy that leads to the maximum

revenue is a strategy pursuing the performance lift of showing ads

to a specific user. Therefore, it is essential to predict the lift-effect

of showing ads to each user on their target variables from observed

log data. However, there is a difficulty in predicting the lift-effect,

as the training data gathered by a past bidding strategy may have

a strong bias towards the winning impressions. In this study, we

develop Unbiased Lift-based Bidding System, which maximizes the

advertisers’ profit by accurately predicting the lift-effect from bi-

ased log data. Our system is the first to enable high-performing

lift-based bidding strategy by theoretically alleviating the inher-

ent bias in the log. Real-world, large-scale A/B testing successfully

demonstrates the superiority and practicability of the proposed

system.
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1 INTRODUCTION
Online advertising has been playing an integral role in the recent

business, which accounts for half of media ad spending in the
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world [1]. One of the advantages of the online ad is that the per-

formance of the ads can be assessed by simple metrics such as the

number of clicks and conversions earned by the ads. These metrics

enable ad deliverers, DSPs (Demand-Side Platforms), to charge ad

costs for advertisers through the objective billing systems named

CPC (cost-per-click), CPA (cost-per-action), and CPM (cost-per-

impression). The conventional goal of DSPs is to optimize these

metrics by performance-based bidding strategy, which decides bid

price based on the probability of users to take the desired action.

Despite its industrial success, there are two major emerging

issues with the current bidding process. First, the conventional

bidding strategy ignores the probability that a user will convert

even without an ad. Such a strategy is suboptimal in the sense

that it will not reach users having a high probability of changing
their action by showing an ad [11]. Moreover, it might destroy

the experience of end-users who have high conversion probability

even without an ad [6]. The other problematic issue is the inherent

bias in training data. Specifically, for supervised machine learning

to work, it is necessary for training and test population to follow

the same distribution. However, this is not the case in the online

advertising domain. This is because the training data is heavily

biased by the ad auction selection in the data collection process

(i.e., impression bias). Impressions that were assigned to a higher

bid price by a past bid strategy would have a higher probability of

winning in an auction, thereby having a higher chance to appear in

the training data. On the other hand, one has to make a prediction

for every impression before the ad auction selection in the testing

time. As a result, machine learning models trained on that biased

data will overly focus on samples with a high winning probability,

resulting in a poor performance in the testing time [14].

These two issues have been solved separately. [11] shows that

the conventional strategy optimizing observed clicks or conver-

sions is suboptimal and proposes a lift-based bidding strategy. This

strategy decides the bid price based on the predicted lift effect
of showing an ad to a user and considers their conversion proba-

bility without the ad. However, their proposed method does not

address the impression bias theoretically. In contrast, [14] proposes

a method to alleviate the bias and unbiasedly predict the outcome

under the impression bias. However, the bidding strategy consid-

ered in [14] still pursues the observed metrics, not the lift-effect.

Therefore, a theoretically grounded method that simultaneously

solves these two challenging problems has not yet been proposed

in the literature.

In this study, we solve the aforementioned issues simultaneously

with the aim of maximizing advertisers’ revenue while avoiding

damaging end-users’ experience. We first propose a method to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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predict the lift of showing ads to a specific user using only an

observable biased impression log. Our method builds on a theoreti-

cally validated debiasing method in causal inference called inverse
propensity scoring and easily implementable with existing machine

learning packages such as scikit-learn1 or XGBoost2. We further

describe the details of our resulting Unbiased Lift-based Bidding Sys-
tem architecture used in our real production. Our system is scalable

and able to optimize advertisers’ profit by deciding the bid price

for each impression based on our proposed unbiased lift prediction

procedure. Finally, we conduct online A/B testing and demonstrate

that our proposed system outperforms the naive, conventional

performance-based bidding strategy in a real ad campaign.

Our contributions can be summarized as follows:

• We propose a theoretically grounded, easily implementable

method to predict the lift-effect of showing ads from biased

impression log data.

• We develop Unbiased Lift-based Bidding System, which max-

imizes the advertisers’ profit by bidding based on the pre-

dicted lift-effect.

• We demonstrate the efficacy of our proposed system in a

large-scale online A/B testing on a real-world DSP.

2 MOTIVATION
This study aims at increasing the effectiveness of an advertising

campaign by optimizing bid prices under budget constraints. To

explain this, we provide a brief overview of the bidding problem.

Marketers craft a whole picture of their advertising campaign

and split a fraction of the budget for online ads, spending the rest

to other advertisements such as TVs and newspapers. With that

specific assigned budget, DSPs join online ad auctions. This pre-

determined constraint is almost always an equity constraint and the

budget DSPs want to consume without any excess and deficiency.

Hence the tasks of DSPs are twofold: 1) allocating the campaign

budget for online advertisements efficiently to eat up its budget and

2) acquiring an effective impression in RTB (Real-time Bidding).

DSPs are unable to know which or when, even how many users

show up in the auction, but only able to predict them. Hence, DSP

needs to determine the appropriate bid price for each bid request

sequentially by learning the quantity and quality of bid requests

to keep budget constraints. Then the DSP’s problem at 𝑘th bid

request is to choose the best bid price 𝑏𝑖𝑑𝑘 ∈ R>0 to maximize

expected profit over [𝑘, ¯𝑘) period. Let𝑤𝑝𝑘 be the winning price of

the auction and 𝜔𝑘 be the indicator function that tells if the bidder

wins or not.𝑤𝑝𝑘 is the highest bid for first price auction and second

highest bid for second price auction. 𝜔𝑘 takes one if the DSP wins

and takes zero if not. We treat them as a function of 𝑏𝑖𝑑𝑘 .

Let 𝑣 𝑗 be the value obtained from the ad-slot 𝑗 . The conven-

tional performance-based bidding strategy uses the probability of

conversion with an ad as the value as follows.

𝑣 𝑗 = 𝐸 [𝑦𝑖 | 𝑎𝑑 𝑗 ] . (1)

It just uses the observed performance of the ad, but ignores the

action changes caused by the ad. In contrast, the lift-based bidding

strategy set 𝑣 𝑗 as the lift of conversions caused by the ad impression.

1
https://scikit-learn.org/stable/

2
https://xgboost.readthedocs.io/en/latest/

Namely,

𝑣 𝑗 = 𝐸 [𝑦𝑖 | 𝑎𝑑 𝑗 ] − 𝐸 [𝑦𝑖 | 𝑛𝑜 𝑎𝑑 𝑗 ] . (2)

Then the DSP solves the following maximization problem.

max

𝑏𝑖𝑑𝑘,· ¯𝑘
𝐸


∑

𝑗 ∈[𝑘, ¯𝑘)

(
𝑣 𝑗𝜔 𝑗 (𝑏𝑖𝑑 𝑗 ) −𝑤𝑝 𝑗 (𝑏𝑖𝑑 𝑗 )𝜔 𝑗 (𝑏𝑖𝑑 𝑗 )

) (3)

s.t. 𝐸


∑

𝑗 ∈[𝑘, ¯𝑘)
𝑤𝑝 𝑗 (𝑏𝑖𝑑 𝑗 )𝜔 𝑗 (𝑏𝑖𝑑 𝑗 )

 = 𝐵𝑘 , (4)

where the second equation implies that the expected ad inventory

cost

∑
𝑗 ∈[𝑘, ¯𝑘)

𝑤𝑝 𝑗 (𝑏𝑖𝑑 𝑗 )𝜔 𝑗 (𝑏𝑖𝑑 𝑗 ) must meet remaining budget at 𝑘 ,

𝐵𝑘 .
3
With the above optimization problem, DSPs should gain an

effective impression having a large lift-effect to maximize the profit.

Our focus in this study is to propose a method to predict the lift-

effect with the biased impression data and implement a system that

controls the bid prices based on the predicted lift-effect.

3 BACKGROUND AND RELATEDWORK
We briefly summarize the background of this study and critical

related works.

DSPs participate in the online auctions to purchase ad impres-

sions from SSP (Supply-Side Platform). In general, DSPs charges

advertisers for their performance measured by an observed metric

such as the number of clicks or conversions. Specifically, they claim

a fixed price for each click (cost-per-click, CPC), or each conver-

sion (cost-per-action, CPA). As a result, performance-based bidding

strategies aim at maximizing the number of clicks or conversions

after impression (Eq. (1)).

Just focusing on CPC or CPA, however, may yield suboptimal

strategy because they omit the probability that the targeted users

get converted (e.g., visit a store, purchase a good) without adver-

tising. To incorporate this omitted realm, the DSP needs to predict

incremental gain caused by ad impression (Eq. (2)).

The attempts to incorporate this lift-effect in bidding strategy are

lift-based bidding [11], incrementality bidding [4], or more broadly

uplift modeling [5, 7–9, 12]. We advance this line of literature and

address the inherent bias in impression log data in a theoretically

grounded and tractable manner. Specifically, we propose a method

to unbiasedly predict the lift-effect of an ad impression on a specific

user from biased impression data. Moreover, our method is easily

implementable with the well-known machine learning libraries,

while the previous debiasing method for the performance-based

bidding strategy needs additional implementation cost [14]. We be-

lieve that our method will broaden the application of the promising

lift-based bidding strategy. This is because every online ad system

is biased by the ad auction selection [14], and practitioners can

implement and try our unbiased lift-effect prediction method imme-

diately. To our knowledge, we are the first to theoretically consider

both the lift-effect prediction and ad impression bias in the online

advertising literature.

3
In the real-world production the formulation of the constraint depends on advertisers’

interest. 𝑤𝑝 can be cost-per-click or cost-per-impression.
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4 PROPOSED METHOD
In this section, we propose and describe our Unbiased Lift-based
Bidding System.

4.1 Setup
We consider a bidding strategy that rewards 𝑣 for each lift 𝜏 so

that a DSP earns 𝑣 for each extra conversion (as in Eq. (2)). Our

algorithm calculates the bid price 𝑏𝑖𝑑𝑖 as:

𝑏𝑖𝑑𝑖,𝑠 (𝑎) = 𝛼 · 𝑣 · 𝜏 (𝑠 (𝑎) | x𝑖 ) . (5)

where 𝛼 ∈ (0, 1) is cost rate, a budget pace multiplier that will

be detailed in Section 4.3. 𝑣 is some fixed value a DSP earns for

conversion lift. In our algorithm, 𝜏 is the predicted lift-effect of

advertising𝑎 for user 𝑖 characterized by a feature vector x𝑖 . 𝑠 (𝑎) ∈ S
represents the ad exposure state of an ad 𝑎 under consideration,

and S is a set of possible states. We use the number of impressions

of 𝑎 to 𝑖 as a scalar variable representing the ad exposure state of 𝑎

to 𝑖 , and thus S = {0, 1, . . .} here.
To formally define the lift-effect 𝜏 , we introduce the essential no-

tation called potential outcomes in causal inference [3]. Let 𝑦𝑖 (𝑠 (𝑎))
denote user 𝑖’s potential outcome associated with the exposure state

𝑠 (𝑎) of ad 𝑎. Each user 𝑖 has potential outcomes associated with

every possible state, i.e., {𝑦 (𝑠 (𝑎)) | ∀𝑠 (𝑎) ∈ 𝑆}, however, only one

of them is observable. The observed outcome for user 𝑖 is defined

as 𝑦𝑜𝑏𝑠
𝑖

= 𝑦𝑖 (𝑠𝑖 ) where 𝑠𝑖 is a realized exposure state for user 𝑖 .

Note that the potential outcomes associated with every possible

state other than the realized one, i.e., {𝑦 (𝑠 (𝑎)) | ∀𝑠 (𝑎) ∈ 𝑆\{𝑠𝑖 }} is
unobservable or counterfactual to the analysts.

The lift-effect 𝜏 of showing ad 𝑎 for each user 𝑖 is sequentially

defined as the difference between the expectation of the potential

outcomes given the two consecutive ad exposure states (the number

of impressions):

𝜏 (𝑠 (𝑎) | x𝑖 ) = 𝐸 [𝑦𝑖 (𝑠 (𝑎) | x𝑖 ] − 𝐸 [𝑦𝑖 (𝑠 (𝑎) − 1) | x𝑖 ],∀𝑠 (𝑎) ∈ S\{0}.
(6)

where 𝐸 [𝑦𝑖 (𝑠 (𝑎)) |x𝑖 ] is the expected potential outcome of 𝑖 when

the number of impressions is 𝑠 (𝑎), in contrast 𝐸 [𝑦𝑖 (𝑠 (𝑎) − 1) |x𝑖 ] is
the expected potential outcome when the number of impressions is

𝑠 (𝑎) − 1. Thus, Eq. (6) is the reasonable definition for the lift-effect

of showing an ad 𝑎 one more time to a specific user 𝑖 who has been

exposed to the ad 𝑠 (𝑎) − 1 times in the past.

To predict 𝜏 , we train predictors of outcomes for every possible

state ∀𝑠 ∈ S separately and combine their predictions as follows.

𝜏 (𝑠 (𝑎) | x𝑖 ) = 𝑓 𝑠 (𝑎) (x𝑖 ) − 𝑓 𝑠 (𝑎)−1 (x𝑖 ),∀𝑠 (𝑎) ∈ S\{0}. (7)

where 𝑓 𝑠 (𝑎) and 𝑓 𝑠 (𝑎)−1
predict 𝐸 [𝑦𝑖 (𝑠) | x𝑖 ] and 𝐸 [𝑦𝑖 (𝑠 (𝑎)−1) | x𝑖 ],

respectively. To accurately predict the lift-effect 𝜏 , it is essential

to predict the expected probability of conversion under each ad

exposure state well.

4.2 Unbiased Lift-effect Prediction
To obtain a well-performing predictor 𝑓 for each ad exposure state,

it is ideal to directly optimize the following generalization error:

L𝑖𝑑𝑒𝑎𝑙 (𝑓 𝑠 (𝑎) ) = 𝐸𝑝 (𝑥,𝑦) [ℓ (𝑦 (𝑠 (𝑎)), 𝑓 𝑠 (𝑎) (x))],∀𝑠 (𝑎) ∈ S. (8)

where 𝑓 𝑠 (𝑎) is a predictor for 𝐸 [𝑦 (𝑠 (𝑎)) | x], ℓ specifies a loss func-
tion such as mean squared error, 𝑝 (𝑥,𝑦) is joint probability distribu-
tion of thewhole population, meaning that the population before

the ad auction selection or the testing time. We consider optimizing

the generalization error defined over the whole population because

we apply 𝑓 𝑠 (𝑎) to predict the potential outcome in the testing time.

In reality, however, it is impossible to directly optimize Eq. (8).

This is because we can utilize only a finite size 𝑛𝑠 (𝑎) of training

data D𝑠 (𝑎) = {(x𝑖 , 𝑦𝑜𝑏𝑠𝑖
) | 𝑠 (𝑎) = 𝑠𝑖 }

𝑛𝑠 (𝑎)
𝑖=1

∼ 𝑝 (𝑥,𝑦 |𝑠 (𝑎)) for each
ad state and cannot take the expectation to obtain Eq. (8). The

conventional solution to this is Empirical Risk Minimization (ERM),

which optimizes the empirical approximation of Eq. (8) as:

𝑓
𝑠 (𝑎)
𝐸𝑅𝑀

= arg min

𝑓 𝑠 (𝑎)

ˆL𝐸𝑅𝑀 (𝑓 𝑠 (𝑎) ) = arg min

𝑓 𝑠 (𝑎)

1

𝑛𝑠 (𝑎)

∑
𝑖∈D𝑠 (𝑎)

ℓ (𝑦𝑜𝑏𝑠𝑖 , 𝑓 𝑠 (𝑎) (x𝑖 ))

.

The ERM principal works well under the situation of the same

train-test distribution, however, the ad impression bias breaks

this premise of machine learning. Specifically, the simple empiri-

cal approximation of the loss function over D𝑠 (𝑎) has a bias, i.e.,
𝐸𝑝 (𝑥,𝑦,𝑠 (𝑎)) [ ˆL𝐸𝑅𝑀 (𝑓 𝑠 (𝑎) )] ≠ L𝑖𝑑𝑒𝑎𝑙 (𝑓 𝑠 (𝑎) ) for some given 𝑓 𝑠 (𝑎) .
The bias issue emerges because users assigned to a higher bid price

has higher density in the training data than that in the test data (i.e.,

𝑝 (𝑥,𝑦) ≠ 𝑝 (𝑥,𝑦 |𝑠 (𝑎))). As a result, the trained predictor 𝑓
𝑠 (𝑎)
𝐸𝑅𝑀

may

perform poorly in the testing time, because it mistakenly overfits

to the over-represented samples in the training data.

To alleviate this bias issue of ERM in the online adverting situa-

tion, we apply the inverse propensity score (IPS) estimation technique

to debias the estimation of the ideal loss in Eq. (8). Our loss function

takes the following form:

ˆL𝐼𝑃𝑆 (𝑓 𝑠 (𝑎) ) =
1

𝑛

∑
𝑖∈D𝑠 (𝑎)

1

𝑒𝑠𝑖 (x𝑖 )
ℓ (𝑦𝑜𝑏𝑠𝑖 , 𝑓 𝑠 (𝑎) (x𝑖 )). (9)

where 𝑛 =
∑
𝑠 (𝑎) ∈S 𝑛𝑠 (𝑎) is the total number of the training data,

and 𝑒𝑠𝑖 (x𝑖 ) = 𝑃 (𝑠 (𝑎) = 𝑠𝑖 |x𝑖 ) is the probability of user 𝑖 being

assigned to the ad exposure state 𝑠𝑖 called the propensity score. A
fascinating property of the IPS loss in Eq. (9) is that it is unbiased for

the ideal generalization error as the following proposition states.

Proposition 4.1. The IPS loss function in Eq. (9) is unbiased for
the ideal generalization error in Eq. (8), i.e., for any given 𝑓 𝑠 (𝑎) , we
have

𝐸𝑝 (𝑥,𝑦,𝑠 (𝑎)) [ ˆL𝐼𝑃𝑆 (𝑓 𝑠 (𝑎) )] = L𝑖𝑑𝑒𝑎𝑙 (𝑓 𝑠 (𝑎) )

under standard identification assumptions in causal inference [3, 8,
10].

The above proposition suggests that our IPS loss function suc-

cessfully alleviates the bias issue of ERM and approximates the ideal

loss from only observable data. Therefore, to unbiasedly predict

the lift-effect under the ad impression bias, we optimize the IPS

loss and use the resulting predictors to obtain the final lift-effect

prediction as:

𝜏 (𝑠 (𝑎) | x𝑖 ) = 𝑓
𝑠 (𝑎)
𝐼𝑃𝑆

(x𝑖 ) − 𝑓
𝑠 (𝑎)−1

𝐼𝑃𝑆
(x𝑖 ),∀𝑠 (𝑎) ∈ S\{0}.

where 𝑓
𝑠 (𝑎)
𝐼𝑃𝑆

= arg min

𝑓 𝑠 (𝑎)

ˆL𝐼𝑃𝑆 (𝑓 𝑠 (𝑎) ) is the IPS loss minimizer.
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4.3 PID Control for Cost Rate
We use 𝛼 for budget pacing, and it discounts the predicted lift-effect

in the auctions as in Eq. (5). Appropriate 𝛼 is not known a priori,

and thus we use PID (Proportional Integral Derivative) control al-

gorithm following [13] to adaptively update it to keep the spending

constant. We tune the parameters 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑 , and parametric specifi-

cation of the actuator in Algorithm 1 by an offline simulation. We

found that the performance is stable when using the exponential

actuator, i.e., 𝑒𝑥𝑝 (·) as a parametric specification.

Algorithm 1 PID control for cost rate

Require: Default cost rate 𝛼∗, hyperparameters 𝑘𝑝 , 𝑘𝑖 , 𝑘𝑑
Set 𝛼 = 𝛼∗

while ℎ < 𝐻 do
𝑒𝑟𝑟ℎ = remaining budget/remaining hours - budget spending

at ℎ − 1

𝛼ℎ+1
= 𝑒𝑥𝑝

(
𝑒𝑟𝑟ℎ𝑘𝑝 + ∑

𝑗≤ℎ
𝑒𝑟𝑟 𝑗𝑘𝑖 + (𝑒𝑟𝑟ℎ − 𝑒𝑟𝑟ℎ−1

)𝑘𝑑

)
𝛼ℎ

end while

5 IMPLEMENTATION
We implement the proposed algorithm in a unique DSP specialized

for online-to-offline marketing provided by CyberAgent, Inc, a

Japan-based ad agency. Our DSP uses location data to determine

bid prices and treat users’ visits to offline stores as conversions.

5.1 Architecture
We summarize the whole architecture of our bidding system in

Figure 1. For each bid request, corresponding 𝜏 multiplied by cost

rate 𝛼 is returned as the bid price. 𝜏 is a predicted lift-effect for

a coming impression. The ad impression count is calculated by

scanning the history of an ad impression for each user. The PID

controller updates the cost rate 𝛼 in every hour based on the gap

between ideal budget spending and realized budget spending. The

whole procedure is scalable and done within a few milliseconds

and does not harm the user experience.

5.2 Preprocessing of Impressions
To attribute each conversion to ad impressions, we use user-level
learning rather than log-level learning used in existing research.

Log-level learning implies randomly sampling data points from

users’ timeline by windows (the rectangles in Figure 2). The method

used in [11] can be classified into this group. On the other hand,

user-level learning firstly composes user level data and learns the

relationship between impressions and conversions for each user.

Note that the data size of user-level learning is the number of users,

whereas log-level learning generates larger data.

User-level learning has several advantages over log-level learn-

ing. First, it does not require any hyperparameter for data split-

ting such as window size. Second, user-level learning incorporates

whole data points including those omitted in log-level learning.

One drawback of user-level learning is that the data size is small.

This, however, poses little problem for our setting, because DSPs

usually reaches out to millions of users for each campaign.

Figure 1: The lift-based bidding system architecture
Note: For each bid request, the DSP server confirms how many impressions

the coming user has been exposed to the ad in the past (impression count).

The PID controller updates the cost rate 𝛼 every hour based on the gap

between the ideal and realized budget spendings. Then DSP calculates

the bid price by combining the cost rate 𝛼 and pre-predicted lift-effect of

exposing the ad to the user one more time 𝜏 .

Figure 2: Comparing log-level and user-level learning
Note: The log-level learning captures the higher granularity logs than the

user-level learning. The log-level learning samples the attributions from the

users’ timeline giving multiple attribution ids (attr_ids) to the users, and the

user-level learning summarizes the whole history of the timeline for each

user. The table of log-level learning can have multiple rows (i.e., multiple

attr_ids) for a single user, whereas the table of user-level learning has one

row per user.

5.3 Lift-effect Model Training
Data Sources. We take the training data from two types of sources.

When there are similar advertising campaigns in the past, we use

the data for training. When no similar advertising campaign is con-

ducted before we introduce lift-based bidding in the middle of the

ongoing campaign and use the data generated at that point.

Ad sizes. The online ad takes various forms, including creative,

template, format, and size. Size is especially critical as it is standard-

ized by IAB
4
. To account for the effect of ad size on target variables,

Essentially, we group ads into four by size and train size-specific

predictors.

Propensity Score Estimation. To use our IPS loss function, we

have to estimate the propensity score 𝑒𝑠 (·) in Eq. (9). The estimation

of the propensity score is the multi-class classification problem. We

use multi-class classifier from XGBoost library [2] and train it using

the whole training data {(x𝑖 , 𝑠𝑖 )}𝑛𝑖=1
and classifies the ad exposure

state 𝑠𝑖 from the feature vectors. The feature vector to estimate

4
https://www.iab.com/

https://www.iab.com/
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the propensity score includes estimated CVR used for the exist-

ing bidder and the number of impressions before the advertising

campaign of training period as well as the geographical features of

user 𝑖 . The estimated CVR and the number of impressions before

the advertising campaign improve the estimation quality of the

propensity score because the higher estimated CVR means higher

bid price and the number of impressions in the training period

indicates how easy the ad-slots of the user is obtained. For each ad

size, we split users into eight classes by the number of impressions

𝑠𝑖 ∈ S = {0, 1, , 2, 3, 4, 5 − 9, 11 − 20, 20+}. The window size of bins

gets larger for the higher number because the distribution of the

number of impressions is highly skewed to the right. We train four

propensity score predictors for each ad size.

Outcome Prediction. We train outcome predictors for each pair

of ad exposure states and ad sizes. We use XGBoost regressor, since

the outcome variable 𝑦 is the number of users’ visits to an offline

store. To train a regressor, we optimize the IPS loss function in

Eq. (9). XGBoost provides a weighting option, thus our IPS loss

minimization procedure is easily implementable. The feature vector

x includes recency (the last time the user visited the stores), fre-

quency (how many times the user visited the stores), visited POIs

(point-of-interests), the number of location logs, census statistics of

the user’s residential areas such as the share of age groups, averaged

size of the households, and land prices.

5.4 The flooring and smoothing 𝜏
The predicted lift-effect can be negative. While it is natural for the

lift-effect prediction framework to predict the negative effect of the

ad, bidding negative price is not rational and could cause a problem

in the system that does not expect negative bid price. Hence we

first set 𝜏 to zero for 𝜏 < 0. The floored values are still very volatile

across the impression count. It is possible that the expected value

of the second impression is very high, while the first impression

has zero expected value. Then the impression count for the user

never gets two because the bidding for the first impression always

loses. To deal with the problem, we smoothed the values with 3-

impression count backward-moving average so that the value of

the first impression gets high enough in the above example.

6 ONLINE EXPERIMENT
6.1 Experimental Design
To evaluate our unbiased lift-based bidding system, we compared

its performance indicators (impressions-per-user, etc.), business

KPIs (key performance indicators), and its pacing efficiency with a

conventional bidding system through an online A/B testing. The

performance-based system employs the community standard bid-

ding system, which decides bid price by Eq. (1). Note that our

lift-based bidding system determines the bid price by the predicted

lift-effect of showing one additional ad to a user and is described in

Eq. (2) and Eq. (5). In the A/B testing, we randomly assigned the

two systems to users on an online ad campaign that aims to pro-

motes the app released by a major consumer electronics retailer in

Japan
5
. The primary aim of the campaign is to increase the number

5
The experiment duration was June 9-14 2020, where COVID-19 had have been a

serious issue across the world. Although we understand that the COVID-19 could

Table 1: A/B testing; Lift-based vs Performance-based

Lift-based Performance-based Difference

#Impressions-per-user 1.28 1.0 0.28***

#Clicks-per-user 0.54 1.0 -0.46**

Reach rate 1.71 1.0 0.71***

#Visit-per-user 1.01 1.0 0.0093

Share of visitors 1.004 1.0 0.0036

#Users 467,180 3,310,182

Note: The lift-based bidding system obtains more impressions and achieves

larger reach rate than the performance-based bidding system. We divided

each metric by the results of the performance-based strategy for the nor-

malization purpose. #Impressions-per-user is the average number of im-

pressions by users; #Clicks-per-user is the average number of clicks by

users; Reach rate is the ratio of the users who got one or more impres-

sions; Share of visitor is the ratio of the users who visited one or more

offline stores.; The number of stars represents the statistical significance

level (p-value < 0.05*, p-value < 0.01**, p-value < 0.001***).

Table 2: Business KPIs; Lift-based vs Performance-based

Lift-based Performance-based

Cost-per-impression 0.27 1.0

Cost-per-reach 0.24 1.0

Cost-per-visit 0.30 1.0

Note: The proposed lift-based strategy efficiently won the impressions and

conversions compared to the performance-based one, and thus has positive

impacts on our business. We divided each metric by the results of the

performance-based strategy for the normalization purpose. The table shows

the three essential business KPIs. Cost-per-impression is the number of

impressions per dollar spent for the ad inventories; Cost-per-reach is the

number of users with one or more impressions per dollar; Cost-per-visit
is the number of visits per dollar.

of app users and visitors to the real stores located across Japan. To

alleviate the impacts of the experiment on the business, we make a

relatively small group for the lift-based group, which results in the

unbalanced experiment groups. However, we keep a sufficiently

large group size for statistical analysis.

6.2 Results and Discussion
We summarize the results of the A/B testing in Table 1. Compared

to the performance-based bidding system, the lift-based bidding

system achieved a higher impressions-per-user (28% more) and a

higher reach rate (71% more) but obtained fewer clicks (46% less).

Consequently, the lift-based bidding system invited more visitors

to the real stores on average (0.9% more) and reached a higher

share of visitors (0.4% more). In other words, the lift-based bid-

ding system successfully reached out to potential customers and

encouraged their visits to the real stores. The lift-based system

demonstrates its superiority also in the essential key business in-

dicators (KPIs) described in Table 2. The lift-based strategy won

influence our experiment, we conclude that it did not pose serious issues. First of all,

we conducted after the Japanese government called off the state of emergency. Also,

the state of emergency even depends voluntarily rather than compulsory, and, unlike

other several countries, strict measurements such as “lockdown" were not taken.
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Figure 3: The bid prices; Lift-based vs performance-based
Note: This figure compares the distribution of the bidding price by (a) Lift-
based bidding system and (b) Performance-based bidding system,

showing that the bid prices by lift-based strategy are much smaller (≈ 10
−1

times) than those by the performance-based. We computed the mean bid

price for each user and min-max normalized the values where the highest

value in the population takes 1, and the lowest value takes 0.

Figure 4: Bid price transitions during the experiment.
Note: This figure compares the bid price transition by Lift-based bidding
system (solid blue line) andPerformance-based bidding system (orange

dot line) over the course of the experiments on two different time scale: (a)
Hour of day and (b) Date. In both time scales, the lift-based bidding system

bids a much smaller price with smaller fluctuations than the performance-

based bidding system. We first compute the mean bid price for each user in

each hour in each time scale. Then, we min-max normalize the data where

the highest value in the population takes 1, and the lowest value takes 0.

The shaded area represents 95% confidence interval.

the impressions in an extremely economical way, obtaining each

impression, reaching and conversion at 24-30% of the ad inven-

tory cost of the performance-based. Figure 3 plots the distribution

of the bidding prices by each bidding system and highlights that

the lift-based bidding system bids a much lower price than the

performance-based bidding system. The observations above sug-

gest that the lift-based bidding system (i) bid lower prices and/or

(ii) win auctions at a lower price.

Moreover, our lift-based system excels at its efficiency. The lift-

based bidding system bids prices with lower fluctuation than the

performance-based bidding system. Figure 4 depicts the transition

of the average bidding prices by the two bidding systems on the

two different time scales: Hour of Day and Date. In both time

scales, the performance-based bidding system is much more volatile

than the lift-based bidding system. This difference stems from its

competitors. Because the most rival DSPs adopt performance-based

algorithm, the performance-based bidding system had to compete

against many competitors for the similar ad slots, suffering from

low win rates. When the performance-based system could not win

the auctions, its pacing parameter 𝛼 automatically increased and

fluctuated bidding prices. In contrast, the lift-based bidding system

did not have many competitors in the auctions and kept the pacing

parameter 𝛼 lower, achieving relatively higher win rates.

7 CONCLUSION
In this study, we developed Unbiased Lift-based Bidding System,

which maximizes the advertisers’ profit by accurately predicting the

lift-effect under the impression bias. A key feature of our proposed

system is unbiased lift-effect prediction: we enabled to unbiasedly

predict the lift-effect of an additional ad impression using training

data biased by a past bidding strategy. We also describe our detailed

implementation and system architecture to achieve the lift-based

bidding system in practice. Through online A/B testing, we demon-

strated the scalability and advantages of our proposed system over

the conventional performance-based one.
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