
Predicting conversions in display advertising based on URL
embeddings

Yang Qiu
École Polytechnique & Jellyfish

yanq.qiu@jellyfish.com

Nikolaos Tziortziotis
Jellyfish

ntziorzi@gmail.com

Martial Hue
Jellyfish

martial.hue@jellyfish.com

Michalis Vazirgiannis
École Polytechnique

mvazirg@lix.polytechnique.fr

ABSTRACT
Online display advertising is growing rapidly in recent years thanks
to the automation of the ad buying process. Real-time bidding
(RTB) allows the automated trading of ad impressions between
advertisers and publishers through real-time auctions. In order to
increase the effectiveness of their campaigns, advertisers should
deliver ads to the users who are highly likely to be converted (i.e.,
purchase, registration, website visit, etc.) in the near future. In this
study, we introduce and examine different models for estimating
the probability of a user converting, given their history of visited
URLs. Inspired by natural language processing, we introduce three
URL embedding models to compute semantically meaningful URL
representations. To demonstrate the effectiveness of the different
proposed representation and conversion prediction models, we
have conducted experiments on real logged events collected from
an advertising platform.

ACM Reference Format:
Yang Qiu, Nikolaos Tziortziotis, Martial Hue, and Michalis Vazirgiannis.
2020. Predicting conversions in display advertising based on URL embed-
dings. In AdKDD ’20, August 23, 2020, San Diego, CA, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In online display advertising [22], advertisers promote their prod-
ucts by embedding ads on the publisher’s web page. The majority of
all these online display ads are served through Real-Time Bidding
(RTB) [6]. RTB allows the publishers to sell their ad placements
via the Supply-Side Platform (SSP) and the advertisers to purchase
these via the Demand-Side Platform (DSP). More specifically, each
time a user visits a website that contains a banner placement, an
auction is triggered. The publisher sends user’s information to the
SSP, which forwards this information to the Ad exchange (AdX),
and finally the AdX sends a bid request to the DSPs. Then each DSP
decides if it will submit or not a bid response for this impression,
based on its information about user, advertisement, urls, etc. Once
the DSPs send back to the AdX their bids, a public auction takes
place with the impression to be sold to the highest bidder. Figure 1
briefly illustrates the procedure of online display advertising.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AdKDD ’20, August 23, 2020, San Diego, CA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: A high-level overview of RTB procedure.

DSPs are agent platforms that help advertisers optimise their
advertising strategies. Roughly speaking, DSPs try to estimate the
optimal bid price for an ad impression in order to maximise the
audience of the campaigns of their advertisers, given some budget
constraints. The bid price of an ad impression is highly related to
the additive value that this impression could have on the advertising
campaign (i.e., the number of ad impressions, clicks or conversions,
etc.). In this context, advertisers have at their disposal a number
of different pricing models. In the case where the objective of the
advertisers is to maximise the exposure of their advertising message
to a targeted audience, paying per impression, referred as cost-per-
mille (CPM), is probably the best option for them. Nevertheless, in
most of the cases, performance display advertising is more attractive
to advertisers that are interested in accomplishing specific goals
reducing their risks. In this case, advertisers are willing to pay for
an ad impression if and only if that impression will drive the user
to take a predefined action/conversion [14], such as a visit on the
advertiser’s website, a purchase of a product, etc. Two performance
payment models have been introduced for this purpose, referred as
cost-per-click (CPC) and cost-per-action (CPA).

In performance-driven display advertising, DSPs submit a bid
for a given ad impression based on the CPC or CPA that the adver-
tiser is willing to pay. To determine the optimal bid price for an ad
impression, DSPs estimate the expected cost per impression, called
eCPI, which is either equal to the click-through-rate (CTR) for this
impression multiplied by the value of CPC, or the conversion rate
(CVR) multiplied by the value of CPA [5]. As a result, accurate
CTR/CVR prediction plays an important role in the success of on-
line advertising. For this purpose, DSPs build CTR/CVR prediction
models able to estimate the probability a user converting after their
exposure to an advertisement. The accuracy of these models is of
high importance for the success of the campaign as if we overes-
timate click or conversation rates, we will probably submit quite
higher bids than we should do, winning possible useless ad impres-
sions. On the other hand, if these rates are underestimated, we will
probably miss ad impressions likely to lead to a user action.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

AdKDD ’20, August 23, 2020, San Diego, CA, USA Yang Qiu, Nikolaos Tziortziotis, Martial Hue, and Michalis Vazirgiannis

In this work we examine the user conversion problem, where
given an advertiser, we want to predict if a user will be converted
or not based on their history. In contrast to previous works that
use a number of features related to the user profile, ad information
and context information, we consider only the user’s browsing
history. More specifically, each user is represented as a sequence
of URLs visited by the user in a single day. Therefore, the problem
examined in this paper can be formally described as: given a user’s
sequence of URLs from a single day, predict the probability this
user to take a predefined action on the next day. In our case, a user
is considered as converted if they visit the advertiser’s website. Due
to the high cardinality and diversity of URLs, a compact semanti-
cally meaningful representation of URLs is of high importance. For
this purpose, we build and examine three URL embedding models
following the idea of word embeddings [16]. The sequential depen-
dency between user’s browsing history has also been considered by
using a Recurrent Neural Network (RNN) [8]. In total, ten different
prediction conversion models have been introduced. A number of
large scale experiments have been executed on a data collected from
a real-world advertising platform in order to reveal and compare
the prediction abilities of the proposed prediction schemes. Finally,
our empirical analysis validates our claims about the effectiveness
of our representation models showing that they achieve to group
together URLs of the same category. It means that URLs with the
same or similar context are also close on the embedding space.

2 RELATEDWORK
As the performance of a campaign is directly related on how pre-
cisely the CVR/CTR is estimated, it has been the objective of con-
siderable research in the past few years. Typically, the problem of
CVR/CTR estimation is formulated as a standard binary classifi-
cation problem. Logistic regression has been extensively used to
accurately identify conversion events [4, 15, 18]. [7] introduced a
Bayesian learning model, called Bayesian probit regression, which
quantifies the uncertainty over a model’s parameters and hence
about the CTR of a given ad-impression. A precise user representa-
tion (a set of features describing user behaviour) constitutes also the
foundation for building a linear model able to estimate CVR with
high accuracy. Nevertheless, in most cases it requires a lot of feature
engineering effort and the knowledge of the domain. Moreover, lin-
ear models are not capable to reveal the relationship among feature.
To overcome this problem, a number of non-linear models such
as factorisation machines [17, 20] and gradient boosted regression
trees [10] have been also proposed to capture higher order informa-
tion among features. A number of different deep learning methods
have been also proposed recently for CTR prediction [3, 13, 23, 24].

Representation learning has been applied with success in several
applications and has become a field in itself [1] in the recent years.
The URL representation architectures presented in this manuscript
have been inspired by those used in natural language processing
(NLP) tasks. Learning high-quality representations of phrases or
documents is a long-standing problem in a wide range of NLP tasks.
Word2Vec [16] is one of the most well-known word embeddings al-
gorithms. The main idea behindWord2Vec is that words that appear
in similar contexts should be close in the learned embedding space.
For this purpose, a (shallow) neural network language model is

applied that consists of an input, a projection, and an output layer.
Its simple architecture makes the training extremely efficient. [9]
proposed search2vec model that learns user search action represen-
tations based on contextual co-occurrence in user search sessions.
To the best of our knowledge, URLNet [12] is the only work that
learns a URL representation but for the task of malicious URL de-
tection. In contrast to our unsupervised representation scheme that
considers the sequential order of URLs, URLNet is an end-to-end
(supervised) deep learning framework where its character-level
and word-level CNNs are jointly optimized to learn the prediction
model.

3 PROPOSED CONVERSION PREDICTION
ARCHITECTURE

The goal of this paper is to predict the probability a user to be
converted one day after, given their browsing history on a single day.
More specifically, we consider each user as an ordered sequence of
URLs, sorted chronologically. The notion of conversion corresponds
to an action of interest for the advertiser, such as visit on the landing
page, purchase of a product, registration, etc. Therefore, we can
treat the problem of predicting the user conversion as a binary
classification problem [2], where given a sequence of URLs visited
by a user Un = {urln1 , . . . ,url

n
Tn

}, n = 1, 2, . . . ,N , we want to
predict if Un will be converted or not, yn ∈ {0, 1}. The length of
the URL sequence, Tn , may be different for each user.

As an analogy to text classification, we view a sequence of URLs
as a document, or a sequence of sentences. In our case, a URL is itself
a sequence of tokens, of length at most three (we ignore the rest
tokens as they are quite noisy). Each URL1 is split with a ‘/’ (slash)
character, where the first token corresponds to the domain name.
For instance, https://en.wikipedia.org/wiki/Main_Page is mapped
to [en.wikipedia.org, wiki, Main_Page].

In order to apply any supervised classification model, such as
logistic regression, etc., a semantically meaningful representation
of each URL is needed. Therefore, a key intermediate step in our
model is the learning of a URL representation. More precisely, the
proposed conversion prediction scheme is composed of two con-
secutive training phases. The first one corresponds to the learning
of the URL representations, while the second one corresponds to
the training of a classifier. It should be mentioned that the training
processes of these two models are independent.

Due to the high cardinality of URLs, we learn the URL repre-
sentations implicitly by learning and aggregating their tokens rep-
resentations. In this study, we present and examine four different
URL representation models, fr : url → x , where x ∈ Rd and d is
the dimensionality of the embedding space. The first one is the
simple one-hot encoding that treats tokens as atomic units. The
main limitation of this representation is that the representation
size grows linearly with the corpus and it doesn’t consider the
similarity between URLs. To overcome these issues, we propose
three different URL embedding models (see Section 4).

After having trained a representation model, fr , and given a
training set D = {(Un,yn)}

N
n=1, we produce a new dataset D ′ =

{(Xn,yn)}
N
n=1 whereXn = {xn1 , . . . ,x

n
Tn

} is a sequence of lengthTn

1The http(s):// and www parts of each URL are stripped.

https://en.wikipedia.org/wiki/Main_Page

Predicting conversions in display advertising based on URL embeddings AdKDD ’20, August 23, 2020, San Diego, CA, USA

with elements xni = fr (url
n
i). In a nutshell, D ′ contains sequences

of URL embedding vectors along with their labels. Then, we apply
mapping fm : X → z that aggregates the URLs embeddings into
an embedding vector z ∈ Rm , wherem can be different from d . It
results in a single compact representation z for each sequence of
URLs. Next, our goal is to discover a classification model fc : z → ŷ
from a set F of possible models with the minimum empirical risk

min
fc ∈F

E(X ,y)∼D′[ℓ(fc (fm (X)),y)], (1)

where ℓ ∈ R is a non-negative loss function. In fact, classifier fc
is trained on dataset D ′′ = {(zn,yn)}Nn=1. In this work, we use
logistic regression where the conversion conditional probability of
user (n) given their browsing history Xn , is modeled as:

p(yn = 1|Xn) = σ (θ⊤ fm (Xn) + b), (2)

where θ is a vector with the unknown model parameters, b is the
bias term and σ (·) is the logistic sigmoid function. From a geomet-
rical point of view, θ⊤ fm (Xn) + b is a hyperplane that separates
the two classes. To learn the unknown model parameters, the cross-
entropy loss is applied:

L = −E(X ,y)∼D′[y log fc (fm (X))+(1−y) log(1− fc (fm (X)))]. (3)

Next, we are describing the three different mapping functions fm
adopted in our work. The first one returns the average of the URLs
embedding vectors presented on a sequence: f (1)m (X) = 1

T
∑T
i=1 xi .

The second one considers the dependencies among the features of
the embedding vector returned by the first mapping function. To
be more precise, it returns the output of a dense layer with rectified
linear units (ReLU), that takes as input the average of the URLs
embedding vectors, f (2)m (X) = д(θ (1)⊤ f (1)m (X) + b(1)). The ReLU
uses the activation function д(z) = max{0, z}. The main limitation
of applying one of the two aforementioned mappings is that they
do not take into account the chronological order in which the URLs
appeared on the sequence. To overcome this limitation we resort
to the well-known Long Short Term Memory network (LSTM) [11]
that is a special kind of RNNs [19] and is suitable to process variable-
length sequences. To be more precise, the third mapping function
f
(3)
m is an LSTM network able to map an input sequence of URL
embeddings X to a fixed-sized vector z, that can be considered
as the representation of the whole sequence. In all cases, we are
feeding the produced vector z to a final dense layer with sigmoid
activation function. In the rest of the paper, we denote as LR, DLR
and RNN the prediction conversion models which are using the
“average”, “dense” and “LSTM” mapping functions, respectively. A
graphical illustration of the proposed conversion prediction model
architecture is presented at Fig.2.

4 URL REPRESENTATION SCHEMES
This section introduces the four URL representation models pro-
posed in our work. These models can be divided in two categories:
i) one-hot encoding, and ii) embedding representation. There is no
need for learning in the case of one-hot encoding. On the other
hand, the embedding representations of URL tokens are learned
in advance and then used to form the final URL representation. A
representation is also learned for the so-called “rare” and “none”
tokens, respectively. A token is considered “rare” if it is present less

url1 url2 urlT

Time

URL Embedding layer, fr

url1 embedding url2 embedding urlT embedding

fr (url1) fr (url2) fr (urlT)

URL Sequence
Embedding Layer, fm
{average, dense, LSTM}

x1 x2 xT

Dense Layer, fc
(Sigmoid)

z = fm (X = {x1,x2, . . . ,xT })

Loss function
ℓ(fc (z),y)

fc (z) = σ (θ⊤z + b) Label: y

Figure 2: The proposed conversion prediction model archi-
tecture. It consists of three parts: i) URL embedding layer
(fr), ii) URL sequence embedding layer (fm), and iii) Logis-
tic regression classifier (fc). Only the unknown classifier pa-
rameters (Eq. 2) of the dense layer and these of LSTM and
“dense” mappings are trainable.

than a predefined number (we set it equal to 20) of times in our
data. We denote the token embedding vectors as e .

One-hot encoding. First, we introduce a variant of the standard
one-hot encoding for representing URLs that is our baseline. As
already mentioned, the token representations are used to get the
URL representation. Therefore, in our case, the cardinality of the
one-hot encoding is equal to the number of all possible tokens
appearing in our data. Given a one-hot encoding {et }

n_tokens≤3
t=1 ,

for each one of the tokens appearing in url , we take their average
to encode it: fr (url) = 1

n_tokens
∑n_tokens
t=1 et .

Embedding learning. Despite its simplicity, the aforementioned
one-hot encoding does not take into account the similarity between
URLs, while on the same time the representation size grows lin-
early with the corpus. In fact, one-hot encoding is sparse (curse of
dimensionality) and it is not able to capture the distance between
individual urls. To tackle this problem, we propose three representa-
tion schemes inspired by the idea ofWord2Vec [16].More specifically,
our representation schemes use the skip-gram model that given
a target word (URL in our case) tries to predict its context words.
More formally, the skip-gram model tries to find word representa-
tions that can be used for predicting the words in its neighborhood.
Therefore, given a sequence of words (URLs) url1, . . . ,urlT , our
objective is the maximisation of the average log probability

1
T

T∑
t=1

∑
−c≤j≤c , j,0

logp(urlt+j |urlt), (4)

where c specifies the neighborhood of target URL. The conditional
probability is defined by using the softmax function, asp(urlc |urlt) ≜

AdKDD ’20, August 23, 2020, San Diego, CA, USA Yang Qiu, Nikolaos Tziortziotis, Martial Hue, and Michalis Vazirgiannis

exp(x ⊤
c xt)∑

c′∈C exp(x ⊤
c′xt)
, where xc and xt are the representations for con-

text and target URLs respectively, and C is the set of unique words.
As the direct optimisation of Eq. 4 is computationally expensive,

we are adopting the negative sampling approach [16]. In negative
sampling, we treat the word’s representation learning as a binary
classification task where we try to distinguish the target-context
pairs of words presented on the training data from those that are
not. Following the suggestions of [16], for each positive pair we are
creating k negative (target-context) pairs.

In contrast to the original Word2Vec model, the proposed rep-
resentation learning architectures try to learn the tokens repre-
sentations, instead of the URL representations directly. A token
representation is also learned for the case of a Pad token. For in-
stance, https://en.wikipedia.org/ is mapped to [en.wikipedia.org,
Pad, Pad]. Since URLs are padded, the number of tokens of each
URL is equal to three. Then, by combining the token representa-
tions we form the final URL representation that will be used for the
training of the conversion prediction classifier. Actually, the second
phase of our model (conversion classifier) can be seen as a way
to test the effectiveness of our representation models. The main
difference between the three proposed embedding representation
models is how the token representations are combined to form the
final URL embedding vector:

• Domain_only representation uses only the representation of
the first token to represent the URL, ignoring the represen-
tations of the other two tokens.

• Token_avg representation takes the average of the token
embedding vectors to represent the URL.

• Token_concat representation concatenates the token em-
bedding vectors to represent the URL. In this case, the di-
mension of the URL embedding vector is three times the
dimension of the token embedding vectors.

For instance, let {et }3t=1 be the token embedding vectors of the
three tokens presented on url = [token1, token2, token3]. Then,
the Domain_only representation x is equal to e1, the Token_avg
representation is equal to 1

3
∑3
t=1 et , and the Token_concat repre-

sentation is given as [e⊤1 ,e
⊤
2 ,e

⊤
3]

⊤. A graphical illustration of the
proposed embedding learning architecture is provided at appendix.

5 EXPERIMENTS
This section presents the results of our empirical analysis. A real-
world RTB dataset was used to train and analyse the performance
of the ten proposed prediction models. We built our dataset by us-
ing the auction system logs from campaigns launched in France. It
should be also mentioned that our dataset is anonymised, and only
visited URLs are considered. In this way, each record of the dataset
corresponds to a chronologically ordered sequence of visited URLs
along with a binary label (specific to the advertiser) that indicates
whether or not a conversion has happened on the advertiser’s web-
site on the next day. More precisely, the data composed of sequences
of URLs along with their labels of three successive dates,Dd ,Dd+1,
andDd+2, whereDd is used for learning representations, andDd+1
and Dd+2 for training and testing the prediction models, respec-
tively. Moreover, the maximum length of a URL sequence is set
equal to 500, where only the most recently visited URLs are kept
in each sequence, Tn ≤ 500,∀n ∈ [1,N]. In total we examine the

Table 1: Number of converted vs. non-converted records for
each one of the 5 advertisers on the training and testing data.

Advertiser Category Training (5, 452, 577) Testing (7, 164, 109)
Banking (3, 746 − 5, 448, 831) (8, 539 − 7, 155, 570)
E-shop (1, 463 − 5, 451, 114) (1, 821 − 7, 162, 288)

Newspaper_1 (1, 406 − 5, 451, 171) (2, 923 − 7, 161, 186)
Newspaper_2 (1, 261 − 5, 451, 316) (1, 291 − 7, 162, 818)

Telecom (1, 781 − 5, 450, 796) (2, 201 − 7, 161, 908)

performance of the models on five advertisers, belonging to four
different categories: banking, e-shop, newspaper, and telecommu-
nications (see Table 1). Details about the statistics of the data are
provided in the appendix [url_link] (https://bit.ly/3cSNFXU).

5.1 Settings
All our predictors assume the existence of a URL representation
model in order to vectorise the sequence of URLs for each one
of the dataset records. Our baseline, One_hot/LR, represents the
URL sequences using a one-hot encoding vector of size 193, 409,
where the first two entries correspond to the “unknown” and “rare”
tokens, respectively. The other models rely on an already trained
embedding matrix. Each token is embedding into a 100-dimensional
vector. The first three rows correspond to the “unknown”, “rare”,
and Pad tokens, respectively. The rest rows contain the embedding
vector of all non-rare tokens observed in the dataset Dd . The num-
ber of non-rare tokens is 22, 098 for the Domain_only, and 187, 916
for both the Token_Average and Token_Concatenation. To train
representations, we have considered two different {pos:neg} ratios
({1:1} and {1:4}). Due to page limitations, only the results of the
{1:4} ratio are presented in this manuscript. See supplementary
material [url_link] for a full comparison between these two ratios.

The number of units of the hidden dense layer (dimensionality
of its output space) of DLR model is set to 30. Furthermore, the
number of hidden units of LSTM is set to 10 on the RNN model. A
dense layer with a sigmoid activation function is applied at the end
of each one of the three mapping functions fm (“average”, “dense”,
“LSTM”) in order to form a binary classifier. Through our empirical
analysis we have observed that the DLR and RNN prediction models
are prone to overfitting. To enhance the generalization capabilities
of these two models, we are using dropout that is set to 0.5. To be
more precise, a dropout layer is added right after the fm layer of
the DLR model, while both the dropout and the recurrent_dropout
parameter of LSTM layer are set equal to 0.5 on the RNN model.

For the training of all representation and prediction models, the
mini-batch stochastic optimization has been applied by using Adam
optimizer with the default Tensorflow 2.0 settings (i.e., lr=0.001,
beta1 = 0.9, beta2 = 0.999). More precisely, to train the representa-
tion models we are doing one full pass over the whole data that is
divided to 200 parquet files. The total number of epochs is 200, equal
to the number of parquet files. At each epoch we are producing the
positive and negative pairs based on the data contained on a single
parquet file and are feeding them to the representation model. On
the other hand, the size of batches for training prediction models is
64, while the number of epochs and number of steps per epoch is
set to 100 in both cases. To tackle the problem of our unbalanced
dataset (see Table 1), the ratio of positive and negative records is
{1:1} in the batches used for the training of the classifiers.

https://en.wikipedia.org/
https://drive.google.com/drive/folders/1SrxT34qTux5WreomD11RArftJZvHS68P?usp=sharing
https://bit.ly/3cSNFXU
https://drive.google.com/drive/folders/1SrxT34qTux5WreomD11RArftJZvHS68P?usp=sharing
https://www.tensorflow.org/guide/effective_tf2

Predicting conversions in display advertising based on URL embeddings AdKDD ’20, August 23, 2020, San Diego, CA, USA

Figure 3: t-SNE visualization of the thirty closest neighbors
of 24 different domains.

Table 2: The 10-nearest neighbors of 24 different domains
according to our trained Domain_only representation model.

Domain 10-nearest neighbors
huffingtonpost.es cope.es; m.eldiario.es; okdiario.com; verne.elpais.com; blogs.elconfidencial.com; vozpopuli.com; elespanol.com; smoda.elpais.com;

libertaddigital.com; cadenaser.com
lesechos.fr latribune.fr; afrique.latribune.fr; business.lesechos.fr; bfmbusiness.bfmtv.com; financedemarche.fr; challenges.fr; investopedia.com;

actufinance.fr; lopinion.fr; contrepoints.org
orange.fr actu.orange.fr; lemoteur.orange.fr; messagerie.orange.fr; login.orange.fr; finance.orange.fr; sports.orange.fr; meteo.orange.fr;

tendances.orange.fr; programme-tv.orange.fr; news.orange.fr
leparisien.fr cnews.fr; atlasinfo.fr; lefigaro.fr; lejdd.fr; jforum.fr; marianne.net; video.lefigaro.fr; tendanceouest.com; bladi.net; observalgerie.com
reddit.com imgur.com; old.reddit.com; askreddit.reddit.com; pcgamer.com; anime.reddit.com; france.reddit.com; gamefaqs.gamespot.com;

totalwar.reddit.com; nintendoswitch.reddit.com; gaming.reddit.com
expedia.fr momondo.fr; skyscanner.fr; kayak.fr; fr.lastminute.com; fr.hotels.com; flights-results.liligo.fr; ebookers.fr; esky.fr; opodo.com;

secure.lastminute.com
tractorfan.fr discountfarmer.com; forum.farm-connexion.com; angleterre.meteosun.com; songs-tube.net; materieltp.fr; assovttroc.clicforum.fr;

opel-mokka.forumpro.fr; spa-du-dauphine.fr; vanvesactualite.blog4ever.com; calcul-frais-de-notaire.fr
welt.de zeit.de; sueddeutsche.de; faz.net; tagesspiegel.de; sport1.de; kicker.de; saarbruecker-zeitung.de; tz.de; bild.de; sportbild.bild.de
foreca.fr my-meteo.com; fr.meteovista.be; fr.tutiempo.net; meteopassion.com; de.sat24.com; nosvolieres.com; meteo-sud-aveyron.over-

blog.com; xn–mto-bmab.fr; palombe.com; calculerdistance.fr
auto-moto.com caradisiac.com; largus.fr; news.autojournal.fr; test-auto.auto-moto.com; auto-mag.info; feline.cc; motorlegend.com; es-

sais.autojournal.fr; automobile-magazine.fr; turbo.fr
az-online.de abountifulkitchen.com; thesurvivalgardener.com; leinetal24.de; brittanyherself.com; symbols.com; ourpaleolife.com; msl24.de;

milliondollarjourney.com; arthritis-health.com; thehollywoodunlocked.com
tempsdecuisson.net cuisine-facile.com; temps-de-cuisson.info; yummix.fr; aux-fourneaux.fr; cuisinenligne.com; audreycuisine.fr; mamina.fr; une-

plumedanslacuisine.com; cnz.to; ricardocuisine.com
cnn.com us.cnn.com; stadiumtalk.com; thedailybeast.com; itpro.co.uk; uk.reuters.com; euronews.com; theargus.co.uk; theatlantic.com;

thedailymash.co.uk; trendscatchers.co.uk
portail-

cloture.ooreka.fr
bricolage-facile.net; mur.ooreka.fr; pierreetsol.com; bricolage.jg-laurent.com; abri-de-jardin.ooreka.fr; aac-mo.com;
fr.rec.bricolage.narkive.com; decoration.ooreka.fr; piscineinfoservice.com; bricoleurpro.com

sport.fr infomercato.fr; parisfans.fr; topmercato.com; vipsg.fr; footradio.com; mercatofootanglais.com; le10sport.com; buzzsport.fr; foot-
parisien.com; foot-sur7.fr

anti-crise.fr cfid.fr; forum.anti-crise.fr; gesti-odr.com; echantillonsclub.com; plusdebonsplans.com; cataloguemate.fr; promoalert.com; argent-
dubeurre.com; madstef.com; forum.madstef.com

auchan.fr but.fr; conforama.fr; vente-unique.com; rueducommerce.fr; fr.shopping.com; cdiscount.com; touslesprix.com; promobutler.be;
webmarchand.com; mistergooddeal.com

paris-
sorbonne.academia.edu

flux-info.fr; elmostrador.cl; makaan.com; univ-montp3.academia.edu; e-lawresources.co.uk; babycenter.com; newocr.com; in-
sight.co.kr; grandes-inventions.com; police-scientifique.com

renault-laguna.com megane3.fr; gps-carminat.com; megane2.superforum.fr; lesamisdudiag.com; car-actu.com; diagnostic-auto.com; r25-safrane.net;
lesamisdelaprog.com; forum.autocadre.com; renault-clio-4.forumpro.fr

excel-plus.fr tech-connect.info; thehackernews.com; lecompagnon.info; panoptinet.com; slice42.com; aliasdmc.fr; astuces.jeanviet.info;
nalaweb.com; patatos.over-blog.com; jiho.com

jeuxvideo.org alsumaria.tv; minecraft-zh.gamepedia.com; infovisual.info; everyonepiano.com; footstream.live; memedroid.com; darkand-
light.gamepedia.com; mbti.forumactif.fr; gachagames.net; honga.net

farmville2free.com goldenlifegroup.com; fv2freegifts.org; juegossocial.com; fv-zprod-tc-0.farmville.com; fb1.farm2.zynga.com; zy2.farm2.zynga.com;
gameskip.com; fv-zprod.farmville.com; megazebra-facebook-trails.mega-zebra.com; farmvilledirt.com

vogue.fr vanityfair.fr; vogue.com; vivreparis.fr; fr.metrotime.be; brain-magazine.fr; o.nouvelobs.com; parismatch.be; pariszigzag.fr; ad-
magazine.fr; unilad.co.uk

tripadvisor.fr fr.hotels.com; cityzeum.com; voyages.michelin.fr; lonelyplanet.fr; monnuage.fr; voyageforum.com; rome2rio.com; toocamp.com;
virail.fr; partir.com

5.2 Results
In this section, we formally present the results of our empirical
analysis. Firstly, to get an intuition about the ability of the three
introduced URL embedding schemes (Sec. 4) to group together URLs
that belong to the same category (i.e., sports, news, etc.), we will
visualise (Fig. 3) the embedding vectors of 24 selected domains
along with those of the thirty closest URLs of each one of them. To
be more precise, we are using the embedding matrix learned by the
Domain_only model. Cosine similarity has been used to measure
the similarity between the embedding vectors of two URLs. To
project the original high-dimensional embedding vectors on a 2-
dimensional space, we apply the Barnes-Hut t-SNE algorithm [21].

To be guaranteed that the URLs belong to the same category
with that of their closest domain, Table 2 provides the 10-nearest
URLs for each one of the 24 domains (see appendix for the full list
of the 30-nearest neighbors). For instance, all URLs that are on the
neighborhood of expedia.fr are about travelling. Moreover, all the
neighbors of sport.fr (16) are URLs about sports. The visualization
of Fig. 3 illustrates the ability of our model to produce semantically

Table 3: Avg (%) and std of the area under ROC curves (5 inde-
pendent runs) of the 10 prediction models on 5 advertisers.

Method
Adv Banking E-shop Newspaper_1 Newspaper_2 Telecom

One_hot/LR 65.7 ± 0.093 66.4 ± 0.053 75.5 ± 0.379 73.3 ± 0.400 65.4 ± 0.085
Domain_only/LR 64.6 ± 0.300 66.6 ± 0.217 75.7 ± 0.507 73.2 ± 0.345 63.2 ± 0.168
Domain_only/DLR 69.0 ± 0.214 69.7 ± 0.234 76.8 ± 0.342 75.7 ± 0.658 66.6 ± 0.303
Domain_only/RNN 71.4 ± 0.144 72.6 ± 0.422 80.3 ± 0.168 79.4 ± 0.281 71.2 ± 0.250
Token_avg/LR 64.5 ± 0.241 67.2 ± 0.390 76.4 ± 0.152 73.1 ± 0.184 62.9 ± 0.468
Token_avg/DLR 69.4 ± 0.294 72.1 ± 0.263 79.2 ± 0.242 77.7 ± 0.274 67.9 ± 0.348
Token_avg/RNN 71.9 ± 0.082 73.1 ± 0.246 81.2 ± 0.153 80.2 ± 0.322 71.8± 0.153
Token_concat/LR 64.8 ± 0.241 67.2 ± 0.060 76.7 ± 0.179 73.4 ± 0.273 63.6 ± 0.425
Token_concat/DLR 69.1 ± 0.222 70.8 ± 0.400 78.2 ± 0.285 76.7 ± 0.255 66.9 ± 0.310
Token_concat/RNN 71.5 ± 0.224 72.5 ± 0.460 80.5 ± 0.192 79.1 ± 0.130 70.5 ± 0.278

meaningful embeddings. Actually, it becomes apparent that we
are getting 24 clearly distinguished clusters. Moreover, we can
see that the clusters of ‘similar’ domains are also close on the
embedding space. For instance, the URLs embeddings of clusters
(10) [auto-moto.com] and (19) [renault-laguna.com] are close as
they are related to the automobile category. The same also holds for
the URLs embeddings of clusters (2) [lesechos.fr], (4) [leparisien.fr],
and (23) [vogue.fr] that belong to the news category.

Next, we formally present the numerical results of the ten pre-
diction models on five different advertisers. The first part of the
name of each model specifies the type of URL representation used,
while the second one indicates the classifier type. To evaluate and
compare the effectiveness of the models we are using the area un-
der ROC curve (AUC) metric. More specifically, we consider the
average (%) AUC across five independent runs (see Table 3), where
each run corresponds to a specific seed used for the models initial-
isation. Moreover, Figure 4 illustrates the average ROC curves of
the prediction models for each advertiser. The right plot of Fig. 4
illustrates the AUC of the models on the 25 independent runs (5
advertisers × 5 runs for each advertiser)).

Based on the results presented in Table 3, the Token_avg/RNN
model is more effective in predicting user’s conversions compared
to the rest models. Precisely, the Token_avg/RNN model has the
highest average AUC in all advertisers. All models achieve their
highest performance on the newspaper advertisers. It is also worth
noticing that the performances of Domain_only/LR, Token_avg/LR,
and Token_concat/LR are highly competitive, compared to our
baseline, One_hot/LR. More specifically, Token_concat/LR clearly
outperforms One_hot/LR in 2 out of 5 advertisers (E-shop, Newspa-
per_1), and has slightly better performance in one of them (Newspa-
per_2). That remark validates our claims that the proposed represen-
tation models produce meaningful embeddings, by distinguishing
URLs of the same category and placing them close to the embedding
space. Taking a closer look at the standard deviations, we can see
that the performance of One_hot/LR is quite stable performance in
the three advertisers. This was expected as the One_hot represen-
tation is identical over all runs, and therefore the only variation of
the performance of One_hot/LR comes only from the training of
the LR classifier. The performance of LR model is almost the same
for each representation model. The same also holds for DLR and
RNN model where its performance is more or less the same in the
cases of Domain_only and Token_concat, and slightly better in the
case of Token_avg. On the other hand, DLR performs significantly
better when it is combined with Token_avg and Token_concat,
with Token_avg to be more preferable (around 1% gain).

https://drive.google.com/drive/folders/1SrxT34qTux5WreomD11RArftJZvHS68P?usp=sharing
https://expedia.fr
https://sport.fr
https://auto-moto.com
https://renault-laguna.com
https://lesechos.fr
https://leparisien.fr
https://vogue.fr

AdKDD ’20, August 23, 2020, San Diego, CA, USA Yang Qiu, Nikolaos Tziortziotis, Martial Hue, and Michalis Vazirgiannis

Figure 4: Average ROC curves of the ten conversion prediction models on the five advertisers. Shaded regions represent the
std over 5 independent runs. The bottom right plot presents the AUC for each one of the 25 runs (5 advertisers × 5 independent
runs for each advertiser) of each model. The •, ▼ and ×marks indicate the LR, DLR and RNN classification models, respectively.

Let us now compare the impact of the type of classifier on the
performance of the prediction model. The overall comparison pre-
sented at Fig. 4 demonstrates that both DLR and RNN performs sig-
nificantly better compared to LR, with the RNN to be the best one.
More precisely, the AUC of RNN is around ∼7% and ∼3% higher
compared to those of LR and DLR, respectively. This means that
the consideration of the chronological order in which the URLs
appeared on the sequence is of high importance. On the other hand,
choosing DLR over LR improves around ∼4% the performance of the
prediction models independent to the representation model.

To sum up, the main conclusions of our empirical analysis are: i)
all three proposed URL embedding models are able to learn high-
quality vector representations that precisely capture the URL rela-
tionships, ii) the performance of the LRmodel is relatively invariant
to the selection of the representation model, iii) among the three
representation models, Token_avg is more adequate to capture the
relationship between URLs, with the Token_concat second best,
iv) the consideration of the chronological order of the visited URLs
(RNN) and the learning of dependencies among the embedding fea-
tures (DLR) are also of high importance as both improve significantly
the performance of the prediction model.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper, we considered the problem of user response predic-
tion in display advertising. Ten conversion prediction models were
proposed to predict user response based on their browsing history.
To represent the sequence of visited URLs, four different compact
URL representations were examined. The effectiveness of the pro-
posed models has been experimentally demonstrated offline in a
real-world RTB dataset for five different advertisers. The impact
of the sequential dependency between users’ visited URLs on the
performance of the predictors has been also examined. The main
conclusions of our empirical analysis were that all three proposed
representation models produce a meaningful URL representation,
and considering the chronological order of the visited URLs by
using RNN significantly improves the model’s performance. In the
future, we intend to propose an online version of our framework
and to extend our empirical analysis to a real-world online scenario.

REFERENCES
[1] Y. Bengio, A. Courville, and P. Vincent. 2013. Representation Learning: A Re-

view and New Perspectives. IEEE Transactions on Pattern Analysis and Machine

Intelligence 35, 8 (2013), 1798–1828.
[2] C. M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag.
[3] P. P. K. Chan, X. Hu, L. Zhao, D. S. Yeung, D. Liu, and L. Xiao. 2018. Convolutional

Neural Networks based Click-Through Rate Prediction with Multiple Feature
Sequences. In IJCAI.

[4] O. Chapelle, E. Manavoglu, and R. Rosales. 2014. Simple and Scalable Response
Prediction for Display Advertising. ACM Trans. Intell. Syst. Technol. 5, 4 (2014).

[5] Ye Chen, Pavel Berkhin, Bo Anderson, and Nikhil R. Devanur. 2011. Real-time
Bidding Algorithms for Performance-based Display Ad Allocation. In KDD.

[6] Google. 2011. The arrival of real-time bidding.
[7] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. 2010. Web-scale Bayesian

Click-through Rate Prediction for Sponsored Search Advertising in Microsoft’s
Bing Search Engine. In ICML.

[8] A. Graves. 2012. Supervised Sequence Labelling with Recurrent Neural Networks.
Studies in Computational Intelligence, Vol. 385. Springer.

[9] M. Grbovic, N. Djuric, V. Radosavljevic, F. Silvestri, R. Baeza-Yates, A. Feng, E.
Ordentlich, L. Yang, and G. Owens. 2016. Scalable Semantic Matching of Queries
to Ads in Sponsored Search Advertising. In SIGIR.

[10] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers,
and J. Q. Candela. 2014. Practical Lessons from Predicting Clicks on Ads at
Facebook. In ADKDD.

[11] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[12] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi. 2018. URLNet: Learning a URL
Representation with Deep Learning for Malicious URL Detection. CoRR (2018).

[13] Qiang Liu, Feng Yu, Shu Wu, and Liang Wang. 2015. A Convolutional Click
Prediction Model. In CIKM.

[14] Mohammad Mahdian and Kerem Tomak. 2007. Pay-per-action Model for Online
Advertising. In ADKDD.

[15] H. Brendan McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie,
T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M.
Hrafnkelsson, T. Boulos, and J. Kubica. 2013. Ad Click Prediction: a View from
the Trenches. In KDD.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S Corrado, and J. Dean. 2013. Distributed
Representations of Words and Phrases and their Compositionality. In NIPS.

[17] Richard J. Oentaryo, Ee-Peng Lim, Jia-Wei Low, David Lo, and Michael Finegold.
2014. Predicting Response in Mobile Advertising with Hierarchical Importance-
aware Factorization Machine. In WSDM.

[18] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
Clicks: Estimating the Click-through Rate for New Ads. In WWW.

[19] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1988. Neurocomputing: Foun-
dations of Research. MIT Press, Chapter Learning Representations by Back-
propagating Errors, 696–699.

[20] A. Ta. 2015. Factorization machines with follow-the-regularized-leader for CTR
prediction in display advertising. In IEEE Big Data.

[21] Laurens van der Maaten. 2014. Accelerating t-SNE using Tree-Based Algorithms.
Journal of Machine Learning Research 15, 93 (2014), 3221–3245.

[22] J. Wang, W. Zhang, and S. Yuan. 2017. Display Advertising with Real-Time Bidding
(RTB) and Behavioural Targeting. Now Publishers Inc.

[23] Y. Zhang, H. Dai, C. Xu, J. Feng, T. Wang, J. Bian, B. Wang, and T.-Y. Liu. 2014. Se-
quential Click Prediction for Sponsored Search with Recurrent Neural Networks.
In AAAI.

[24] G. Zhou, X. Zhu, C. Song, Y. Fan, H. Zhu, X. Ma, Y. Yan, J. Jin, H. Li, and K. Gai.
2018. Deep Interest Network for Click-Through Rate Prediction. In KDD.

	Abstract
	1 Introduction
	2 Related work
	3 Proposed conversion prediction architecture
	4 URL representation schemes
	5 Experiments
	5.1 Settings
	5.2 Results

	6 Conclusions and Future directions
	References

