Relevance Constrained Re-ranking in Sponsored Listing Recommendations

ebay

Zhen Ge, Wei Zhou, Jesse Lute, Adam Ilardi

Free shipping

Seller 100% positive

Free shipping

Seller 100% positive

Free shipping

Seller 100% positive

\$95.00

Free shipping

Seller 100% positive

\$125.00

Free shipping

Seller 100% positive

\$125.00 Free shipping Seller 100% positive

similar item recommendation

Seed item

features (e.g. title, price, item attributes, user preference)

Organic Ad revenue revenue $score = p \cdot c + w \cdot p \cdot b$

 $oldsymbol{p}$: Purchase probability

 $oldsymbol{c}$: Selling Cost

w : Ad Revenue Weight

: Ad Bid Rate

ADKDD Aug 2021

ebay

Background

Revenue Relevance Trade-off

Figure 1. Average Ad revenue & Average Item Sold Count vs. Ad Revenue Weight

Many similar ones

Few similar ones

$$score = p \cdot c + \underline{w} \cdot p \cdot b$$
 $\implies score = p \cdot c + f(\delta) \cdot p \cdot b$

Revenue Weight Optimization (DARWO)

Dynamic Ad

Purchase probability ranking

 $item_ranking = \{r_1 = 0.5, r_2 = 0.45, r_3 = 0.4, r_4 = 0.3, r_5 = 0.2, r_6 = 0.15\}$ r_i is the **i**th ranking position

Kullback-Leibler divergence constraint

Final ranking given different w

$$score = p \cdot c + f(\delta) \cdot p \cdot b$$

- $item_ranking_{w1} = \{r_1 = 0.45, r_2 = 0.5, r_3 = 0.3, r_4 = 0.4, r_5 = 0.15, r_6 = 0.1\}$ $item_ranking_{w2} = \{r_1 = 0.1, r_2 = 0.5, r_3 = 0.45, r_4 = 0.3, r_5 = 0.4, r_6 = 0.2\}$

 $D_{kl}(P||Q_{w2}) = 0.258$

- $D_{kl}(P||Q_{w1}) = 0.021$

Revenue Weight Optimization (DARWO)

Dynamic Ad

$Q^* = rg \max_{w \in W} f_{rev}(Q_w)$ $\text{s.t.}D_{kl}(P||Q_w) < \theta_{KL}$

Greedy **Optimization**

 θ_{KL} is a constant. $f_{rev}: \mathbb{R}^k \to \mathbb{R}$ is the estimated ad revenue for ranking Q_w .

Distribution Q_w represents the ranked list X_w $X^w = [x_1^w, x_2^w, \ldots, x_k^w]$

> $f_{rev}(Q_w) = f_{rev}(X^w)$ $=\sum_{r=1}^k a_r^w \cdot v_r$

 a_w is the ad revenue for the item at slot r. v_r is the unbiased click through rate for slot r.

ebav

Revenue Weight Optimization (DARWO)

Dynamic Ad

$D_{kl}(w) = f(\text{recall set statistics, context}, w)$

Recall set statistics: recall set size, and the maximum, minimum, mean, median, and standard deviation of all recall set item's price, PTR score, and bid rate

Regression

ADKDD Aug 2021

Ordinary Least Squares Regression (OLS)

GBT Regression

$$D_{kl}(w)=f$$

 $R^2 = 0.43$

What if we don't want to search for the \boldsymbol{w} , can we estimate it?

ebav

DESIGN

- Control (production): Fixed ad revenue weight at 0.25 for all impressions.
- Treatment 1: OLS based dynamic ad revenue weight (DARWO) variant.
- Treatment 2: Fixed ad revenue weight at 1.75. 1.75 is selected because it's the median value of predicted ad revenue weight from the OLS DARWO variant.

Part - 1

Experiments

RESULT

Table 1: OLS DARWO vs. Fixed ad revenue weight by marketplace

		Ad Revenue	Purchase Count
US	treatment 1	$+3.81\%^{1}$	-4.05%
	treatment 2	+5.33%	-5.07%
UK	treatment 1	+6.89%	-4.11%
	treatment 2	+5.81%	-6.55%
AU	treatment 1	+7.10%	-1.97%
	treatment 2	+8.30%	-3.11%
DE	treatment 1	+6.44%	-3.44%
	treatment 2	+5.38%	-4.68%

Figure 2. Average Ad revenue & Average Item Sold Count vs. Ad Revenue Weight (DARWO)

Ad revenue and purchase count have a pearson correlation of 0.724 $\ (p < 10^{-6})$

ebav

^{1.}bold numbers are significant with p<0.1

DESIGN

- Control: OLS DARWO variant
- Treatment 1: GBT DARWO variant
- Treatment 2: Greedy optimization DARWO variant

Part - 2

Experiments

RESULT

Table 2: GBT DARWO vs. Greedy DARWO by marketplace

		Ad Revenue	Purchase Count
US	treatment 1	+7.72%	+5.45%
	treatment 2	+8.70%	+8.53%
UK	treatment 1	+7.00%	0.90%
	treatment 2	+4.13%	+4.91%
AU	treatment 1	+7.45%	+2.49%
	treatment 2	+8.50%	+6.78%
DE	treatment 1	+4.67%	+1.33%
בעם	treatment 2	+2.40%	+3.57%

Experiments

Compounded revenue and purchase changes (p<0.1):

GBT: Revenue lift: 12.6% Purchase lift: -1.8%

Greedy: Revenue lift: 11.0%

Purchase lift: 2.5%

Summary

Table 3: Offline Purchase Ranking Comparison: Production, GBT DARWO and Greedy DARWO

	Mean Reciprocal Rank	NDCG@6	NDCG@12
Production	0.508	0.567	0.615
GBT DARWO	0.480	0.544	0.593
Greedy DARWO	0.516	0.576	0.620

Conclusion

Effective

- KL divergence can be used as a quality measurement for a re-ranked list;
- Controlling global standard by adjusting local ranked list's relevance individually

Can be estimated

KL divergence can be estimated through local inventory based features.

Easy to implement

This ad hoc re-ranking stage is completely independent of the previous ranking or conversion stages.

Thank you!

Questions? zhge@ebay.com

Zhen Ge, Wei Zhou, Jesse Lute, Adam Ilardi