Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling

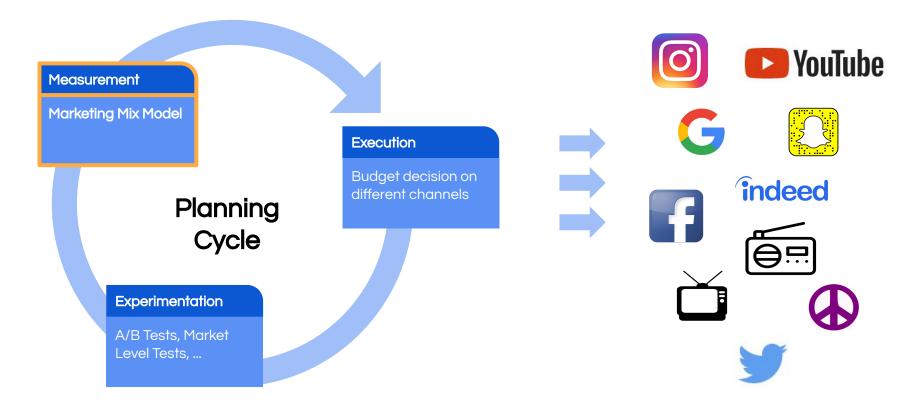
Edwin Ng, Zhishi Wang, Athena Dai Marketing Data Science

Introduction Model Overview Performanc<u>e</u>

Resources

Introduction

The Role of Marketing Mix Model (MMM)



Introduction

Problem Formulation

Basic Marketing Mix Model

$$\hat{y}_t = g(t) \cdot \prod_{p=1}^P f_{t,p}(x_{t,p}), \ t = 1, \cdots, T,$$

where

- $x_{t,p}$ are the ads spending variables
- \hat{y}_t is the marketing response
- g is a time-series process
- f is the cost curve function
- P is the number of regressors
- T is the number of time points

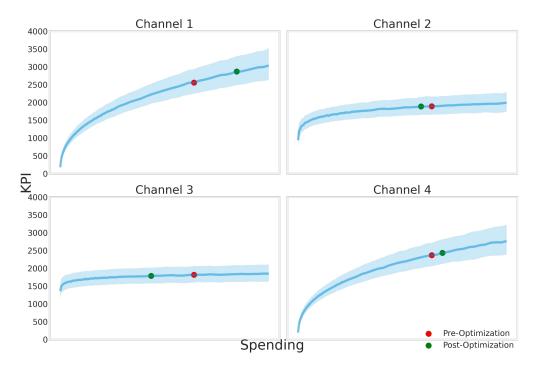


Figure 1. Data-driven cost curves for budget planning with simulated data.

Benefits

- Low dependency on granular data
- Robust under mobile privacy policy change
- Interpretability
- Capability to forecast

Limitations and Challenges

- Endogeneity
- Multicollinearity
- High-dimensional regression
- Correlation vs. Causality

Introduction

Motivation

Motivation

Most of the criticisms about MMM can be addressed by experimentation. However, experimentation is expensive and has other disadvantages that MMM does not have such as the **lack of**

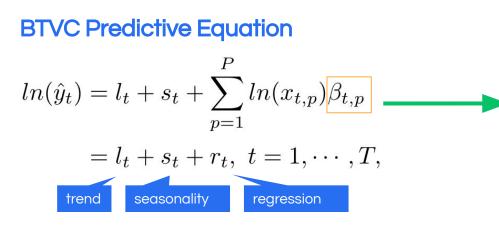
- > forecastability
- generalizable cost curves
- > insights on organic sales and interaction effects

Objectives

We propose a new solution of MMM which can fully capture all information provided by experimentation with the help of time-varying coefficients and Bayesian framework.

Model Overview

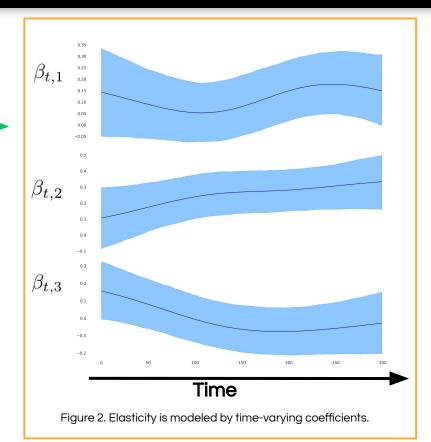
Our Model: Bayesian Time-Varying Coefficient (BTVC)



Extra Steps:

In BTVC, we can also re-write trend and seasonality into a similar regression framework:

- trend is treated as floating levels
- > seasonality is treated as regression on fourier series terms



Uber Ng, Wang and Dai. 2021. Bayesian Time Varying Coefficient Model with Applications to Marketing Mix Modeling.

Model Overview

Express Coefficients as Kernel Smoothed Variables

Kernel Smoothing Equations

$$\beta_{t,p} = \sum_{j} w_j(t) \cdot b_{j,p}$$
$$w_j(t) = k(t_j t) / \sum_{j=1}^{J} k(t_j, t)$$

where

- $\beta_{t,p}$ is the coefficient at time point t for p-th regressor
- $b_{j,p}$ is the latent variable (a.k.a knot)
- $k(\cdot, \cdot)$ is the kerenl function
- J is the number of knots

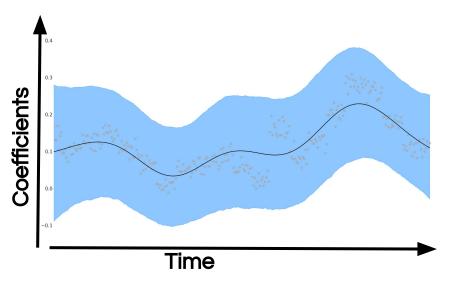


Figure 3. Coefficients derived by kernel smoothing.

Choice of Kernel

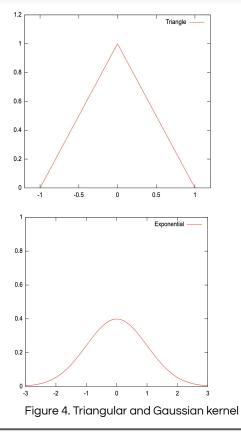
• We use Triangular kernel for trend / seasonality regression

$$k_{\text{lev}}(t, t_l) = 1 - \frac{|t - t_l|}{t_{j+1} - t_j}$$

if $t_j \le t \le t_{j+1}$ and $l \in \{j, j+1\}$

• We use Gaussian kernel for regression

$$k_{\rm reg}(t,t_j;\rho) = \exp\left(-\frac{(t-t_j)^2}{2\rho^2}\right)$$



Hyperparameters Tuning for Bias and Variance Tradeoff

Tuning Strategy

- J and ρ control the condition of overfitting vs. underfitting.
- Overfitted models tend to have low bias high variance.
- Underfitted models tend to have high bias low variance.
- We define optimal J and ρ by time-based cross-validation (a.k.a backtest)

Expanding Window Backtest

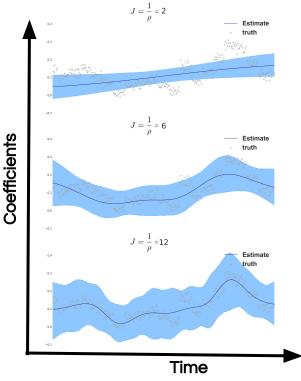
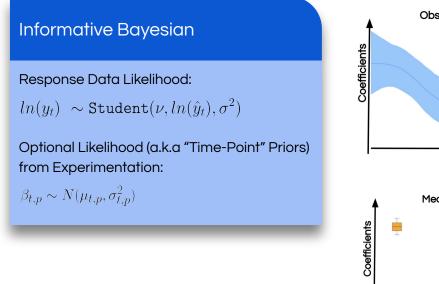
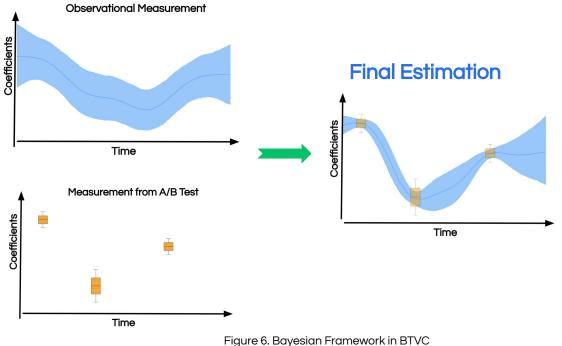


Figure 5. Estimated coefficients on different values of J and ρ fitted

Model Overview

Incorporate Experimentation Results under Bayesian Framework





Performance

Coefficients Curve Fitting Benchmark

Random Walk Simulations

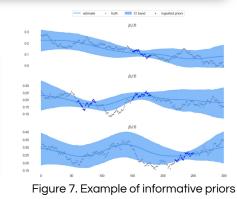
We conduct a simulation study based on the following process:

 $y_t = \text{trend} + \beta_{1t}x_{1t} + \beta_{2t}x_{2t} + \beta_{3t}x_{3t} + \epsilon_t, \ t = 1, \dots T$

where trend, β_{1t} , β_{2t} , β_{3t} are all random walks and T = 300

Informative Priors

We further examine behavior when we provide informative "time-point" priors for some t.



Model	$\beta_1(t)$	$\beta_2(t)$	$\beta_3(t)$
BSTS	0.0067	0.0078	0.0080
tvReg	0.0103	0.0103	0.0096
BTVC	0.0030	0.0026	0.0029

Table 1. Average of mean squared errors based on 100 times simulations. We compare Bayesian structural time series (BSTS)¹ and time-varying coefficient for single and multiple equation regression (tvReg)²

SMAPE		Pinball Loss				
w/o priors		w priors	w/o priors		w priors	
	w/o priors	w priors	lower	upper	lower	upper
$\beta_1(t)$	0.39	0.21	0.0009	0.0032	0.0005	0.0019
$\beta_2(t)$	1.37	1.25	0.0021	0.0019	0.0011	0.0014
$\beta_3(t)$	0.30	0.18	0.0017	0.0028	0.0014	0.0013

Table 2. SMAPE and pinball loss of coefficient estimates for models without and with informative priors.

1. Isabel Casas and Ruben Fernandez-Casal. 2021. tvReg R package version 0.5.4 2. Steven L Scott and Hal R Varian. 2014.

Performance

Forecast Accuracy Benchmark

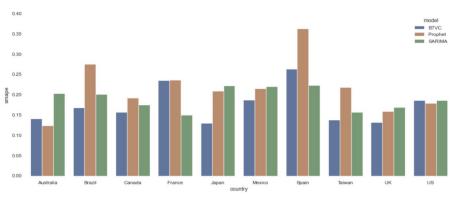


Figure 7. SMAPE comparison across different countries

Real Case Study

As a forecast model, we also compare accuracy with expanding windows backtest with Symmetric Mean Absolute Error (SMAPE) where

SMAPE = $\sum_{t=1}^{h} \frac{|F_t - A_t|}{(|F_t| + |A_t|)/2}, h = 28$

Model	Mean of SMAPE	Std of SMAPE
SARIMA	0.191	0.027
Prophet	0.218	0.067
BTVC	0.174	0.045
1011 C 11		12 21 22

Table 3. SMAPE comparison across models including SARIMA, Prophet and BTVC with 6 splits and 28 days horizon.

Resources

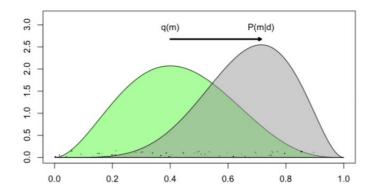
Implementation in a Scalable Way

Leveraged Stochastic Variational Inference under Pyro for posteriors sampling.

http://pyro.ai/

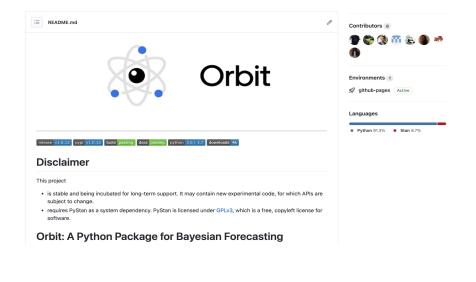
Compared to MCMC, SVI

- is computationally faster
- suitable for large datasets



Implemented under Orbit

https://github.com/uber/orbit



Conclusion

Traditional Marketing Mix Models struggle with endogenous variables, multicollinearity and correlation vs. causality challenge. **Bayesian Time-Varying Coefficient** (**BTVC**) model solves these problems by introducing a natural way to integrate experimentation results through Bayesian framework and time-varying coefficients. Unlike typical Kalman Filter models, **BTVC** provides flexibility for user to customize likelihood functions and priors. Besides, both simulation and real case studies show BTVC has better performance in estimating regression coefficients (compared to **BSTS** and **tyReg**) and forecast accuracy (compared to **SARIMA** and **Prophet**). The methodology is open-sourced under the python package **Orbit** using stochastic variational inference in **Pyro** to perform posteriors sampling.

We are hiring!

Feel free to contact for any questions or comments

edwinng@uber.com

zhishiw@uber.com

athena.dai@uber.com

Marketing Data Science

Thank you!