

Hybrid Dual Censored Joint Learning of Reserve Prices and Bids for Upstream Auctioneers

Piyush Paliwal, Lampros C. Stavrogiannis

LoopMe Ltd.

AdKDD 2021

Outline

- Introduction
- Related Work
- Problem Formulation
- Proposed Methodology
- Experiments
- Conclusions

Introduction

Supply Path

- Downstream SSPs hold first- or second-price auctions (or both) for their demand partners (downstream DSPs + exchanges) -> Downstream auction.
- Exchange resells the opportunity for its demand partners (upstream DSPs) -> Upstream auction.
- Exchange submits a bid to compete downstream.

Goal

• Maximize the exchange's profit by learning the upstream reserve price and downstream *bid*.

Challenges

- **Synchronous/joint** learning of *reserve* and *bid*; profit is contingent on winning downstream.
- **Dual censoring** on upstream and downstream markets.
- Presence of both auctions; hybrid.

Related Work

- <u>Lisbona, KDD 16</u> BrightRoll Exchange with second-price upstream auction under revenue sharing with the SSP. Focus on reserve prices.
- <u>Jauvion, KDD 18</u> First-price bidding strategies. Focus on bid optimization.

Our work is the joint optimisation of both supply and demand.

Problem Formulation

Open Marketplace Setting

Problem Formulation

- Reserve multiplier α(v_j) >=1.0 and bid shading factor β(v_j) ∈ [r_d(v_j)/revenue(v_j), 1] are decision variables.
- For won bids, the profit **profit**(v_i ; α_i , β_i) = revenue(v_i) cost(v_i).
- For lost bids, the profit equals 0.
- Revenue, cost and profit are *contingent* on winning downstream.

Profit is maximized by jointly learning the two ingredients: α_i and β_i .

Proposed Methodology

Dual Censoring

- Upstream DSPs' bids are left-censored.
- Downstream winning feedback is right-censored (second-price) and left- plus right-censored (first-price).

To deal with dual censoring, exchange performs the two following explorations, independently:

$$\begin{split} &\alpha_{j} \sim U(\alpha^{*} \cdot (1 - \varepsilon_{\alpha}), \, \alpha^{*} \cdot (1 + \varepsilon_{\alpha})) \\ &\beta_{j} \sim U(\beta^{*} \cdot (1 - \varepsilon_{\beta}), \, \beta^{*} \cdot (1 + \varepsilon_{\beta})) \end{split}$$

Resulting exploration data is used to find the optimal α and β values that maximize the profit.

Proposed Methodology

Heuristic:

$$NB_{\alpha} = NB_{\beta} = \lfloor \sqrt{|D_E|/data_c} \rfloor$$

Algorithm 1 DCJL: Dual Censored Joint Learning of upstream reserve (via α^*) and downstream bid (via β^*) in first-price auctions

Input: $D_E(v_i; \alpha_i, \beta_i)$: a set of Exploration data for training **Output:** $(\alpha^*, \beta^*) = argmax_{\alpha,\beta} \sum_{v \in D_F} profit(v; \alpha, \beta)$

- 1: α_i and β_i are bucketized in NB_{α} and NB_{β} number of bins, respectively, which result into $D_E(v_i; \alpha_i, \beta_i, bin_\alpha, bin_\beta)$
- 2: SET max_effective_profit = 0; $\alpha^* = 1$; $\beta^* = 1$
- 3: for $i_{\alpha} = 1$ to NB_{α} do
- for $i_{\beta} = 1$ to NB_{β} do 4:
- SET $D_G = D_E(v_i; \alpha_i, \beta_i, bin_\alpha = i_\alpha, bin_\beta = i_\beta)$ 5:
- SET $e_profit = \sum_{v \in D_G} profit(v; \alpha, \beta) / |D_G|$ 6:
- if e profit > max effective profit then 7:
- SET max effective profit = e profit8:
- SET $\alpha^* = \bar{\alpha}, \forall \alpha \in \{\alpha | v \in D_G\}$ 9: 10:
 - SET $\beta^* = \overline{\beta}, \forall \beta \in \{\beta | v \in D_G\}$
- end if 11:
- end for 12:
- 13: **end for**
- 14: return (α^*, β^*)

Proposed Methodology

• Following the dominant strategy in second-price, the optimization becomes:

 $argmax_{\alpha} \sum_{v \in D_E} profit(v; \alpha, \beta = 1)$

• Hybrid inferential learning (DCJL_RET) utilizing Revenue Equivalence Theorem.

$$\beta_{min} = \max(\bar{w_2} * (1 - \epsilon), r_d(v_j)) / revenue(v_j)$$
$$\beta_{max} = \min(1, \bar{w_2} * (1 + \epsilon) / revenue(v_j))$$

This reduces the cost of the exploration process.

loopMe

Experiments: Settings

- Last 3 weeks of March 2021 at LoopMe exchange.
- 20 first-price (FP placements), 20 second-price (SP placements) and 10 hybrid placements.
- 10% Baseline, 10% Exploration and 80% Exploitation traffic. Test group combines exploration and exploitation
- Measured profit lift between test (group 1) and baseline (group 0):

(e_profit_1 / e_profit_0 - 1) * 100

Experiments: Settings

• Baseline strategy:

 $\begin{aligned} \alpha_{base} &= 1.25 \text{ and } \beta_{base} = 0.8 \text{ in first-price.} \\ \alpha_{base} &= 1.25 \text{ and } \beta_{base} = 1 \text{ in second-price.} \end{aligned}$

• Parameters:

$$\epsilon_{\alpha}$$
 = ϵ_{β} = 0.5, ϵ = 0.1 and data_c = 20000

• Hybrid setting:

To compare DCJL against DCJL_RET on the same set of FP placements, we alternate every 4 days between DCJL and DCJL_RET but use only the most recent 48 hours to measure lift.

Experiments: Results

Placement Scenario, %	AT	Group	Requests (in Billions)	Successes / Requests (%)	Wins / Successes (%)	Avg_r _d (\$eCPM)	Profit Lift (%)	α [*]	$ar{eta^*}$
$\bar{\alpha^*} > \alpha_{base} \& \bar{\beta^*} > \beta_{base}, (21.2\%)$	1	1	3.456	21.06	18.73	0.63	10.14	1.41	0.84
		0	0.384	27.90	11.52				0.04
$\bar{\alpha^*} < \alpha_{base} \& \bar{\beta^*} < \beta_{base}, (11.3\%)$	1	1	1.845	35.07	8.83	0.52	31.11	1.23	0.64
		0	0.205	30.69	13.51				
$\bar{\alpha^*} > \alpha_{base} \& \bar{\beta^*} < \beta_{base}, (39.9\%)$	1	1	6.516	19.96	15.12	0.48	37.81	1.63	0.67
		0	0.724	34.59	13.48				
$\overline{\alpha^*} < \alpha_{base} \& \overline{\beta^*} > \beta_{base}, (27.6\%)$	1	1	4.5	39.88	13.08	1.05	18.19	1.19	0.82
		0	0.5	31.93	11.72				
$\bar{\alpha^*} > \alpha_{base}, (60.1\%)$	2	1	10.35	19.75	21.31	0.59	30.92	1.57	1.0
		0	1.15	33.30	12.10				
$\bar{\alpha^*} < \alpha_{base}, (39.9\%)$	2	1	6.876	39.62	9.94	0.66	24.53	1.21	1.0
		0	0.764	26.19	11.72				1.0

Table 1: A|B Test Results for Non-Hybrid First- and Second-Price Placements by Scenarios.

Experiments: Results

Table 2: A|B Test Results for Hybrid Placements.

Type of Placement	Group	Requests (in Billions)	Successes / Requests (%)	Wins / Successes (%)	Avg_r _d (\$eCPM)	Profit Lift (%)	a [*]	$ar{eta^*}$
Hybrid SP	1	5.633	24.77	15.36	0.63	24.19	1.42	1.0
Tryblid St	0	0.625	32.83	10.58	0.05			
Hybrid FP (DCJL)	1	1.265	19.14	15.87	0.70	23.26	1.31	0.74
	0	0.140	25.68	13.09	0.70			
Hybrid FP (DCJL_RET)	1	1.252	17.46	16.29	0.60	27.37	1.35	0.75
	0	0.139	24.13	12.47	0.09			

Table 3: Aggregated A|B Test Results.

Type of Placement	Nb Placements	Profit Lift (%)
FP	20	25.15
SP	20	28.27
Hybrid	10	24.16

Experiments: Results

- FP placements are harder to optimize in comparison to SP placements.
 - **★** SP optimization requires just α to be learned; a lower exploration cost.
 - \star Joint learning of α and β in FP increases the exploration cost.
 - ★ Heterogeneous nature of placements may also justify the differences.
- For hybrid placements, inferential learning using RET has played a significant role increasing the profit.
 - ★ In addition to overall improvement using RET (Table 2), exploration_profit_lift, 100*(e_profit_l/e_profit_NI - 1) is also measured, which equals 36.37%. This is measured only using the exploration sets of DCJL_RET and DCJL for hybrid FP.

Conclusions

- Introduced an efficient framework for jointly learning upstream reserve prices and downstream bids for first- and second-price auctions under dual censoring.
- Proposed an elegant strategy based on the RET to deal with hybrid inventory.
- A/B tested methods at LoopMe exchange.

Future work:

• Could include non-linear functions of the bids and reserve prices.

Thank you!

Piyush Paliwal

piyush.paliwal@loopme.com

piyushpaliwal90@gmail.com

Lampros C. Stavrogiannis

lampros@loopme.com

lstavr@gmail.com

Please reach out with questions/feedback

