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Background

● A good ranking function 
satisfies the need of all parties 
involved. 

● CTR = click through rate 

● Dilemma of exploration makes 
Reinforcement Learning 
difficult



Simulated Environment Model in He et al. [AdKDD’18]

● Ranking Problem formulation:

● Click price:

● Reward:

(CVR = Conversion rate = Purchase / View)



Our Model: Improved Expressive Power with Simulated Environment 
Based On Sequential Trainable Embedding 
● RNN-GRU Model where Ranking 

function depends on state (s_t) and 
advertisement (z_t) embeddings

● The RNN is trainable -> able to 
improve reward prediction

(Similar idea explored by Wu et al., [Arxiv’18])



Our Model: Simulated Environment Loss Function



Treatment for consistency in POSITIVE signals 

● Clip click price prediction for positive samples to always be > 0

● Action values (vector a) are encouraged to always increase for positive 
samples



Treatment for consistency in NEGATIVE signals

● Original click price allows increasing reward for negative values by increasing a_1

● By adding a normalization term, decreasing a_1 increases the reward when 
raw-click-price < 0:



Agent: DDPG Continuous Policy Gradient 

1. DDPG agent with a 25-layer policy network and 2-layer value network.
a. Standard DDPG, simpler compared to that of He et al. [AdKDD’18] 
b. No heuristics driven parameter values -- easier to test across domains
c. No online learning module - He et al. [AdKDD’18]  acknowledges that lack of session 

information is the biggest reason to implement online update

Fair comparison: changes to the reward and the environment are agent-agnostic



Ranking Performance - training simulated env affects final 
score



Higher and more consistent rewards



Future steps:

Production deployment

Full scale for the agent for He et al. [AdKdd’18]
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