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ABSTRACT
Recent moves towards a privacy aware internet have increased the

need for methods to learn from aggregated data, where both the

labels and features are only observed through aggregated queries.

Aggregated data can easily be made differentially private by in-

jecting some noise, and then shared with a third party, with the

guarantee that no personal information is leaked. However, it is

not clear how a third party should use such data to learn a model,

as classical supervised learning methods do not apply here. In this

paper we explain how existing methods on Markov Random Fields

may be applied to fit a model to the joint distribution of labels

and features from aggregated data (exploiting the presence of suffi-

cient statistics), and use the conditional distribution of the obtained

model to predict the labels. We then show how to modify the train-

ing objective to improve the quality of the learned conditional

distribution. We further show experimentally on a public online

advertising dataset that our method can perform close to a logistic

regression with full access to the dis-aggregated data set.
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1 INTRODUCTION
1.1 Learning from aggregated data
In this work, we investigate a method to learn a discriminative

model predicting a binary label, from aggregated data only. Our

aggregated data consists in a set of contingency tables, counting

the number of examples on several overlapping projections. An

example of a toy dataset can be seen in Table 1, with 5 examples

consisting of 3 categorical features and a binary labels. Table 2

shows the resulting contingency tables, when we aggregate this toy

dataset on each pair of features. Usual Machine Learning methods
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Table 1: Toy example dataset

Feature 1 Feature 2 Feature 3 label

Example 1 "1" B a 1

Example 2 "2" A b 1

Example 3 "1" B b 0

Example 4 "2" B a 1

Example 5 "1" A b 0

Table 2: Example of aggregated data

Feature 1 Feature 2 Examples count Sum(label)

"1" A 1 0

"1" B 1 1

"2" A 1 1

"2" B 2 1

Feature 1 Feature 3 Examples count Sum(label)

"1" a 1 1

"1" b 2 0

"2" a 1 0

"2" b 1 1

Feature 2 Feature 3 Examples count Sum(label)

A b 2 1

B a 2 2

B b 1 0

requires access to the full dataset such as Table 1. Our goal here

here is to learn a model predicting the label as a function of all

available features, using only aggregated data such those in Table

2.

We also investigate how to learn the model when some noise

from a known distribution has been added to the aggregated data.

The addition of noise into the data is a well-known practice to

obtain differential privacy, and our method may then be the basis

of a practical solution to allow a third party to learn a differentially

private model on a dataset, by simply releasing differential private

aggregated data, and letting the third party use our method to learn

directly from these aggregated data.

1.2 Motivation: Online advertising, Chrome
privacy sandbox and Aggregation API

One specificmotivation for this work comes from online advertising,

and the changes proposed by Google Chrome to this industry [11].

Online advertising today heavily relies on models predicting the

probability that a user clicks on a banner, given a list of features

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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describing the user and the banner. These models are trained us-

ing classical supervised learning methods, from examples of past

displayed banners.

The market of online advertising however is now moving to-

wards providingmore privacy to users. In particular, Google Chrome

is considering, in its ’Privacy Sandbox’, to prevent marketers from

accessing datasets of past banners which may contain private in-

formation about the users. Instead, marketers would only have

access to noisy aggregated data, queried through an Aggregation
API [4]. While the exact specifications of these reports are not yet

fully defined at the time of writing of this article, they would likely

consist on a set of (noisy) contingency tables similar to those shown

in Table 2. It will be critical for marketers to find methods to train

their click-predictions models from these aggregated reports; and

the algorithm we propose in this work might be applied in this

setting.
1

Criteo AdKDD challenge. Because of the importance if this prob-

lem for the online advertising industry, we at Criteo recently (as

of May 2021) launched a competition [2] whose goal is to learn a

click-prediction model from aggregated data. The available dataset

consists on contingency tables counting examples and clicks on a

large dataset, with one table for each single feature, and one table

for each pair of features, both with some additive Gaussian noise.

The algorithm we propose here may be applied to this dataset.

1.3 An overview of our approach
Let 𝑋 the features vector and 𝑌 the label. Our goal is to produce a

model predicting P(𝑌 = 𝑦 |𝑋 = 𝑥), from the aggregated data only.

We propose to approximate the joined distribution on 𝑋,𝑌 by a

parametric generative model P𝜇 (𝑋 = 𝑥,𝑌 = 𝑦). Such a joinedmodel

attributes a probability to the set of observed aggregated data, and

we thus select the parameter 𝜇 by maximising the likelihood of

these observed data. Solving this optimization problem for general

classes of models may be intractable, but it happens to be possi-

ble when restricting the search to a well chosen family of Markov

Random Fields, with features matching the available data. The pre-

dictions are then made by computing the conditional distribution

P𝜇 (𝑌 = 𝑦 |𝑋 = 𝑥) = P𝜇 (𝑌=𝑦,𝑋=𝑥)
P𝜇 (𝑋=𝑥) inferred from the joined model.

With the family of Markov Random Fields that we propose in sec-

tion 4, the shape of the conditional distribution P𝜇 (𝑌 = 𝑦 |𝑋 = 𝑥)
coincides with a logistic model, and we will therefore compare the

performances of our models trained from aggregated data with

these of a logistic regression.

2 RELATEDWORK
Differential privacy. Differential privacy [3] is a way to protect

the privacy of individual records by ensuring that the published

data are not significantly changed by the addition or removal of a

single record.

More formally, we say that a randomized algorithm A is (𝜖, 𝛿) -
differential private, if for any pair of datasets 𝑋 and 𝑋 ′

differing by

only one record, and any possible set of results 𝑆 ⊂ 𝑟𝑎𝑛𝑔𝑒 (A),
P(𝐴(𝑋 ) ∈ 𝑆) ≤ P(𝐴(𝑋 ′) ∈ 𝑆) · exp(𝜖) + 𝛿

1
Of course, its applicability in practice could depend a lot on the yet unknown details

of the aggregation API.

Ecological inference . Learning about individual behavior when

only aggregated data are available has been long studied under

the name ecological inference problem. It had given rise to a rich

literature [5] of methods to get bounds and models that can use

aggregated data. But it is typically applied to low dimensionality

problems and it is not obvious how to generalize to problems with

more features.

Markov Random Fields. Markov Random Fields (MRF, also known

as undirected graphical models) are a class of probabilistic models

on multidimensional data, where the joint model on a discrete

multivariate 𝑋 is defined as a product of factors involving subsets

of the components of vector 𝑋 :

P𝜇 (𝑋 = 𝑥) = 1

𝑍𝜇

∏
𝐶

𝑒𝑥𝑝 (𝑓𝐶 (𝑥𝐶 , 𝜇)) (1)

where𝐶 are subsets of the components of𝑋 , 𝑓𝑐 are parameterized

functions of these components, and 𝑍𝜇 is a normalisation constant.

MRFs have been studied for their ability to model complicated

distribution in a compact way. [6, 7]

Learning the parameters of an MRF is not straightforward, be-

cause exact computation of the likelihood requires evaluating 𝑍𝜇 =∑
𝑥 ∈X

∏
𝐶

exp(𝑓𝐶 (𝑥𝐶 , 𝜇)) where the set X may be extremely large

(X is usually a combinatorial object). Many approximate methods

for estimating𝑍𝜇 or its derivative have been explored, such as using

Markov Chains Monte Carlo methods such as Gibbs sampling or

variational approximations [6–9, 14].

Collective Graphical Models. One important property of MRF is

that they form an exponential family [6], making it possible to learn

the MRF from aggregated data only. The special case where the

observations consists of noisy aggregated data has also been defined

in [13], and optimization methods refined in [10, 12]. Finally, [1, 8]

built on those ideas to learn a differentially private MRF by adding

Laplace noise to the sufficient statistics. While it is very similar

to the method we propose, it focuses on learning accurately the

joint model, while what matters for us is only the quality of the

conditional distribution P(𝑌 = 𝑦 |𝑋 = 𝑥) on one specific component

𝑌 .

3 LEARNING FROM AGGREGATED DATA
3.1 Problem setup

Supervised learning loss. Let (𝑥𝑖 , 𝑦𝑖 )𝑖∈1...𝑛 be a dataset of𝑛 feature
vectors 𝑥𝑖 ∈ X and binary labels 𝑦𝑖 ∈ {0, 1}. As usual in supervised

learning, we assume that examples (𝑥𝑖 , 𝑦𝑖 ) are independently sam-

pled from an unknown distribution 𝜋 : X × {0, 1} −→ [0, 1].
We will also assume that examples 𝑥 are made of 𝐷 categorical

features.

Our goal is the same as the supervised learning setup; we would

like to find a function 𝑓 : X −→ [0, 1] with a low expected loss

E𝑋,𝑌∼𝜋
(
𝐿(𝑓 (𝑋 ), 𝑌 )

)
where 𝐿 is the negative log-likelihood loss

𝐿(𝑓 (𝑥), 𝑦) ≡ 𝑦 · log(𝑓 (𝑥)) + (1 − 𝑦) · log(1 − 𝑓 (𝑥))
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Observed data. In our setup, however, the dataset (𝑥𝑖 , 𝑦𝑖 )𝑖∈1...𝑛
is not observed directly. Instead, we observe the count of examples

and sum of labels in the dataset in several contingency tables
2
such

as Table 2.

Formally, let K a finite set of “projections” 𝑘 : X −→ {0, 1}, and
𝐾 the size of this set.

While this formalization is a bit more general, we may think here

of each function 𝑘 as one row of a contingency table: an example 𝑥

is either counted ( 𝑘 (𝑥) = 1 ) or not ( 𝑘 (𝑥) = 0 ) in this row.

We then define, for 𝑥 ∈ X, the binary vector:

K(𝑥) := (𝑘 (𝑥))𝑘∈K ∈ {0, 1}𝐾

( K(𝑥) thus encodes the list of rows where example 𝑥 is counted.)

We may now define the aggregated data as the two vectors:

c :=
∑
𝑖

K(𝑥𝑖 )

s :=
∑
𝑖

K(𝑥𝑖 ) · 𝑦𝑖

Each coordinate of c (respectively s) is thus the count of examples

(respectively the sum of labels) on one row of a contingency table.

To keep notations compact, we will also note a the concatenation
of vectors c and s.

The available dataset consists of the vector 𝑎 of aggregated data.
Also, the family of functionsK is assumed to be known, ie we know

how the data were aggregated. In practice, K is of course defined

implicitly by the rows of the contingency tables. In the experiments

we made, we used one contingency table for each pair of features

of the dataset.

Finally, since the dataset (𝑥𝑖 , 𝑦𝑖 ) is a list of independent realiza-
tions of random variables 𝑋 and 𝑌 , we will view the vector 𝑎 as the

realization of some random variables 𝐴.

4 LEARNING FROM AGGREGATED DATA BY
FITTING A MODEL OF THE JOINT
DISTRIBUTION

4.1 Modeling the joint distribution of X and Y
Let us emphasize again that usual supervised methods, which

typically make a parametrised model of the conditional law of

𝑃 (𝑌 |𝑋 = 𝑥) and select the parameters maximizing the likelihood

of the data, are not applicable in this setup. Indeed a model on

𝑃 (𝑌 |𝑋 = 𝑥) does not assign a probability to the observed event

𝐴 = a.
Instead, we propose to use a parametrised model of the joined

distribution 𝑃 (𝑋 = 𝑥,𝑌 = 𝑦). Such a model assigns a well defined

probability to the event 𝐴 = a, and we will thus try to retrieve

the parameters maximising the likelihood of this event. Prediction

of the label 𝑌 may then be obtained from this joined model by

applying Bayes’ rule.

2
Note that the information provided by each table may overlap, with each features

appearing in several tables. In particular we ran our experiments in the case when

there is one table for each pair of features. This overlap makes the available data more

complicated to use, but also contains potentially important correlation information

between the features. The formalisation we propose here is agnostic to those details,

but the final performances of the model would certainly depend on the exact set of

available tables.

4.2 Joined log linear model on X and Y
Let 𝜇𝑐 , 𝜇𝑠 ∈ R𝐾 two vectors of parameters, and 𝜇 ∈ R2𝐾

the

concatenation of 𝜇𝑐 and 𝜇𝑠 .

We define a distribution 𝜋𝜇 over the joined features and label

space X ×Y by:

𝜋𝜇 (𝑥,𝑦) ≡
1

𝑍𝜇
exp

(
K(𝑥) · 𝜇𝑐 + 𝑦 K(𝑥) · 𝜇𝑠

)
(2)

Where we noted 𝑍𝜇 the normalization constant:

𝑍𝜇 ≡
∑

𝑥 ′,𝑦′∈X×Y
exp(K(𝑥 ′) · 𝜇𝑐 + 𝑦′ K(𝑥 ′) · 𝜇𝑠 ) (3)

Remark 1. The sum which appears in equation 3 is usually in-
tractable, and we could at best try to approximately estimate this
normalization constant. But as we will see further, it won’t be neces-
sary in practice.

The models we defined here belong to the family of "Markov

Random Fields" (MRF).

4.3 Predicting with this model
Before we discuss how to select the parameters 𝜇, let us quickly

describe how to retrieve the conditional distribution 𝜋𝜇 (𝑌 = 1|𝑋 =

𝑥) with this model. This is done simply by applying Bayes’ rule to

equation 2

𝜋𝜇 (𝑌 = 1|𝑋 = 𝑥) =
𝜋𝜇 (𝑌 = 1, 𝑋 = 𝑥)

𝜋𝜇 (𝑌 = 0, 𝑋 = 𝑥) + 𝜋𝜇 (𝑌 = 1, 𝑋 = 𝑥)
= 𝜎 (K(𝑥) · 𝜇𝑠 ) (4)

Where 𝜎 is the logistic function. We note here that this equation

has exactly the shape of a logistic model on features K(𝑥) , which
is why we may think of our method as training a logistic model
from aggregated data. For this reason, it is natural to compare the

performances of our model to those of a logistic regression using

the same features.
3

4.4 Maximizing the likelihood of the data
As mentioned before, the model of equation 2 assigns a well defined

probability 𝜋𝜇 (𝐴 = a) to the observed event 𝐴 = a. We will note

𝜋𝜇 (𝐴 = a) this probability. 4 It is therefore natural to select the

parameters 𝜇∗ maximising the (log) likelihood of this event:

Find 𝜇∗ ∈ argmax𝜇 log 𝜋𝜇 (𝐴 = a) (5)

While this problem might be very challenging to solve for arbi-

trary classes ofmodels, in our case the gradient of this log-likelihood

has a rather simple close formula.

Lemma 4.1 (Gradient of the log-likelihood).

∇𝜇 log 𝜋𝜇 (𝐴 = a) = a − E𝜇 (𝐴)
Where E𝜇 (𝐴) is the expectation of the aggregated vector when the 𝑛
samples (𝑋𝑖 , 𝑌𝑖 )𝑖 of the dataset come from the model 𝜋𝜇 .

3
Note that we certainly expect our model to perform worse than a logistic regression

trained on the full dis-aggregated dataset. The whole point of our method of course is

that it does not require this dis-aggregate dataset.

4
The computation of 𝜋𝜇 (𝐴 = a) however requires to compute 𝑍𝜇 and is thus in-

tractable. But as we will see, we never need to compute it directly.
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This lemma is the main motivation for choosing the model of

equation 2. It is a direct consequence of the fact this equation defines

an exponential family [6].
5

4.5 Model Regularization
In the case of logistic models, it is well known that a regularization

of the parameters may increase the performances on the validation

set when the number of parameters is large and inputs are corre-

lated. It is especially the case when using the second (or larger)

order kernel. Since our model generalizes this logistic regression, it

certainly would also benefit from some kind of regularization. We

used a L2 regularization in the experiments due to its simplicity,

and because it makes the loss strongly convex. However, we noted

that a single regularization parameter was not performing so well.

Instead we penalized differently the components 𝜇𝑐 and 𝜇𝑠 of the

parameters vector. We thus have two distinct parameters 𝜆𝑐 and 𝜆𝑠
:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝜇) ≡ 𝜆𝑐 · 𝜇2𝑐 + 𝜆𝑠 · 𝜇2𝑠 (6)

We experimentally observed
6
that 𝜆𝑠 should be set to a value

similar to the L2 regularisation of a "normal" logistic model, while

𝜆𝑐 should be kept much smaller.

4.6 Model optimization
Fitting the parameters of a MRF is a well studied problem, and

we picked one method which only use the sufficient statistics a
Let us describe it quickly: We used a Gibbs sampling method to

generate samples of 𝑋,𝑌 , and estimate the expectation of 𝐸𝜇 (𝐴) by
Monte Carlo from those Gibbs samples. This allow us to compute

the gradient with lemma 4.1, and we thus run a gradient descent.

To limit the time required by Gibbs sampling, we reuse the same

samples from one iteration to another, following the “Persistent

Contrastive Divergence” approach of [14]. We also reduced the

variance of the Monte Carlo estimator by marginalising on 𝑌 .

For additional details, we refer to our repository where we will

release the code to run our experiments.

5 NOISY AGGREGATED DATA
As we explained in the introduction, some noise may be injected

to the aggregated data to obtain privacy guarantees. Typically this

noise is additive and i.i.d., and follows either a Laplace or Gaussian

distribution. The exact distribution of the noise is assumed to be

known. Advanced methods to fit a MRF from noisy sufficient statis-

tics have been proposed, in particular [1, 10]. It is unclear however

how easily they would scale to the models with the millions of pa-

rameters found in computational advertising. The method we use

in our experiments and describe in this section is easy to implement

and does not increase significantly the cost of training the model.

We leave scaling and testing alternative methods to future work.

5
See the supplementary materials for an elementary proof.

6
Experimental results are detailed in the supplementary materials.

5.1 Problem definition
In this section, the aggregated data 𝐴 are no longer observed. In-

stead, we observe a realization b of the noisy counts:

𝐵 ≡ 𝐴 + 𝐿
where 𝐿 ∈ R2𝐾 is a random vector of iid samples of some noise

distribution. We assume this distribution to be known. We note

𝑓𝐿 (𝐿 = 𝑙) the density of this noise, and 𝑓𝜇 (𝐴+𝐿 = 𝑏) the probability
density of the event 𝐴 + 𝐿 = 𝑏 when examples are sampled from 𝜋𝜇 .

Applying the maximum likelihood principle, we seek to find 𝜇∗

maximising density of the observed noisy data.

𝜇∗ = argmin𝜇 − log 𝑓𝜇 (𝐴 + 𝐿 = b) + penalty(𝜇) (7)

5.2 Gradient of the noisy aggregated data
likelihood

The following lemma
7
tells us how the gradient of the log-likelihood

is modified by the noise:

Lemma 5.1.

∇𝜇 𝑓𝜇 (𝐴 + 𝐿 = b) = a − E𝜇 (𝐴) − E𝜇 (𝐿 |𝐿 +𝐴 = b)

Compared to the noiseless case (lemma 4.1), this gradient now

has an additional term E𝜇 (𝐿 |𝐿 +𝐴 = 𝑏) . The next section describes

how this additional term may be approximated, and we can thus

amend the gradient descent of section 4.6 by simply adding this

term to the gradient computation.

5.3 Approximating the expected noise
We thus need to compute E𝜇 (𝐿 |𝐴 + 𝐿 = b).

Independence approximation. Let 𝑗 denote the index of one sin-
gle component on the aggregated data. As exact estimation is in-

tractable, we propose to estimate each component independently:

E𝜇 (𝐿𝑗 |𝐿 +𝐴 = b) ≈ E𝜇 (𝐿𝑗 |𝐿𝑗 +𝐴 𝑗 = 𝑏 𝑗 )
Intuitively, this approximation is quite natural: one component

𝑙 𝑗 of the noise depends mostly on the associated noisy data 𝑏 𝑗 .

The dependency to the other components comes only from the

complicated correlations between the components of 𝐴, which the

proposed approximation simply ignores.

Computing E𝜇 (𝐿𝑗 |𝐿𝑗 +𝐴 𝑗 = 𝑏 𝑗 ) is a one-dimensional problem.

Noting that 𝑏 𝑗 is known,𝐴 𝑗 follows a binomial of known param-

eters
8
, and 𝐿𝑗 follows a know distribution, this one dimensional

problem may be solved for example by numeric integration.

In our experiments we compared the method we proposed here

with the baseline of applying directly the algorithm of section 4.6

to the noisy data, without the additional term of lemma 5.1.

6 EXPERIMENTS
6.1 Comparing to logistic regression with a

quadratic kernel
Our main point of comparison will be to logistic regression trained

on the full dis-aggregated dataset . There are several reasons for

this choice:

7
The proof is included in the supplementary materials:

https://github.com/criteo-research/ad_click_prediction_from_aggregated_data

8
More precisely its expectation was already estimated, by Gibbs sampling, in section 4.

https://github.com/criteo-research/ad_click_prediction_from_aggregated_data
https://github.com/criteo-research/ad_click_prediction_from_aggregated_data
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• While not state of the art, logistic regression models offer a

good trade-off between simplicity and accuracy, especially

when including a quadratic kernel.

• The marginal distribution P(𝑌 |𝑋 ) of our models has exactly

the shape of a logistic model (equation 4, making it a natural

comparison.

Our main comparison is thus with a logistic regression defined

by:
9

logistic(𝜃, 𝑥) ≡ 𝜎
(
K(𝑥) · 𝜃

)
(8)

Remember here that K(𝑥) is a vector encoding on which rows

of the contingency tables an example 𝑥 is counted. We have in our

experiments one contingency table for each pair of features, and in

this case K(𝑥) is exactly the composition of a one-hot encoding of

the features with a quadratic kernel. We also included as a simpler

baseline a logistic regression without the quadratic kernel.

6.2 Experiments on a public Criteo dataset
Dataset. We experimented

10
with this algorithm by training a

model predicting clicks on a public dataset
11
.

This dataset contains 16M examples, with 36% of clicks, and

each example has 11 categorical features. Most of these features

have between 10 and 100 modalities, but one has about 10k distinct

modalities.

We also used smaller versions of this dataset :

• In Dataset-small we sampled 1% of the data, and kept only 5

features with smallest modalities count.

• In Dataset-sampled we also sampled 1% of the examples, but

kept all 11 features.

• Finally in Dataset-large we kept all examples and features.

On each dataset, we used 30% samples for validation, and trained

on the remaining 70%.

Compared models.

• LR2 is the logistic regression with second order kernel de-

scribed in equation 8.

• LR is a "vanilla" logistic regression without second order

kernel.

• MRF is the joined model trained from aggregated data de-

scribed in this paper.

• NB is a Naive Bayes classifier.

Reported metrics. We reported the normalized log-likelihood of

𝑃 (𝑌 |𝑋 ), on both train and validation sets, defined as:

𝑁𝐿𝐿𝐻 ≡ 𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑋 ), 𝑌 )
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑌 ) − 1

.

9
The shape of the prediction function is exactly the same as our model’s, the only

difference thus the way the parameters 𝜃 are fitted: this logistic regression is trained

on the whole dis-aggregated dataset.

10
Python code to re-run our experiments will be me made available here:

https://github.com/criteo-research/ad_click_prediction_from_aggregated_data .

11
https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/

Table 3: Results on Dataset-sampled

Model NLLH NLLH best L2 run

train set validation parameter time

LR2 0.1113 0.0748 80.0 2400s

LR 0.0876 0.0711 8.0 7s

MRF 0.0960 0.0734 160.0 13000s

NB 0.0431 0.0396 256

Table 4: Results on Dataset-large

Model NLLH NLLH best L2 run

train set validation parameter time

LR2 0.0991 0.0907 50.0 2h

LR 0.0769 0.0757 8.0 0.2h

MRF 0.0712 0.0681 400.0 6h

(50k samples)

MRF 0.0899 0.0869 400.0 120h

(400k samples)

Results summary. Results are shown on Tables 5 and 4.12 On each
dataset, our proposed model was able to outperform the logistic

regression with single features. It was also able to get results very

close to these of the logistic regression with second order kernel on

the datasets Small and Sampled, and still reasonably close on the

dataset-Large. However this was at the expense of a much longer

training time.

For details on how the choice of meta-parameters and results on

Dataset-small, we refer to the supplementary materials.

6.3 Training with noisy aggregated data
To test how the model performs on differentially private data, we

added noise to the aggregated data using either the Laplace mecha-

nism to achieve 𝜖-differential privacy, or the Gaussian mechanism

to achieve 𝜖, 𝛿-differential privacy.

Experimental results with the noise modelization of section 5.3. We

tested the performances of our model trained on noisy aggregated

data for different values of 𝜖 and 𝛿 :

• MRF is themodel of section 4.6 with no change to the training

procedure (i.e. approximating the noise by 0).

• MRF-N uses the explicit noisy likelihood described in section

5.

We also tried different values
13

of the regularization parameter

𝜆𝑠 , and reported only the best run on validation data.

Results on noisy data. Results on Dataset-Sampled are reported

in Table 5

Unsurprisingly, results are worse for smaller 𝜖 . 14

We also found that modeling explicitly the noise helps signifi-

cantly in the presence of a lot of noise, while for smaller amounts

of noise it seems sufficient to increase the regularization.

12
Confidence intervals were not included due to the cost of systematically rerunning

the experiments.

13
Here we benched values on a log(4) scale, i.e. 1,4,16,...

14
We remind that a smaller 𝜖 means a higher privacy protection.

https://github.com/criteo-research/ad_click_prediction_from_aggregated_data
https://ailab.criteo.com/criteo-attribution-modeling-bidding-dataset/
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Table 5: Results on noisy Dataset-sampled

𝜖 𝛿 noise model LLH LLH best

𝜎 train validation L2

1.0 0 93.3 MRF 0.0230 0.0232 2560

MRF-N 0.0490 0.0474 160

1.0 10
−7

44.8 MRF 0.0451 0.0430 2560

MRF-N 0.0617 0.0599 160

1.0 10
−4

33.1 MRF 0.0436 0.0414 2560

MRF-N 0.0661 0.0631 160

10.0 0 9.3 MRF 0.0732 0.0664 2560

MRF-N 0.0788 0.0691 160

10.0 10
−7

5.0 MRF 0.0911 0.0701 160

MRF-N 0.0832 0.0718 160

Table 6: Preliminary results on Criteo-AdKDD challenge.

Model Normalized LLH

Logistic, full dataset 0.289

Logistic, 2 order kernel, full dataset 0.311

Logistic, small training set 0.236

Logistic, 2 order kernel, small training 0.238

MRF, 100k Gibbs samples 0.253

MRF, 1M Gibbs samples 0.262

On Dataset-Sampled, using the Gaussian mechanism (with 𝛿 ≠

0) helps to retrieve better models than when using the Laplace

mechanism (with 𝛿 = 0), while it is not the case on Dataset-small.

This was to be expected: we note here that the variance of the noise

is 𝑂 (𝐷2) with the Gaussian mechanism, while it is 𝑂 (𝐷4) 15
with

the Laplace mechanism. For this reason, we believe the Gaussian

mechanism should be preferred whenever possible for large scale

applications.

6.4 Preliminary results on Criteo AdKDD
challenge

Table 6 shows some preliminary results of applying our method

on the dataset from the Criteo AdKDD challenge, and compares it

to logistic models trained either on the small train, or on the full

dis-aggregated dataset (which is not available to competitors, but

will be released after the competition).
16

7 CONCLUSION AND COMMENTS
Aggregate noisy queries of user level data allow user privacy to be

maintained yet provide useful if degraded information to marketers

for performance advertising purposes. Traditional supervised learn-

ing algorithms do not apply in this setting and new approaches are

needed. This paper presents some partial solutions to the modelling

and computational challenges posed by privacy-aware machine

15
Because the number of queries on pairs of features is𝑂 (𝐷2) .

16
Note that to keep the challenge more accessible, two dis-aggregated datasets were

also included: a small dis-aggregated labeled training set, and a medium sized dis-

aggregated but un-labeled test set. Competitors are of course allowed to use those

datasets to fit their models, and we thus expect that the winner of the challenge would

be using an hybrid method leveraging all datasets. But we are eager to see how our

model compare to other solutions using only the aggregated data.

learning in this setting. We show that on a medium-size dataset, it

is possible to produce a discriminative model based on aggregated

data which approaches the performances as a model trained on the

whole dataset. Several points still need addressing and will require

further work before this method may be really viable in production

in the online advertising industry.

Selecting parameters from aggregated data. Learning from aggre-

gate data has some intrinsic limitations that seem difficult to fully

overcome. Predictive quality of the model is given by the ‘discrimi-

native likelihood’ 𝑃 (𝑌 |𝑋, 𝜇) which simply cannot be evaluated in

an aggregate setting - the lack of access to 𝑃 (𝑌 |𝑋, 𝜇) makes hyper-

parameter settings such as the amount of regularisation to apply

difficult in the aggregate setting. In an industrial context, it would

also make very difficult to further improve the models and to have

an offline control of their quality.

Scaling to larger datasets. The method we developed performed

well on the medium size dataset we experimented with, but we do

not know yet if it can also be competitive on larger datasets such

the one included in the adkdd challenge or on a production dataset.

Finally, there are intrinsic limitations in the aggregate setting

that likely cannot be overcome by any algorithm. If aggregation is

viable for the advertising industry remains an open question.
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