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ABSTRACT
Finding the active and inactive device IDs1(ID) in the digital ad-
vertising and marketing domain is one of the most crucial tasks in
terms of the cost and quality aspect. Keeping the IDs for a longer
time will increase the load for the downstream pipelines that incur
more storage and computation cost. This can also lead to digital
campaigns(advertising or marketing) with low active users thus
degrading the performance. Though quality can be improved by
putting a constant time to leave(TTL) to each of the IDs, deter-
mining an optimal TTL is a tedious task. These IDs are the unique
identifiers for the digital domain hence treated as the currency.
It also plays an important role in the engineering framework for
keeping all other attributes in the storage being linked to it. So, by
putting a smaller TTL, losses of ID prematurely can lead to multiple
loss of information. This can affect the segment2 volume export for
a campaign largely. On the contrary, if higher TTL is proposed, it
can lead to the original problem of cost and computation. Checking
an individual ID is active or not in realtime is almost impossible.
While most of the non-feedback systems run on TTL based methods
to purge the IDs and clean the database, in our paper we propose
a granular machine learning-based approach which learns from
implicit feedback. We take the bid request from DSPs3 as feedback
which can act as a proxy for individual ID’s activity. We created
multiple duration parameters from this implicit feedback and ex-
perimented with different techniques such as Kaplan-Meier and
Cox-Proportional Hazard models to build a robust, learnable, and
incremental model. We considered the attributes present for the
IDs as covariates and built a Cox Proportional Hazard model with
0.9 concordance score. For a billion scale profile store this is an
excellent benchmark.

1The device ID is the currency of digital advertising and marketing, whether it be an
android ID or an apple ID or any cookie ID.

2Segment is a set of device IDs with specific attributes that are used for specific digital
advertising or marketing campaigns.

3Demand side platform that helps in connecting the media buyers with data exchange
platforms.
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1 INTRODUCTION
Online marketing and advertising are never possible without the
help of the online identifiers that are associated with electronic
devices. It might be the MSDSIN ID for Android, Apple ID for Apple
or cookie ID for web browsers. It acts as the primary key for all
the attributes and it’s properties associated with digital targeting
or marketing. Being the currency for the platform, it comes with
a great responsibility of storing and managing it properly. People
might have multiple devices and IDs associated with the device can
change over time implicitly(cookie expiry) or explicitly (resetting
the advertisement id by user). So not cleaning the stale IDs periodi-
cally from the data store can lead to a significant boost of non-active
IDs in the data store. An easy way of solving this problem is to put
TTL, but some problems are associated with this kind of solution.

∙ Problem 1: Lack of information regarding the exact time of
ID creation makes TTL based methods inefficient. Being a
DMP, we might have the time stamp at which the ID enters
into our system which is very different from the actual ID
creation time in the device.

∙ Problem 2 : Each ID with different attributes associated
like OS, gender, age, device, bid stream frequency, etc has a
different lifetime. In a feedback-based system, we have some
uncensored IDs for which we have the lifetime information
available. Using this information we can calculate the ex-
pected value of life and use it as a TTL. This method still
works on the assumption that all the IDs have equal lifetime
while the expected value of the uncensored IDs tries to infer
the best TTL possible. In this approach, we still have some
IDs whose real life is less than the TTL value and we are
prolonging their deletion till it reaches the TTL and some
IDs whose actual life is more than TTL value and we early
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delete it once it reaches the TTL. In both conditions, there is
an opportunity to estimate lifetime value more efficiently.

2 BACKGROUND AND RELATEDWORK
Overall survival of each group (groups are based on attributes like
gender, age, Operating system, etc) can easily be understood using
Kaplan-Meier[7]on different groups by analyzing horizontal steps
with declining magnitude. However, the detailed understanding of
time to event for each device ID can’t be understood ignoring the
effects of the covariates. Cox Proportional analysis[4] is often used
for the detailed analysis of the statistical relationships between a
set of covariates and its survival or hazard function.

Historically, survival analysis is mainly used in the medical con-
text where the duration of time until an event is analyzed. It started
with the purpose of studying the effects of medicines on the sur-
vival of different tuberculosis patients[1]. The idea got extended to
the financial markets for predicting the time to the survival of dif-
ferent firms[2, 8], credit card defaulters[5] and time to file business
bankruptcy[7] by analyzing the correlation of covariates with the
duration parameter (time to event). Survival models with covariates
have also been successfully used to analyze the survival of music
albums in[3].

Our approach is motivated by[6, 9, 10], where the authors used
survival modeling along with covariates to predict the customer
attrition rate. We try to extend this idea in the digital advertising
and marketing domain to predict the instantaneous survival rate of
IDs. We used Kaplan-Meier analysis to understand the behaviour
of these IDs belonging to different groups and then used a Cox
Proportion-based method to find the instantaneous survival rate of
those IDs based on the covariates (i.e. device IDs attributes).

The remainder of the paper is laid out below. In section 3 talks
about the survival model analysis techniques. In section 4 and
section 5 we discuss the various experiments and results. In Section
6 we talk about the conclusion we made about our approach and
propose the future works possible.

3 METHODOLOGY
3.1 Approach
The survival analysis aims to measure the time duration until the
event occurs. In our context, we are interested in knowing when
a device ID becomes inactive. So the objective for this experiment
becomes calculating the survival probability of a device ID at time
T after a certain time (t) is defined as:

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡) (1)

where T is any non-negative random variable after t where the event
may occur.
In this paper we have experimented with both non-parametric (Ka-
plan–Meier estimator)[7] and semi-parametric (Cox Proportional
hazards model)[4] for survival analysis. We started our analysis
with the Kaplan-Meier estimator with censored data. It is a univari-
ate and non-parametric method to estimate survival function and
it is defined as:

𝑆(𝑡) = ∏
𝑡𝑖 𝑡

𝑛𝑖 − 𝑑𝑖
𝑛𝑖

(2)

where di is the no of device IDs becomes inactive at time t and ni is
the total number of ids active(censored) at time t .

Kaplan-Meier survival rate estimates of different groups can be
understood to have different survival rates. This gives rise to the
idea that taking the effect of covariates may give rise to a better
estimate of survival probability. We build multiple Cox proportion-
based hazard models with different sets of profile attributes as
covariates and MEANHOP

4 as a duration parameter.

ℎ(𝑡|𝑥)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
hazard

=

baseline hazard⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑏0(𝑡) exp

log-partial hazard⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(

𝑛
∑
𝑖=1

𝑏𝑖(𝑥𝑖 − 𝑥𝑖))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

partial hazard

(3)

where x are the covariates on which hazard rate is dependent on and
𝛽 is weight for each of the covariates (regression parameters on the
log-scale).
The survival function at time t given the covariates X is defined as :

𝑆(𝑡|𝑥)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

survival function

= exp
(

− 𝑒𝑥𝑝(
𝑛
∑
𝑖=1

𝑏𝑖(𝑥𝑖 − 𝑥𝑖)) ∫
𝑡

0
𝑏0(𝑢)d𝑢)

(4)

= exp( − 𝑒𝑥𝑝(
𝑛
∑
𝑖=1

𝑏𝑖(𝑥𝑖 − 𝑥𝑖))𝑏0(𝑡)) (5)

4 EXPERIMENTS
The input data consists of the device ID, their attributes, and the
duration parameter. We used our device ID profile store which has
around 500M to 10B device IDs depending on the country (like
Spain, Italy, India, or the USA) constituting an android advertising
ID, IOS advertising ID, and different third parties cookies. Each
ID has various static and dynamic attributes like demographic
information(Gender, Age, City, State, etc), Application information
(APP install and APP usage, etc), device information (device os,
device brand, etc), Interest, Intent, and Automotive information.
We took random samples from the device ID profile store to get
multiple input datasets for our experiment. Here the challenge is to
collect the ground truth for the duration parameter for each device
ID. We took bid requests from DSPs as implicit feedback as a proxy
of device IDs life. The historical bid request data is taken for the
last 2 years(N) and clubbed d days data together into a group. Then
we build a Bloom-Filter5 on top of each group. Overall we have a
total of n groups where n is:

𝑛 = ⌊
𝑁
𝐷
⌋ (6)

The ith Bloom-Filter with d days window is defined as 𝛽𝐷𝑖 . Here
𝑁 = 600 days and 𝐷 = 10 days. So, overall we have a timeline of
600 days with 0 referring to the present day. We split our timeline
into two parts i.e. 600 to 200 as the experiment set(training set),
and 200 to 0 as ground truth for future timesteps prediction. For
the ease of experimentation, we further translated the timeline 600

4It is defined as the mean time timestamp difference between any two consecutive
timestamps at which that device ID was active. Refer Section 4 for details.

5Bloom filter is a space-efficient probabilistic data structure often used to inquire
whether an element is a member of a set or not.
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to 200 to 400 to 0 and predicted for the next 200 days which is 20
timesteps.

Each Bloom-Filter is associated with two timestamps in the
the timeline. The upper timestamp defines the the upper timeline
boundary(UL) and the lower timestamp defines the lower timeline
boundary(LL). For the 𝑖𝑡ℎ bloom filter they are defined as:

𝑈𝐿 = 𝑑 ∗ (𝑖 + 1) (7)

𝐿𝐿 = 𝑑 ∗ 𝑖 (8)
For example a device ID that is found in Bloom Filteri means it was
active at time between (𝑑 ∗ 𝑖) to (𝑑 ∗ (𝑖 + 1)) .

For each device ID, we created a list calledACTIVELIST containing
all the time stamps at which that device ID was active. We have
created multiple duration parameters for each device ID out of this
data that are defined as below.

∙ ACTIVELIST : It is defined as a list containing all the time
stamps at which that device ID was active.

∙ ACTIVEMIN : It is defined as the latest occurrence timestamp
of the device ID in ACTIVELIST (i.e min𝐴𝐶𝑇 𝐼𝑉𝐸LIST)

∙ ACTIVEMAX : It is defined as the first occurrence timestamp
of the device ID in ACTIVELIST. (i.e max𝐴𝐶𝑇 𝐼𝑉𝐸LIST).

∙ LIFE :It defined as the difference between ACTIVEMAX and
ACTIVEMIN.

𝐿𝐼𝐹𝐸 = 𝐴𝐶𝑇 𝐼𝑉𝐸MAX − 𝐴𝐶𝑇 𝐼𝑉𝐸MIN (9)

∙MAXHOP : It is defined as maximum timestamp difference in
between any two consecutive timestamp of ACTIVELIST.

𝑀𝐴𝑋HOP = 𝑚𝑎𝑥(𝐿𝑖), ∀𝐿𝑖 ∈ (𝐴𝐶𝑇 𝐼𝑉𝐸𝐿𝐼𝑆𝑇 (𝑖 + 1) − 𝐴𝐶𝑇 𝐼𝑉𝐸𝐿𝐼𝑆𝑇 (𝑖)),
𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ (0 , 𝑠𝑖𝑧𝑒(𝐴𝐶𝑇 𝐼𝑉𝐸𝐿𝐼𝑆𝑇 ) − 1)

(10)

∙MEANHOP : It is defined as the mean time timestamp differ-
ence between any two consecutive timestamps ofACTIVELIST.

𝑀𝐸𝐴𝑁HOP = 𝔼(𝐿𝑖), ∀𝐿𝑖 ∈ (𝐴𝐶𝑇 𝐼𝑉𝐸𝐿𝐼𝑆𝑇 (𝑖 + 1) − 𝐴𝐶𝑇 𝐼𝑉𝐸𝐿𝐼𝑆𝑇 (𝑖)),
𝑤ℎ𝑒𝑟𝑒 𝑖 ∈ (0 , 𝑠𝑖𝑧𝑒(𝐴𝐶𝑇 𝐼𝑉𝐸𝐿𝐼𝑆𝑇 ) − 1)

(11)

Out of all derived variables we have selected LIFE, MEANHOP
and MAXHOP as the candidates chosen for the duration parameter.

In Figure 1 we can observe that the LIFE parameter is not suitable
for survival analysis due to its linear decay or very little time-variant
nature. Then out of MEANHOP and MAXHOP we choose MEANHOP
as the best suitable parameter because it is less prone to outliers.
A clear explanation to the above point is the case where if an ID
is not observed by the bloom filter for a long time and suddenly
it’s observed by the filter thus increasing its MAXHOP value but it
is not the expected(mean) time an ID will take to be seen hence
MEANHOP will not change drastically. So the MEANHOP parameter
can be taken as the best proxy to the duration parameter to calculate
the overall survival of an ID.

To understand the survival probability of different groups we
plotted the Kaplan-Meier estimate of all groups with the duration
parameter MEANHOP as explained in Figure 2.

Kaplan-Meier survival rate estimates of different groups can
be understood to have different survival rates. This provides a

Figure 1: Kaplan–Meier curve for duration parameter importance

Figure 2: Effect of all the Covariates on MEANHOP

Figure 3: Effect of final Covariates selected on MEANHOP

notion that covariate based models might be a better estimate
of survival probability. We build multiple Cox proportion-based
hazard models with different sets of profile attributes as covari-
ates and MEANHOP as a duration parameter and finally achieved a
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Table 1: Effect of covariates on Hazard Rate

COVARIATES AGE MALE FEMALE DP_CT DEVICE_
OS_

ANDROID

DEVICE_
OS_
IOS

DEVICE_
OS_

OTHERS

FREQUENCY_
OF_
APP_

UPDATE

ACTIVE
MIN

ACTIVE
MAX

COEFFICIENT
VALUES

-0.00 0.17 0.20 0.10 0.04 0.02 -0.25 -0.01 0.02 -0.02

HAZARD
RATIO

0.99 1.18 1.22 1.10 1.04 1.01 0.78 0.99 1.017 0.980

concordance score of 0.9 with the covariates (AGE, DP_,CT, FRE-
QUENCY_OF_APP_UPDATE, GENDER (MALE, FEMALE),
DEVICE_OS(ANDROID, IOS, OTHERS)) shown in Fig 3.

∙ AGE:Numeric value range between 18 to 100 defined by
Demographic age of the device ID.

∙ DP_CT:Numeric value defined by number of data partner
contributed to the profile information of the device ID.

∙ FREQUENCY_OF_APP_UPDATE:Numeric attribute de-
fined by frequency (in no. of days) of application data being
updated in the device ID profile store.

∙ GENDER:Categorical value defined by demographic gender
of the device ID. It can take a value either MALE or FEMALE.

∙ DEVICE OS:Categorical value defined by the device IDs
operating system. It can take a value of ANDROID, IOS or
others (which includes windows, linux etc).

5 EXPERIMENTAL RESULTS
For the best observed Cox proportion model with the most suit-
able covariates along with their coefficient values (𝛽) and haz-
ard ratios are shown in Table 1. As we see the covariates fre-
quency_of_app_update and Age has a little effect on the hazard
rate. But IDs with gender as Male or Female tend to suffer from
lower survival rates with a higher risk of 18% and 22% respectively.
We also observed that the device IDs with the operating system
as Android or IOS have a little but negative impact on the hazard
rate but the device IDs having operating systems like Blackberry,
Windows, Meego, Linux, etc (categorized as others) are associated
with a very low hazard rate of -22% thus lives longer. IDs with high
value for DP_CT found to increase the hazard by 10%. The reason
could be more the value of DP_CT more the confidence we have
about the covariates of the device IDs. We also observed that the
last active timestamp tends to be associated with a 1.7% higher
hazard rate.

Using the above model we predicted the survival probability for
each of the device IDs for the future timesteps. A threshold 0.07 or
less is used to flag a device ID as dead and deleted from the storage.
We ran the model and compared our results with industry-standard
TTLs( of 90, 120, or 180 days) along with the Mean of the LIFE
(ground truth). The results and analysis can be found in Table 3.
Our analysis is based on 7 main attributes that are defined below :

∙MODEL LIFETIME (𝜶 ) : Then model predicted lifetime for
a device ID.(in number of days)

𝛼 = 𝑇 𝐼𝐷
𝑖 − 𝐴𝐶𝑇 𝐼𝑉𝐸𝐼𝐷𝑀𝐴𝑋 (12)

Table 2: Model stability and robustness check w.r.t sample size

EXP MODEL AND TTL BASED FEATURES

𝛼𝜇 𝛾𝜇 𝑀𝐴𝐸𝛼−𝛾 99% CI of
𝑀𝐴𝐸𝛼−𝛾

SAMPLE
SIZE

EXP-1 284.15 301.12 49.11 [48.69-49.54] 33,207
EXP-2 287.78 303.46 51.71 [51.52-51.99] 76,855
EXP-3 287.37 303.38 50.75 [50.54-51.81] 316,641
EXP-4 298.96 309.90 51.59 [51.50-51.68] 811,447
EXP-5 299.23 309.96 51.55 [51.50-51.61] 1,894,083

Ti is the time-step at which the predicted survival probability
of an ID drops below the threshold.

∙ ACTUAL LIFETIME (𝜸): The actual lifetime observed for a
device ID.(in number of days) Defined as

𝛾 = 𝐴𝐶𝑇 𝐼𝑉𝐸𝐼𝐷𝑀𝐼𝑁 − 𝐴𝐶𝑇 𝐼𝑉𝐸𝐼𝐷𝑀𝐴𝑋 (13)
∙MODEL LIFETIME MEAN (𝜶 𝜇 ): It is defined as the mean

of the lifetime distribution (Using model prediction values)
or the expected value of 𝜶 .

𝛼𝜇 = 𝔼 (𝛼) (14)
∙ PROBABILISTIC MODEL MEAN (𝝎𝜇 ): It is defined as the

mean of the lifetime distribution predicted using probabilistic
model or the expected value of 𝝎.

𝜔𝜇 = 𝔼 (𝜔) (15)
∙ ACTUAL LIFETIME MEAN (𝜸𝜇 ) : It is defined as the mean

of the lifetime distribution (Using Ground Truth values) or
the expected value of 𝜸 .

𝛾𝜇 = 𝔼 (𝛾 ) (16)
∙MEAN ABSOLUTE ERROR(MAE𝑀𝑂𝐷𝐸𝐿_𝐵𝐴𝑆𝐸𝐷) (𝑀𝐴𝐸𝛼−𝛾 ):

It is defined as the expected value of |𝜶 - 𝜸 |
𝑀𝐴𝐸𝛼−𝛾 = 𝔼 |𝜶 − 𝜸| (17)

∙MEAN ABSOLUTE ERROR(MAE𝑃𝑅𝑂𝐵𝐴𝐵𝐼𝐿𝐼 𝑆𝑇 𝐼𝐶_𝑀𝑂𝐷𝐸𝐿_𝐵𝐴𝑆𝐸𝐷)
(𝑀𝐴𝐸𝜔−𝛾 ): It is defined as the expected value of |𝝎 - 𝜸 |

𝑀𝐴𝐸𝜔−𝛾 = 𝔼 |𝝎 − 𝜸| (18)
∙MEAN ABSOLUTE ERROR (MAE𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷) (𝑀𝐴𝐸𝛾𝜇−𝛾 ) :

It is defined as the expected value of |𝛾𝜇 - 𝛾 |
𝑀𝐴𝐸𝛾𝜇−𝛾 = 𝔼 |𝛾𝜇 − 𝛾 | (19)
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Table 3: Model accuracy comparisons w.r.t TTL based approach

EXP
MODEL V/S TTL BASED APPROACH

MAE𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷
(TTL = 𝛾𝜇)

⇓
𝜖𝑀𝐴𝐸𝑇 𝑇𝐿=𝛾𝜇

MAE𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷
(TTL = 90)

⇓
𝜖𝑀𝐴𝐸𝑇 𝑇𝐿=90

MAE𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷
(TTL = 120)

⇓
𝜖𝑀𝐴𝐸𝑇 𝑇𝐿=120

MAE𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷
(TTL = 180)

⇓
𝜖𝑀𝐴𝐸𝑇 𝑇𝐿=180

EXP-1 107.33 54% 219.71 78% 193.24 75% 150.17 67%

EXP-2 107.40 52% 222.553 77% 196.02 74% 152.34 66%

EXP-3 107.484 53% 222.42 77% 195.88 74% 152.23 67%

EXP-4 107.68 52% 222.106 77% 195.58 74% 152.03 66%

EXP-5 106.56 52% 222.160 77% 195.64 74% 152.09 66%

∙ CI :Confidence interval (For model based MAE).
∙MEAN%_ERROR_REDUCTION_PER_ID ⇓𝜖𝑀𝐴𝐸𝑇 𝑇𝐿 : It is

defined as % error reduced by predicting the life of an ID
using a model-based approach compared to any feedback or
non-feedback based TTL approach.

|𝑀𝐴𝐸𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷 − 𝑀𝐴𝐸𝑀𝑂𝐷𝐸𝐿_𝐵𝐴𝑆𝐸𝐷 |
𝑀𝐴𝐸𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷

× 100 (20)

To understand the stability and efficiency of our model we ex-
perimented with various sample sizes and the detailed results can
be found in table 2. We found our model prediction to be robust
and stable irrespective of any sample size.

In table 3 we see that our Cox Proportional Based Hazard model
performs significantly better than any TTL based method. For any
industry-standard TTL of (90,120 or 180) days(non-feedback based)
our model reduces down the error by approximately 66% to 77%
days per device ID. In a Feedback based systems where the life
distribution is known if we use the expected lifetime value as a
TTL, then also our model reduces the error up to 52% to 54% days
per device ID. We performed the above experiments multiple times
and calculated the confidence interval of 𝑀𝐴𝐸𝑀𝑂𝐷𝐸𝐿_𝐵𝐴𝑆𝐸𝐷 using
2 tile T-tests for mean with 25 samples and the 99% CI was found
to be 50.19 - 50.99. This above observation as well as the figure 4
proves that our Cox Proportional Based Hazard model performs
significantly better and the reduction of error rate due to the model
recommendation is stable.

6 CONCLUSIONS AND FUTUREWORK
The idea of this paper was to find out a technique by which we
can decide how long to keep a device ID in our profile store thus
optimizing the computation and processing cost. We found out that
the covariate based Cox Proportional Hazard model is best suited
for this kind of problem. It also provides us a lever to take our
decision conservatively (by taking a lower threshold) or proactively
(taking a higher threshold) depending on the use case. Our covariate
based hazard model achieved a significant concordance score of
0.9. The mean deviation of predicted lifetime of an ID using our
model from actual lifetime comes out to be around 50 days from
the earlier error rate of 108 days which was using the ground truth
mean value as TTL. It narrowed down the average error rate to
5̃0 days from 108 days which is 52% more efficient. In terms of
actual saving on our billion size data store it helped us to reduce the

Figure 4: Distribution of𝑀𝐴𝐸𝑀𝑂𝐷𝐸𝐿_𝐵𝐴𝑆𝐸𝐷 along with𝑀𝐴𝐸𝑇 𝑇𝐿_𝐵𝐴𝑆𝐸𝐷
and 𝑀𝐴𝐸𝑃𝑅𝑂𝐵𝐴𝐵𝐼𝐿𝐼 𝑆𝑇 𝐼𝐶_𝑀𝑂𝐷𝐸𝐿_𝐵𝐴𝑆𝐸𝐷

storage and computation cost by 5% to 8% per run with a frequency
of 1 month run. So overall it achieved a savings of around 10%
to 16% as the reduction of error rate is approximately 58 days.
For a organisation where thousands of downstream workflows are
dependent of the data store, this 15% saving in terms on computation
and storage is a significant optimisation. However this error rate
can be further reduced by using a smaller window bloom filter (3
days or 1 day) instead of 10 days we used above. In future work
we would experiment effects of the bloom filter window size on
the error rate and find a methodology to find out the best bloom
filter size for achieving the optimum result. Our future work is also
focused on finding a mechanism to choose the survival threshold
more efficiently to ease the manual intervention of decision making.
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