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The Problem Setting

• Ad impression opportunities are sold off in real-time auctions.

• Goal: participate in auctions, maximise some notion of utility.

• Complication: advertising auctions are rarely incentive compatible.

• Task: learn a bidding strategy that maximises utility.
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The Problem Setting

Figure 1: High-level overview of a real-time-bidding flow in computational advertising.
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How do you “learn to bid”?



The Bidding Objective

We want to maximise utility:

“Value minus price for impression opportunities we win”

U = W(V − P) (1)

V depends on the ad, W and P depend on the bid
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The Bidding Objective

Goal
Maximise utility, given that we sample bids
according to some contextual policy π(B|A; X):

E
b∼π(B|A;X)

[U] (2)

How do you estimate this, using samples from π0?
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Optimising The Bidding Objective

Choosing a Counterfactual Estimator

1. Value-based Estimation (The “Direct Method”) High Bias
(Existing work fits this paradigm — model P(win|bid))

2. Policy-based Estimation (IPS) High Variance
(Novel)

3. Doubly Robust Estimation Unbiased, lower variance
(Novel)
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How do you evaluate this?



How do you evaluate this?

• Offline: use counterfactual estimators . . .

• “When a measure becomes a target, it ceases to be a good measure”
(Goodhart’s Law)

• Online: A/B-tests span weeks, require production-level prototypes, …

• The RL community is well aware of these issues: embrace simulation!
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Introducing

AuctionGym
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AuctionGym

Simulating Advertising Auctions End-to-End

1. An impression opportunity arises, with features x ∼ P(X),

2. the auctioneer presents this opportunity to some bidders,
3. bidders internally decide on an ad to show and a bid to place,
4. the auctioneer decides on the auction winner and price,
5. the winning ad is shown and possibly leads to
a conversion event that is observable by the winning bidder.
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AuctionGym

Simulating Advertising Auctions End-to-End

1. An impression opportunity arises, with features x ∼ P(X),
2. the auctioneer presents this opportunity to some bidders,
3. bidders internally decide on an ad to show and a bid to place,
4. the auctioneer decides on the auction winner and price,
5. the winning ad is shown and possibly leads to
a conversion event that is observable by the winning bidder.

Bidders update their models every ∆r auction rounds
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Goals and Ambitions for AuctionGym

To be used as a research & validation tool

that does not rely on

sensitive, proprietary data.
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. . . so which estimator do I use?



Core Research Question:

How does my learning method
affect my profit?

(Assuming first-price auctions, details in the paper)
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Simulated Auctions over Time
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Simulated Auctions over Time
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Contributions



Contributions

1. A general framework for bandit-based “learning to bid”

2. Proposed a novel approach, leveraging doubly robust estimators

3. AuctionGym, a tool that can benefit research as well as practitioners

4. Insights from AuctionGym that we cannot extract from logged data.
(And much more in the paper!)
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Thank you for listening!

Questions?
jeunen@amazon.com

AuctionGym
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