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- Goal: participate in auctions, maximise some notion of utility.

- Complication: advertising auctions are rarely incentive compatible.
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Figure 1: High-level overview of a real-time-bidding flow in computational advertising.



How do you “learn to bid"?



The Bidding Objective

We want to maximise

minus for impression opportunities we
U=W(V —-P) (1)

depends on the ad, W and P depend on the bid



The Bidding Objective

Goal
Maximise , given that we sample bids
according to some m(B|A; X):
E [U] (2)

b~m(B

AX)



Optimising The Bidding Objective

Choosing a Counterfactual Estimator

1. Value-based Estimation (The “Direct Method”) High Bias
(Existing work fits this paradigm — model P(win|bid))



Optimising The Bidding Objective

Choosing a Counterfactual Estimator

1. Value-based Estimation (The “Direct Method”) High Bias
(Existing work fits this paradigm — model P(win|bid))

2. Policy-based Estimation (/PS)

High Variance
(Novel)



Optimising The Bidding Objective

Choosing a Counterfactual Estimator

1. Value-based Estimation (The “Direct Method”) High Bias
(Existing work fits this paradigm — model P(win|bid))

2. Policy-based Estimation (/PS) High Variance
(Novel)

3. Doubly Robust Estimation Unbiased, lower variance

(Novel)
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How do you evaluate this?

- Offline: use counterfactual estimators ...

- “When a measure becomes a target, it ceases to be a good measure”
(Goodhart's Law)

- Online: A/B-tests span weeks, require production-level prototypes, ...
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AuctionGym

Simulating Advertising Auctions End-to-End

1. An impression opportunity arises, with features x ~ P(X),
the auctioneer presents this opportunity to some bidders,
bidders internally decide on an ad to show and a bid to place,

the auctioneer decides on the auction winner and price,

ol e W

the winning ad is shown and possibly leads to
a conversion event that is observable by the winning bidder.



Goals and Ambitions for AuctionGym

To be used as a & tool

that does rely on

, data.



... So which estimator do | use?



Core Research Question:

How does my
affect my ?

(Assuming first-price auctions, details in the paper)



Simulated Auctions over Time
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Simulated Auctions over Time
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Contributions

1. A general framework for bandit-based “learning to bid”
2. Proposed a novel approach, leveraging doubly robust estimators
3. AuctionGym, a tool that can benefit research as well as practitioners

4. Insights from AuctionGym that we cannot extract from logged data.
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Thank you for listening! AuctionGym

Questions?

jeunen (@EINEYA) .com
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