Programmatic optimization of ad pods for maximizing consumer engagement and revenue

Niranjan Kumawat n.kumawat@samsung.com Samsung Research Institute Bangalore, Karnataka, India Manu Vajpai manu.vajpai@samsung.com Samsung Research Institute Bangalore, Karnataka, India Nitish Varshney nitish.var@samsung.com Samsung Research Institute Bangalore, Karnataka, India

Samsung Ads

- We are the fourth largest advertiser in the world.
- Samsung Ads can reach over 200 million devices across Smart TV, connected TV devices and cross-media solutions.
- There are 30 million Samsung Smart TVs registered in the US, and 73 million globally.
- 75% of audiences in the Samsung Smart TV ecosystem are watching some form of linear TV.

Introduction to ad pods in Connected TVs

- Podding is similar to linear ads on TV
- Inserted dynamically into video content on CTV
- Bundling ads together reduces consumer fatigue because of littered ads
- Also increases revenue by increasing impression opportunities
- Higher revenue can be obtained with some pods with costs in brand conflicts and fatigue
- Optimal pods balance consumer engagement and revenue

Disclaimer: Brand names (unless owned by Samsung) have no affiliation with this work and are used only for representational purposes

Ad-podding RTB auction

- Real-Time Bidding process:
 - Device requests for bid on ad slot
 - Exchange (or SSP) requests bids with device/user info
 - Advertisers (DSPs) submit bids with category and domain information
 - Bids are evaluated and top bidder(s) get to display ads
 - All allocated ads are collated into pods and inserted into video
 - Selection of ads for podding is as per business objectives, formulated as constraints
 - This is a Multi-Objective Knapsack problem

$$max \sum_{i=1}^{K} p_i x_i, \ s.t. \sum_{i=1}^{K} d_i x_i \le D$$

where, $x_i = \begin{cases} 0, if \ b_i \notin S \\ 1, if \ b_i \in S \end{cases}$

 $\forall b_p, b_q \in S, \ C_p \cap C_q = \phi \ or \ A_p \cap A_q = \phi$

- a_i : identifier of the linear ad
- *p_i* : cost to display *a_i* or it's bidding price.
- d_i : duration of a_i .
- C_i : set of IAB categories of a_i .
- A_i : set of ad domains of a_i .

Possible constraints on pod selection

- Maximizing sum of bid cpms of constituent ads (revenue maximization)
- Low similarity between IAB categories of constituent ads to minimize conflicts
- Low similarity between ad domains to minimize over-exposure
- Capping ad frequency for constituent ads across pods
- Enforcing specific distribution of ads by duration/categories (e.g. shorter ads at end)
- Requests by DSPs to always display the entire pod with their ads or to not pod their ads at all

Approaches to solving MOK problem

Available Approaches

- Exact solutions
 - Dynamic programming
 - Backtracking
- Heuristics
 - ACO
 - Evolutionary
- Learning based solutions
 - Pointer networks
 - Reinforcement learning
- Tailored greedy approaches

Selected Approaches

- Evolutionary algorithms (heuristic)
- Backtracking (exact)
- Dynamic programming (exact)
- Greedy algorithm (heuristic)

Some works have combined multiple approaches to address their problems

Experimental setup

• Two datasets:

- In-house: 7 days of auction logs with 15 extracted IAB categories, duration, bid value
- YouTube ad dataset: Public domain dataset without bid information. Modelled with viewership. 5000 ads with metadata.
- Pods constructed from ads in datasets
 - Sampling in heuristics, ordered selection in exact and greedy
- Constraints on IAB categories and revenue (sum of bids in pods)
- Repetition of IAB category is (mild) engagement loss

- Evolutionary algorithms as heuristic approach
 - Linearly increasing generations with pod size
 - Very high penalty for exceeding capacity
 - Moderate-to-high penalty for similarity of constituent ads
- Dynamic programmatic and backtracking as exact solutions
 - Used as benchmarks for profit, engagement and computational complexity
- Our greedy solution

Greedy solution

- We have developed two heuristics for greedy sampling of slots
 - PDR Price to duration ratio
 - PDRwP Price to duration ratio with price prioritized
- PDR selects slot with optimum balance of price and duration
- PDRwP gives less preference to very long ads, further preventing fatigue
- PDRwP can be tuned to also remove very small ads

$$PDR_i = \frac{p_i}{d_i}$$
 $PDRwP_i = p_i(1 + \frac{1}{d_i})$

Algorithm 1: Greedy algorithm for solving ad-podding MOK **Result:** Optimized ad-pod *S* and revenue *P*_{total} Initialize selected categories (C_{sel}) as an empty set; Alternatively, initialize selected ad domains (A_{sel}) as an empty set; Initialize cumulative profit ($P_{total} \leftarrow 0$) and remaining duration $(D_{rem} \leftarrow D)$; sort B w.r.t. heuristic in descending order; for $b_i \in B$ do **if** $D_{rem} - d_i \ge 0$ and $C_i \notin C_{sel}$ and $A_i \notin A_{sel}$ **then** $P_{total} \leftarrow P_{total} + p_i;$ $D_{rem} \leftarrow D_{rem} - d_i;$ $C_{sel} \leftarrow C_{sel} \cup C_i;$ Alternatively, $A_{sel} \leftarrow A_{sel} \cup A_i$; $S \leftarrow S \cup b_i$: end end

Estimating performance of algorithms

- Percentage deviation in profit measure non-optimal profit
- If profit is non-optimal then so is engagement
- Similar to Mean-Absolute Percentage Error (MAPE)
- 1000 iterations for each approach
- EA is farthest from optimal, in spite of tuning, while DP is optimal
- Greedy approaches, in particular PDRwP, perform near-optimal
- Some solutions for PDRwP are non-optimal (rounding error)

- α_t is profit from the selected approach
- β_t is profit from optimal approaches
- R is indexing over calculations

In-house								
Percentile	DP	EA	G-PDR	G-PDRwP				
50 th 95 th 99 th	0.0 0.0 0.0	47.57 111.97 133.64	11.84 33.11 41.94	0.0 14.38 29.05				
YouTube								
Percentile	DP	EA	G-PDR	G-PDRwP				

152.73 15.26

294.80 79.95

0.0 405.45 87.62

0.0

0.0

0.0

0.0

0.0

50th

95th

99th

Distribution of errors

- Density of percentage deviation will give a holistic overview of performance
- If spread away from 0 is high poor performance
- Greedy approaches are near-optimal

Computational complexity in RTB context

Bids in pod	Dataset	Backtracking	DP	EA	G-PDR	G-PDRwP
5	In-house	0.108 ± 0.0	0.256 ± 0.0	46.7 ± 0.235	0.019 ± 0.0	0.020 ± 0.0
	YT	0.143 ± 0.0	0.409 ± 0.001	48.2 ± 0.18	0.027 ± 0.0	0.028 ± 0.0
10	In-house	1.53 ± 0.004	0.914 ± 0.0	95.4 ± 0.512	0.045 ± 0.0	0.045 ± 0.0
	YT	1.05 ± 0.003	0.730 ± 0.003	98.8 ± 0.421	0.038 ± 0.0	0.038 ± 0.0
15	In-house	3.63 ± 0.013	1.17 ± 0.002	172 ± 0.308	0.055 ± 00	0.055 ± 0.0
	YT	9.35 ± 0.015	1.48 ± 0.038	140 ± 0.488	0.049 ± 0.0	0.051 ± 0.0
20	In-house	22.9 ± 0.061	2.13 ± 0.013	203 ± 0.786	0.067 ± 0.0	0.067 ± 0.0
	YT	23 ± 0.153	2.33 ± 0.01	195 ± 0.407	0.076 ± 0.0	0.074 ± 0.001
25	In-house	89 ± 0.290	2.12 ± 0.005	261 ± 2.17	0.083 ± 0.0	0.082 ± 0.0
	YT	86.2 ± 1.09	2.27 ± 0.046	248 ± 1.17	0.080 ± 0.0	0.081 ± 0.0
30	In-house	191 ± 1.11	3.54 ± 0.015	329 ± 1.74	0.104 ± 0.0	0.104 ± 0.0
	YT	126 ± 0.281	3.68 ± 0.032	305 ± 1.94	0.091 ± 0.0	0.093 ± 0.0
40	In-house	1000 ± 3.21	4.54 ± 0.011	462 ± 6.88	0.111 ± 0.0	0.123 ± 0.0
	YT	928 ± 4.07	4.95 ± 0.014	440 ± 4.45	0.113 ± 0.001	0.116 ± 0.0
50	In-house	3540 ± 18.1	5.96 ± 0.022	611 ± 1.05	0.125 ± 0.0	0.160 ± 0.0
	YT	3350 ± 11.8	8.3 ± 0.044	581 ± 4.34	0.155 ± 0.0	0.162 ± 0.001

Running times of the algorithms for varying pod sizes. Both in-house and YouTube dataset are listed. Time units are milliseconds.

Conclusions

- Optimal podded ads offer a balance between revenue and consumer engagement
- Optimizing ads pods can be modelled as a multi-objective knapsack problem
- Four families of algorithms can be used to solve MOKs exact, heuristic, greedy and learning-based
- We have compared greedy, heuristic and exact approaches
- Greedy approaches are nearly as accurate as exact ones
- The efficiency of greedy approaches makes them ideal for RTB deployment

Thank you!