

Online Meta-Learning for Model Update Aggregation in Federated Learning for Click-Through Rate Prediction

Xianghang Liu¹, Bartlomiej Twardowski², Tri Kurniawan Wijaya²

¹ Huawei Research Center London,

² Huawei Research Center Ireland

Corresponding Author: xianghang.liu@huawei.com

Federated Learning and Click Through Rate (CTR) Prediction

CTR Prediction in Ads Delivery

- Input: features of an ad impression
 - User features: profile and behavior history;
 - Ad features: id, creatives, taxonomy
 - Context features: time, location
- Output: probability of click

Model

- Embedding
- Explicit Interactions
- Fully-connected layers
- Biases for calibrations
- Example: Deep & Cross Network (DCN)

Federated Learning

FL Framework

Communication round *t*

- Local optimization $w_k^t = \text{opt-local}(w^t; D_k)$
- Local model update aggregator

$$\begin{split} \Delta w^t &= \mathrm{agg}(\Delta W^t, Z^t) \\ \Delta W^t &:= \{\Delta w^t_k, k \in S^t\} \\ \Delta w^t_k &:= w^t_k - w^t \end{split}$$

• Server optimizer $w^{t+1} = \text{opt-server}(w^t, \Delta w^t).$

Examples

► FedAvg (McMahan et al., 2017)

$$\operatorname{agg}(\Delta W^t, Z^t) = \frac{1}{n^t} \sum_{k \in S} n_k^t \cdot \Delta w_k^t, \quad (4)$$

opt-server
$$(w, \Delta w) = w^t + \Delta w^t$$
, (5)

where $z_k^t = n_k$, for $k \in S^t$, n_k is the number of samples for client k, and $n^t = \sum_{k \in S^t} n_k$.

► FedAdam and FedAdagrad (Reddi et al., 2021)

$$w^{t+1} = w^t + \gamma_s \cdot \frac{m^t}{\sqrt{M^t} + \epsilon}$$

$$m^t = \beta_1 \cdot m^{t-1} + (1 - \beta_1) \cdot \Delta w^t,$$

$$M^t = M^{t-1} + (\Delta w^t)^2$$
, for **FedAdagrad**,

► FedNova (Wang et al., 2020)

$$\operatorname{agg}(\Delta W^t, Z^t) = \left(\sum_{k \in S^t} \tau_k \cdot \frac{n_k}{n^t}\right) \cdot \sum_{k \in S} \frac{n_k}{n^t} \cdot \frac{1}{\tau_k} \cdot \Delta w_k^t, \ (6)$$

where $z_k^t = [n_k, \tau_k]$, τ_k is the number of local gradient descent steps on client k. The function opt-server(\cdot) is the same as that of FedAvg, i.e. equation (5).

 $M^t = \beta_2 \cdot M^{t-1} + (1 - \beta_2) \cdot (\Delta w^t)^2$, for FedAdam,

Learning to aggregate local model updates

- Motivation
 - Weighting of the client updates and client heterogeneity
 - Server learning rate tuning
 - Parameter-wise aggregation
- Aggregation strategy
 - Aware of client heterogeneity
 - Adaptive
 - Parameter-wise
- Learnable aggregation model

$$\Delta w^{t}[A] = \operatorname{agg}(\Delta W^{t}[A], Z^{t}[A]; \theta[A]) \coloneqq \theta_{s}[A] \cdot \sum_{k \in S^{t}} \alpha_{k}[A] \cdot \Delta w_{k}[A]$$

where $\alpha_{k}[A] = \operatorname{softmax}(f_{\alpha}(z_{k}^{t}[A]; \theta_{\alpha}[A])), \forall A \in \mathcal{P}.$

 $f_{lpha}(z; heta_{lpha})$ -- function to compute the client weights

 \mathcal{P}_{i} -- partition of the weight indices

• (meta) loss function

$$L^t(\theta^{t-1}) = \sum_{k \in S^t} L^t(\theta^{t-1}; D_k^{(q)})$$

$$L^{t}(\theta^{t-1}; D_{k}^{(q)}) := \sum_{\{x, y\} \in D_{k}^{(q)}} \ell(h(x; w^{t}); y)$$

• gradient computation

$$\frac{\partial L^{t}}{\partial \theta^{t-1}} \left(\theta^{t-1} \right) = \frac{\partial L^{t}}{\partial w^{t}} \left(w^{t} \right) \cdot \frac{\partial w^{t}}{\partial \theta^{t-1}} \left(\theta^{t-1} \right)$$

$$g^{t} = \sum_{k \in S^{t}} \frac{\partial L^{t}_{k}}{\partial w^{t}} \left(w^{t} \right)$$

$$g^{t}_{k} = \sum_{x, y \in D^{(q)}_{k}} \frac{\partial \ell}{\partial w^{t}} \left(f(x, w^{t}), y \right)$$

$$\frac{\partial L^{t}}{\partial \theta^{t-1}} (\theta^{t-1}) = \frac{\partial (g^{t} \cdot w^{t})}{\partial \theta^{t-1}} (\theta^{t-1})$$

Figure 1: Overview of the gradient computation procedure in MetaUA: ① local model updates and attributes are sent from selected clients; ② local updates are aggregated using meta model; ③ new model is distributed to the selected clients; ④ server receives the gradients from the selected clients and computes the gradients for the meta-parameters.

Experiments

- Base model: DCN-v2
- Fed-Adagrad as the server optimizer

Dataset	# Examples	# Features	Vocab Size	# Users	# Items	Density
MovieLens-1M	739012	7	13196	6040	3668	3.34
Tmall	1899378	4	44239	22284	17705	0.48
Yelp	530124	9	34462	22128	12232	0.20
Amazon-CDs	890824	3	31985	15592	16184	0.35

Table 1: Dataset statistics

Selection of client attributes

- Number of samples 1.
- Local loss values 2.
- Gradient norm 3.
- Ratio of loss value reduction after local SGD 4.
- Positive example ratio 5.
- Number of unique features in local datasets 6.

			AUC					Logloss		
rounds	20	50	100	150	200	20	50	100	150	200
method										
None	0.640	0.761	0.911	0.933	0.943	0.661	0.606	0.362	0.298	0.269
z_1	0.700	0.897	0.936	0.949	0.956	0.685	0.399	0.300	0.261	0.241
z_2	0.629	0.637	0.887	0.944	0.964	0.667	0.667	0.405	0.275	0.206
z 3	0.595	0.690	0.825	0.871	0.894	0.693	0.693	0.676	0.573	0.498
24	0.611	0.641	0.815	0.881	0.922	0.679	0.679	0.540	0.419	0.335
z 5	0.637	0.650	0.887	0.926	0.944	0.666	0.666	0.404	0.320	0.275
z_6	0.712	0.899	0.937	0.950	0.957	0.684	0.391	0.296	0.257	0.239
All	0.592	0.728	0.808	0.845	0.864	0.691	0.664	0.664	0.664	0.649

Table 3: Performance of MetaUA evaluated with different set of client's attributes Z on Amazon-CDs dataset.

10

Different fraction of clients

Ablation study

	AUC				Logloss			
FL round	50	100	200	400	50	100	200	400
no adjustment	0.841	0.864	0.878	0.882	0.502	0.461	0.436	0.429
client weighting	0.844	0.862	0.880	0.885	0.454	0.439	0.417	0.413
server lr	0.846	0.865	0.877	0.881	0.484	0.441	0.415	0.413
client weighting + server lr	0.850	0.867	0.880	0.889	0.432	0.413	0.393	0.382

Table 4: Ablation study

Robust to learning rate

Conclusion

- For federated CTR prediction, we propose a method to learn to aggregate local model updates
 - Aware of client heterogeneity
 - Adaptive in the training process
 - Parameter-wise
- Outperforms the SOTA algorithms