Learning Similarity Preserving Binary Codes for Recommender Systems

Yang Shi and Young-joo Chung Rakuten Institute of Technology Rakuten, Inc.

8/15/2022

Motivation

Binary Hashing

Hard threshold: sign function

• Soft threshold: scaled tanh function

Hashing-based recommender systems

- Reduce the memory requirement
- Accelerate the recommendation speed

Contributions

- Explore a new hashing-based RS design, Compact Cross-Similarity Recommender (CCSR), which is inspired by cross-modal retrieval literature.
- Demonstrate that Maximum a Posteriori (MAP)-based similarity loss works well in the top-k recommendation task.
- Analyze recommendation performance with different binarization methods. We show the simple *sign* function still performs well compared to other more complicated methods.

Related work

Hashing-based recommender system:

- Feature extraction: Matrix Factorization, Auto Encoders, Neural Networks
- User-item interaction: Dot product(rating reconstruction), Cross Entropy (CE)
- Binarization: Sign, Linear Programming Relaxation (LPR), Straight-through-estimator (STE)

Figure 1: Hashing-based recommendation systems. Prediction is made by computing Hamming distances between binary codes.

Table 1: Comparison of different hashing-based recommender systems in terms of feature extraction, interaction modeling, and binarization

	Paper	Fea	ture e	extraction	User-item i	ntera	Binarization	
		MF	AE	Other NN	Dot product	CE	MAP	
	CFCodeReg[27]	\checkmark			\checkmark			Sign
	DCF[23]	\checkmark			\checkmark			Sign
	NBR[25]	\checkmark	\checkmark		\checkmark			LPR
	NeuHash[8]	\checkmark	\checkmark		\checkmark			STE
	HashGNN[19]			\checkmark		\checkmark		Sign, STE
5	CCSR (ours)		\checkmark				\checkmark	Sign, Scaled tanh

CCSR

Feature Extraction

We use Auto encoders $\mathcal{L}_{ae} = \sum_{a,b} (||\mathbf{X}_a - \hat{\mathbf{X}}_a||_F^2 + ||\mathbf{Y}_b - \hat{\mathbf{Y}}_b||_F^2),$ User-item interaction and similarity

We use dot product between user and item to model user-item interaction/similarity We use Maximum a Posteriori (MAP) estimation.

$$\begin{split} & \text{og}\, p(\mathbf{F}_{a}^{u},\mathbf{F}_{b}^{i}|\mathbf{S}_{ab}) \propto \log p(\mathbf{S}_{ab}|\mathbf{F}_{a}^{u},\mathbf{F}_{b}^{i}) p(\mathbf{F}_{a}^{u}) p(\mathbf{F}_{b}^{i}) \\ & \mathcal{L}_{sim} = \sum_{a,b} (\log(1+e^{\langle \mathbf{F}_{a}^{u},\mathbf{F}_{b}^{i}\rangle}) - \mathbf{S}_{ab} \langle \mathbf{F}_{a}^{u},\mathbf{F}_{b}^{i}\rangle). \end{split}$$

Additional loss: Balance loss: to balance the number of +1 and -1 in the binary code

$$\mathcal{L}_{b} = \sum_{a,b} (||\mathbf{F}_{a}^{u^{\top}}\mathbf{1}||_{F}^{2} + ||\mathbf{F}_{b}^{i^{\top}}\mathbf{1}||_{F}^{2})$$

Optimization: we minimize the all losses

$$\mathcal{L} = \mathcal{L}_{sim} + \lambda_b \mathcal{L}_b + \lambda_{ae} \mathcal{L}_{ae}$$

5

Model Training

e.g. all user's rating on target item

Model Inference

e.g. all user's rating on target item

Experiments

Datasets

	Dataset	#User	#Item	#Ratings	Density	
	Movielens1M	6,040	3,952	1,000,209	4.19%	
	Amazon	35,736	38,121	1,960,674	0.14%	
	Ichiba	36,314	8,514	1,267,296	0.41%	
Baselines			В	inarizatior	ו	
Rule-based -	Random Top			• Sign		$h = sgn(f) = \begin{cases} 1 & f \ge \\ -1 & f < 1 \end{cases}$
MF-based -	CF-S (Matrix Facto CFcodeReg AECF (AutoEncode	rization er CF)	CF)	 Scaled 	tanh	$h = tanh(\alpha f).$
CR-based	DJSRH			Sign so	aled tanh	$h = sgn(tanh(\alpha f)).$

 $f \ge 0$ f < 0,

CCSR v.s. MF-based Hashing Recommenders

NDCG@k

	Models		@2				@	6	1	@10			
	Models	5	10	20	40	5	10	20	40	5	10	20	40
	CF-S	0.5492	0.5599	0.5672	0.5833	0.6172	0.6198	0.6297	0.6450	0.6593	0.6613	0.6698	0.6840
Movial and	CFCodeReg	0.5692	0.5690	0.5738	0.5728	0.6314	0.6303	0.6323	0.6317	0.6712	0.6701	0.6724	0.6711
NOVIELENS	AECF-S	0.4983	0.5555	0.5310	0.4874	0.5817	0.6154	0.5989	0.5689	0.6311	0.6534	0.6423	0.6175
	CCSR-S	0.6332	0.6523	0.6912	0.7402	0.6997	0.7128	0.7277	0.7677	0.7371	0.7475	0.7529	0.7897
	CF-S	0.7661	0.7673	0.7680	0.7691	0.8399	0.8409	0.8422	0.8428	0.8692	0.8700	0.8711	0.8716
Amozon	CFCodeReg	0.7657	0.7650	0.7653	0.7663	0.8398	0.8400	0.8405	0.8413	0.8692	0.8693	0.8698	0.8704
Amazon	AECF-S	0.7703	0.7755	0.7818	0.7793	0.8411	0.8447	0.8481	0.8477	0.8697	0.8726	0.8756	0.8750
	CCSR-S	0.7707	0.7685	0.7648	0.7752	0.8420	0.8408	0.8381	0.8446	0.8705	0.8697	0.8676	0.8725
	CF-S	0.8915	0.8921	0.8927	0.8956	0.9329	0.9339	0.9338	0.9352	0.9475	0.9482	0.9483	0.9494
labiba	CFCodeReg	0.8913	0.8911	0.8875	0.8856	0.9327	0.9322	0.9307	0.9300	0.9475	0.9470	0.9457	0.9452
ICHIDa	AECF-S	0.9150	0.9102	0.9123	0.9123	0.9454	0.9416	0.9430	0.9426	0.9566	0.9532	0.9547	0.9542
	CCSR-S	0.9169	0.9104	0.9026	0.9158	0.9467	0.9432	0.9384	0.9478	0.9576	0.9548	0.9513	0.9583

In MovieLens and Ichiba, CCSR performed best. In Amazon, CCSR performed second best.

=> CR-based CCSR worked better than MF-based Hashing recommenders in most cases

Similarity loss v.s. Rating reconstruction loss

To compare similarity (MAP) loss and rating reconstruction (MF) loss, we used continuous features for recommendation without binarization in MovieLens1M.

Two test user groups: one group obtained better results in NDCG@10 with CCSR-C, and the second group with the better results with AECF-C.

CCSR is helpful for users who rated less items and with higher rating variances.

Figure 3: Relative differences of the three characteristics between two user groups with code length 40 on Movielens1M.

Reason: (1) AECF benefits from more ratings as it tries to **reconstruct original ratings** to learn the representations. (2) with higher rating variance, similarity-based models learn better representations **using similar and dissimilar pairs.**

Different Binarization Methods

_													
-	Modela	@2					@	6		@10			
	Models	5	10	20	40	5	10	20	40	5	10	20	40
-	AECF-ST	0.7800	0.7716	0.7810	0.7835	0.8471	0.8419	0.8478	0.8489	0.8748	0.8705	0.8752	0.8765
Scaled tanh	DJSRH-ST	0.7460	0.7653	0.7707	0.7792	0.8263	0.8381	0.8412	0.8469	0.8579	0.8673	0.8701	0.8744
	CCSR-ST	0.7833	0.7869	0.7837	0.7870	0.8490	0.8521	0.8503	0.8530	0.8762	0.8786	0.8770	0.8792
	AECF-SST	0.7657	0.7500	0.7817	0.7733	0.8377	0.8288	0.8485	0.8432	0.8670	0.8599	0.8759	0.8714
Sign ST	DJSRH-SST	0.7610	0.7617	0.7627	0.7698	0.8356	0.8372	0.8379	0.8421	0.8654	0.8668	0.8676	0.8709
	CCSR-SST	0.7632	0.7633	0.7518	0.7530	0.8355	0.8362	0.8285	0.8306	0.8657	0.8658	0.8598	0.8614

NDCG@k of different models on Amazon

Performance drops when we switch from Scaled tanh to Sign scaled tanh.

Here we have three continuous value features a, b, and c. In ST models, continuous features are close to +1 and -1, and a is more similar to b than to c.

But b and c are equally similar to a after converted to binary codes using SST.

R

Take-away

- We found similarity-loss performs well on hashing-based top-k recommendation task
- Even though differentiable scaled *tanh* is popular in recent discrete feature learning literature, a performance drop occurred when scaled *tanh* outputs are forced to be binary.
- CCSR is helpful for users who rated less items and with higher rating variances

Thank you!