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Motivation
Binary Hashing
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Binary hashing

Hard threshold: sign function

Easy, can not backpropagate

Hashing-based recommender systems

« Reduce the memory requirement

» Accelerate the recommendation speed
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Soft threshold: scaled tanh function
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Approximate, can backpropagate




Contributions

« Explore a new hashing-based RS design, Compact Cross-Similarity Recommender (CCSR),
which is inspired by cross-modal retrieval literature.

* Demonstrate that Maximum a Posteriori (MAP)-based similarity loss works well in the top-k
recommendation task.

« Analyze recommendation performance with different binarization methods. We show the simple
sign function still performs well compared to other more complicated methods.
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Related work

Hashing-based recommender system:

* Feature extraction: Matrix Factorization, Auto Encoders, Neural Networks
» User-item interaction: Dot product(rating reconstruction), Cross Entropy (CE)
« Binarization: Sign, Linear Programming Relaxation (LPR), Straight-through-estimator (STE)

End-to-end training
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Figure 1: Hashing-based recommendation systems. Prediction is
made by computing Hamming distances between binary codes.

Table 1: Comparison of different hashing-based recommender sys-
tems in terms of feature extraction, interaction modeling, and bina-
rization

Loss function
Paper Feature extraction | User-item interaction Binarization
MF | AE | Other NN | Dot product | CE | MAP
CFCodeReg[27] | V v Sign
DCF[23] v v Sign
NBR[25] v | v v LPR
NeuHash|[8] v |/ v4 STE
HashGNN/[19] v v Sign, STE
CCSR (ours) v v Sign, Scaled tanh




CCSR

Feature Extraction

We use Auto encoders  Lae = ) (I1Xa - Kall2 + 1Y - T l13),

User-item interaction and sirar’:ilarity

We use dot product between user and item to model user-item interaction/similarity
We use Maximum a Posteriori (MAP) estimation.

log p(Fg, F 1Sap) o log p(Sap |Fg, Fy)p(Fa)p(F})

Laim = » (log(1+eTeFo)) — 5, (F4 F! )).
a,b

Additional loss: Balance loss: to balance the number of +1 and -1 in the binary code

i |
Ly = Nap([IFg 117 +IF, " 1]13)

Optimization: we minimize the all losses

R L=Lsim+ AbLb + AgeLae

~—



Model Training

Estimated
User input

Hidden Layer : 128-dim

Bottleneck: D-dim

Hidden Layer: 128-dim

User input

e.g. target user’s ratings on all items

R

Estimated
ltem input

Hidden Layer : 128-dim

Bottleneck: D-dim

Hidden Layer: 128-dim

ltem input

e.g. all user’s rating on target item



Model Inference

Estimated Estimated
User input ltem input
H ' : .
Hidden Layer : 128-dim d?;';?";‘f Hidden Layer : 128-dim

Bottleneck: D-dim

Hidden Layer: 128-dim

Binary code Binary code

Bottleneck: D-dim

Hidden Layer: 128-dim

User input

ltem input

e.g. target user’s ratings on all items e.g. all user’s rating on target item
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Experiments

Datasets
Dataset #User #Item  #Ratings Density
MovielensIM 6,040 3,952 1,000,209  4.19%
Amazon 35,736 38,121 1,960,674  0.14%
Ichiba 36,314 8,514 1,267,296 0.41%
Baselines Binarization
Random 1 f=20
Rule-based « Sign h = san = -
{ Top gn(f) {_1 F<o,
CF-S (Matrix Factorization CF)
MF-based { CFcodeReg * Scaled tanh h = tanh(af).
AECF (AutoEncoder CF)
CR-based - DJSRH + Sign scaled tanh h = sgn(tanh(af)).
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CCSR v.s. MF-based Hashing Recommenders

NDCG@k
@2 @6 @10

Singels 5 10 20 0 5 10 20 20 5 10 20 20

CE-S | 05492 05599 05672 05833 | 0.6172 06198 0.6297 0.6450 | 0.6593 0.6613 0.6698 0.6840

Moviel CFCodeReg | 0.5692 05690 05738 05728 | 0.6314 06303 06323 06317 | 06712 06701 0.6724 0.6711
OVIELENS  Apcrs | 04983 05555 05310 04874 | 05817 06154 05989 05689 | 0.6311 0.6534 0.6423 0.6175
CCSR-S | 06332 0.6523 0.6912 0.7402 | 0.6997 07128 0.7277 0.7677 | 0.7371 0.7475 0.7529 0.7897

CFS | 07661 07673 07680 07691 | 0.8399 08409 08422 08428 | 0.8692 0.8700 08711 0.8716

A CFCodeReg | 0.7657 07650 07653 07663 | 0.8398  0.8400  0.8405 0.8413 | 0.8692 0.8693 0.8698 0.8704
Mazon  Apcrs | 07703 07755 0.7818 07793 | 08411  0.8447 0.8481 0.8477 | 0.8697 0.8726 0.8756 0.8750
CCSR-S | 07707 07685 07648 07752 | 0.8420 08408 08381 0.8446 | 0.8705 08697 08676 0.8725

CES | 08915 08921 08927 08956 | 09329 09339 09338 09352 | 09475 09482 09483 0.9494

\chi CFCodeReg | 0.8913 0.8911 0.8875 08856 | 0.9327 09322 09307 09300 | 0.9475 09470 0.9457  0.9452
chiba AECF-S | 09150 09102 09123 09123 | 09454 09416 0.9430 0.9426 | 0.9566 09532 0.9547 0.9542
CCSR-S | 0.9169 0.9104 09026 0.9158 | 0.9467 09432 09384 0.9478 | 0.9576 0.9548 009513 0.9583

In MovielLens and Ichiba, CCSR performed best. In Amazon, CCSR performed second best.

=> CR-based CCSR worked better than MF-based Hashing recommenders in most cases
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Similarity loss v.s. Rating reconstruction loss

To compare similarity (MAP) loss and rating reconstruction (MF) loss, we used continuous features for
recommendation without binarization in MovieLens1M.

Two test user groups: one group obtained better results in NDCG@10 with CCSR-C, and the second group
with the better results with AECF-C.

Avg ratings per user

CCSR is helpful for users who rated less items and with
Std ratings per user higher rating variances.

Avg # ratings per user
-25.00% -20.00% -15.00% -10.00% -5.00% 0.00% 5.00%

Figure 3: Relative differences of the three characteristics between
two user groups with code length 40 on Movielens1M.

Reason: (1) AECF benefits from more ratings as it tries to reconstruct original ratings to learn the
representations. (2) with higher rating variance, similarity-based models learn better representations

using similar and dissimilar pairs.
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Different Binarization Methods

NDCG@k of different models on Amazon

| @2 @6 | @10
Models BE 10 20 40 5 10 20 0 | 5 10 20 40
AECF-ST | 0.7800  0.7716 0.7810 0.7835 | 0.8471  0.8419  0.8478 0.8489 | 0.8748 0.8705 0.8752  0.8765
Scaled tanh DJSRH-ST | 0.7460  0.7653  0.7707 0.7792 | 0.8263  0.8381  0.8412 0.8469 | 0.8579 0.8673 0.8701  0.8744
CCSR-ST | 0.7833 0.7869 0.7837 0.7870 | 0.8490 0.8521 0.8503 0.8530 | 0.8762 0.8786 0.8770 0.8792
_ AECF-SST | 0.7657 0.7500 0.7817 0.7733 | 0.8377 0.8288  0.8485 0.8432 | 0.8670 0.8599 0.8759 0.8714
Sign ST~ DJSRH-SST | 0.7610  0.7617  0.7627 0.7698 | 0.8356  0.8372 0.8379 0.8421 | 0.8654 0.8668 0.8676 0.8709
CCSR-SST | 0.7632  0.7633 0.7518 0.7530 | 0.8355  0.8362  0.8285 0.8306 | 0.8657 0.8658  0.8598  0.8614
Performance drops when we switch from Scaled tanh to Sign scaled tanh.
] Binary O Continuous
(1,1 oM .1 _
° Here we have three continuous value features a, b, and c.
R In ST models, continuous features are close to +1 and -1, and a is
. more similar to b than to c.
é) But b and c are equally similar to a after converted to binary codes
H1. 1B e |0 using SST.

Limitation of SST
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Take-away

We found similarity-loss performs well on hashing-based top-k recommendation task

Even though differentiable scaled tanh is popular in recent discrete feature learning literature, a performance
drop occurred when scaled tanh outputs are forced to be binary.

CCSR is helpful for users who rated less items and with higher rating variances
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Thank you!



