Learning Similarity Preserving Binary Codes for
Recommender Systems

Yang Shi and Young-joo Chung
Rakuten Institute of Technology
Rakuten, Inc.

8/15/2022

Motivation
Binary Hashing

0 1
7.1 -1
23| — | 1
9.3 1
-12 -1

X hy

Binary hashing

Hard threshold: sign function

Easy, can not backpropagate

Hashing-based recommender systems

« Reduce the memory requirement

» Accelerate the recommendation speed

(7

Soft threshold: scaled tanh function

e
w=2
l':

tanh (wz)

1 J

8 8

Approximate, can backpropagate

Contributions

« Explore a new hashing-based RS design, Compact Cross-Similarity Recommender (CCSR),
which is inspired by cross-modal retrieval literature.

* Demonstrate that Maximum a Posteriori (MAP)-based similarity loss works well in the top-k
recommendation task.

« Analyze recommendation performance with different binarization methods. We show the simple
sign function still performs well compared to other more complicated methods.

(7

Related work

Hashing-based recommender system:

* Feature extraction: Matrix Factorization, Auto Encoders, Neural Networks
» User-item interaction: Dot product(rating reconstruction), Cross Entropy (CE)
« Binarization: Sign, Linear Programming Relaxation (LPR), Straight-through-estimator (STE)

End-to-end training

[r— === - === I

[}

User representation
F'U.
a

Input Vector
Xa

User a

R

~—

A 4

Interaction
modeling

7Y
‘ Item representation

| Fj

Feature extraction

Input Vector
Y
ltem b

Figure 1: Hashing-based recommendation systems. Prediction is
made by computing Hamming distances between binary codes.

Table 1: Comparison of different hashing-based recommender sys-
tems in terms of feature extraction, interaction modeling, and bina-
rization

Loss function
Paper Feature extraction | User-item interaction Binarization
MF | AE | Other NN | Dot product | CE | MAP
CFCodeReg[27] | V v Sign
DCF[23] v v Sign
NBR[25] v | v v LPR
NeuHash|[8] v |/ v4 STE
HashGNN/[19] v v Sign, STE
CCSR (ours) v v Sign, Scaled tanh

CCSR

Feature Extraction

We use Auto encoders Lae =) (I1Xa - Kall2 + 1Y - T l13),

User-item interaction and sirar’:ilarity

We use dot product between user and item to model user-item interaction/similarity
We use Maximum a Posteriori (MAP) estimation.

log p(Fg, F 1Sap) o log p(Sap |Fg, Fy)p(Fa)p(F})

Laim = » (log(1+eTeFo)) — 5, (F4 F!)).
a,b

Additional loss: Balance loss: to balance the number of +1 and -1 in the binary code

i |
Ly = Nap([IFg 117 +IF, " 1]13)

Optimization: we minimize the all losses

R L=Lsim+ AbLb + AgeLae

~—

Model Training

Estimated
User input

Hidden Layer : 128-dim

Bottleneck: D-dim

Hidden Layer: 128-dim

User input

e.g. target user’s ratings on all items

R

Estimated
ltem input

Hidden Layer : 128-dim

Bottleneck: D-dim

Hidden Layer: 128-dim

ltem input

e.g. all user’s rating on target item

Model Inference

Estimated Estimated
User input ltem input
H ' : .
Hidden Layer : 128-dim d?;';?";‘f Hidden Layer : 128-dim

Bottleneck: D-dim

Hidden Layer: 128-dim

Binary code Binary code

Bottleneck: D-dim

Hidden Layer: 128-dim

User input

ltem input

e.g. target user’s ratings on all items e.g. all user’s rating on target item

R

Experiments

Datasets
Dataset #User #Item #Ratings Density
MovielensIM 6,040 3,952 1,000,209 4.19%
Amazon 35,736 38,121 1,960,674 0.14%
Ichiba 36,314 8,514 1,267,296 0.41%
Baselines Binarization
Random 1 f=20
Rule-based « Sign h = san = -
{ Top gn(f) {_1 F<o,
CF-S (Matrix Factorization CF)
MF-based { CFcodeReg * Scaled tanh h = tanh(af).
AECF (AutoEncoder CF)
CR-based - DJSRH + Sign scaled tanh h = sgn(tanh(af)).

R

CCSR v.s. MF-based Hashing Recommenders

NDCG@k
@2 @6 @10

Singels 5 10 20 0 5 10 20 20 5 10 20 20

CE-S | 05492 05599 05672 05833 | 0.6172 06198 0.6297 0.6450 | 0.6593 0.6613 0.6698 0.6840

Moviel CFCodeReg | 0.5692 05690 05738 05728 | 0.6314 06303 06323 06317 | 06712 06701 0.6724 0.6711
OVIELENS Apcrs | 04983 05555 05310 04874 | 05817 06154 05989 05689 | 0.6311 0.6534 0.6423 0.6175
CCSR-S | 06332 0.6523 0.6912 0.7402 | 0.6997 07128 0.7277 0.7677 | 0.7371 0.7475 0.7529 0.7897

CFS | 07661 07673 07680 07691 | 0.8399 08409 08422 08428 | 0.8692 0.8700 08711 0.8716

A CFCodeReg | 0.7657 07650 07653 07663 | 0.8398 0.8400 0.8405 0.8413 | 0.8692 0.8693 0.8698 0.8704
Mazon Apcrs | 07703 07755 0.7818 07793 | 08411 0.8447 0.8481 0.8477 | 0.8697 0.8726 0.8756 0.8750
CCSR-S | 07707 07685 07648 07752 | 0.8420 08408 08381 0.8446 | 0.8705 08697 08676 0.8725

CES | 08915 08921 08927 08956 | 09329 09339 09338 09352 | 09475 09482 09483 0.9494

\chi CFCodeReg | 0.8913 0.8911 0.8875 08856 | 0.9327 09322 09307 09300 | 0.9475 09470 0.9457 0.9452
chiba AECF-S | 09150 09102 09123 09123 | 09454 09416 0.9430 0.9426 | 0.9566 09532 0.9547 0.9542
CCSR-S | 0.9169 0.9104 09026 0.9158 | 0.9467 09432 09384 0.9478 | 0.9576 0.9548 009513 0.9583

In MovielLens and Ichiba, CCSR performed best. In Amazon, CCSR performed second best.

=> CR-based CCSR worked better than MF-based Hashing recommenders in most cases

(o

Similarity loss v.s. Rating reconstruction loss

To compare similarity (MAP) loss and rating reconstruction (MF) loss, we used continuous features for
recommendation without binarization in MovieLens1M.

Two test user groups: one group obtained better results in NDCG@10 with CCSR-C, and the second group
with the better results with AECF-C.

Avg ratings per user

CCSR is helpful for users who rated less items and with
Std ratings per user higher rating variances.

Avg # ratings per user
-25.00% -20.00% -15.00% -10.00% -5.00% 0.00% 5.00%

Figure 3: Relative differences of the three characteristics between
two user groups with code length 40 on Movielens1M.

Reason: (1) AECF benefits from more ratings as it tries to reconstruct original ratings to learn the
representations. (2) with higher rating variance, similarity-based models learn better representations

using similar and dissimilar pairs.

R 10

Different Binarization Methods

NDCG@k of different models on Amazon

| @2 @6 | @10
Models BE 10 20 40 5 10 20 0 | 5 10 20 40
AECF-ST | 0.7800 0.7716 0.7810 0.7835 | 0.8471 0.8419 0.8478 0.8489 | 0.8748 0.8705 0.8752 0.8765
Scaled tanh DJSRH-ST | 0.7460 0.7653 0.7707 0.7792 | 0.8263 0.8381 0.8412 0.8469 | 0.8579 0.8673 0.8701 0.8744
CCSR-ST | 0.7833 0.7869 0.7837 0.7870 | 0.8490 0.8521 0.8503 0.8530 | 0.8762 0.8786 0.8770 0.8792
_ AECF-SST | 0.7657 0.7500 0.7817 0.7733 | 0.8377 0.8288 0.8485 0.8432 | 0.8670 0.8599 0.8759 0.8714
Sign ST~ DJSRH-SST | 0.7610 0.7617 0.7627 0.7698 | 0.8356 0.8372 0.8379 0.8421 | 0.8654 0.8668 0.8676 0.8709
CCSR-SST | 0.7632 0.7633 0.7518 0.7530 | 0.8355 0.8362 0.8285 0.8306 | 0.8657 0.8658 0.8598 0.8614
Performance drops when we switch from Scaled tanh to Sign scaled tanh.
] Binary O Continuous
(1,1 oM .1 _
° Here we have three continuous value features a, b, and c.
R In ST models, continuous features are close to +1 and -1, and a is
. more similar to b than to c.
é) But b and c are equally similar to a after converted to binary codes
H1. 1B e |0 using SST.

Limitation of SST

(7

11

Take-away

We found similarity-loss performs well on hashing-based top-k recommendation task

Even though differentiable scaled tanh is popular in recent discrete feature learning literature, a performance
drop occurred when scaled tanh outputs are forced to be binary.

CCSR is helpful for users who rated less items and with higher rating variances

(7

12

(7

Thank you!

