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Business to Business (B2B) Marketing

Business to Consumer (B2C) Marketing attracts headlines in advertising research.

Unlike B2C, B2B marketing focuses on suppliers selling products and services to other businesses.
e.g., software systems, engines to airplane manufacturers

In B2B,
An account is a business buyer, prospective or existing

Each account comprises individuals, called leads
Leads interact with potential suppliers’ website or through other channels, increasingly digital
The buying cycle is long: 6 to 18 months or more

The Account’s decision whether to buy is a consultative decision among the Leads
- group decision making
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B2B’s contribution to the Web’s success

“[t]he global B2B eCommerce market valuing USD 12.2 trillion in 2019 is over 6

times that of the B2C market" (https://www.statista.com/study/44442/statista-report-b2b-e-
commerce/)

B2B’s digital marketing growth is at par with that of the more commonly

studied B2C setting. (https://cmosurvey.org/wp-content/uploads/2019/08/The_CMO_Survey-
Highlightsand_Insights_Report-Aug-2019-1.pdf, pp. 20)
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B2B: Research Setting

(a) the group collaboratively decides whether to buy and the decision is dynamic;
(b) differences exist among the individuals’ interactions with the supplier;
(c) over the long purchase cycle, depending on scoring the group dynamics, the supplier engages with the

individuals, including allocating costly human salespersons toward some individuals, but not toward all
individuals in the group.
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B2B: Research Questions

How to Jointly Score

(a) Collaborative group decision only from activity data of individual members of the group,
without any data of consultations among individual members.

(b) Dynamics of the group’s decision

(c) Dynamics of each individual in the group for differently allocating resources to them at
different time periods.
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Data

Types n:f Features / Variables
Information
open email, click email, send email,
Dynamic Activities of unsubscribe email, open sales email, click
Individuals sales email, send sales email, forwarded
email received, forwarded email sent
Static Features of source of arrival, opt out of email, opt out of
Individuals phone
Static Features of
revenue, number of employees
accounts

Table 1: Data Description: Data of 9 activities over 8 months
for each individual. The top 3 activities are italicized. The
second row shows 3 categorical static features, vary by indi-
viduals. The third row shows group level two static features,
they do not vary across individuals within the group; vary
by groups.

© 2020 Adobe. All Rights Reserved. Adobe Confidential.




I
Joint Scoring — Group (Account) and Individuals (Users, Leads)
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Dynamic,

Activities vs leads

Week no: 5

Activity of leads in different weeks
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Snapshots — Group Scoring vs. Individuals’ Activities
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Activities vs leads

Account Score
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Architecture 1 (HAN)!1l: Sequence of Activities
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Architecture 2: Frequency of Activities
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Results

Model AUC
Baseline 1: Activity Sequence, Individual loss, No Aggregation  0.74
Baseline 2: Activity Frequency, Group loss, Aggregation 0.82
Table 2: Baseline Model Performance: Frequency of Activities
with Aggregation performs appreciably better.

Experiments 7-9 with time-LSTMs AUC

7. FNN Layer 0.85

8. Many-to-One GRU 0.85

9. Many-to-Many GRU and Attention Layer 0.86

Table 4: Model Performance: Sequence of Activities, time-
LSTMs. All proposed neural network models, outperform

Baselinel strongly, and Baseline 2 as well.
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Experiments 1-6 with different agpregation methods AUC

Neural Network methods
1. FNN Layer 0.86
2. Many-to-One GEU 0.87
3. Many-to-Many GRU and Attention Layer 0.87
Statistical functions
4. Maximum probability converts 0.83
5. Probability at least one individual converts 0.67
6. Geometric Mean 0.69

Table 3: Model Performance: Sequence of Activities. All
proposed models 1-6 appreciably outperform the baseline-
sequence model. Neural network aggregation methods per-
form better than use of statistical functions for aggregation.
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Conclusion

* Joint Scoring of Group Decision and Individuals’ Interests

* Without data on the group decision consultative process, only individual level data
* Using different types of aggregation to pool information across individuals

* Good performance evaluation for conversion decision

* Influence of each individual on the group decision obtainable from attention

weights
* Evaluation of influence yet to be done
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