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ABSTRACT

Recently online advertisers utilize Recommender systems (RSs)
for display advertising to improve users’ engagement. Contextual
bandit model is a widely used RS to exploit and explore users’
engagement and maximize the long-term rewards such as clicks
or conversions.. However, the current models aim to optimize a
set of ads only in a specific domain and do not share information
with other models in multiple domains. In this paper, we propose
dynamic collaborative filtering Thompson Sampling (DCTS), the
novel yet simple model to transfer knowledge among multiple
bandit models. DCTS exploits similarities between users and be-
tween ads to estimate a prior distribution of Thompson sampling.
Such similarities are obtained based on contextual features of users
and ads. Similarities enable models in a domain that didn’t have
much data to converge more quickly by transferring knowledge.
Moreover, DCTS incorporates temporal dynamics of users to track
the user’s recent change of preference. We first show transferring
knowledge and incorporating temporal dynamics improve the per-
formance of the baseline models on a synthetic dataset. Then we
conduct an empirical analysis on a real-world dataset and the result
showed that DCTS improves click-through rate by 9.7% than the
state-of-the-art models. We also analyze hyper-parameters that
adjust temporal dynamics and similarities and show the best pa-
rameter which maximizes CTR.
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1 INTRODUCTION

Recently online advertisers utilize Recommender systems (RSs)
for display advertising to improve users’ engagement. Tradition-
ally, collaborative filtering [1] is one of the popular recommender
systems [2]. However, it suffers from the cold start problem [3]; Col-
laborative filtering cannot make a good recommendation for new
items and new users without historical interactions. Content-based
methods and hybrid models [4],[5] leverage contextual features
(i.e., side information) of items and users to overcome the cold-start
problem.
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Meanwhile, reinforcement learning (RL) -based methods have
shown its effectiveness on Recommender systems. By utilizing both
exploration and exploitation, it can maximize the long-term profits
for RS. It is suited for advertisement recommendation, where the
ads are shown in the limited time period. Among reinforcement
learning-based methods, bandit models were frequently applied to
that problem [6], which dynamically selects arms (corresponding
to actions in RL) and maximizes total rewards. Contextual bandit
that utilizes side-information of users and ads as contexts (e.g.,
user demography, creative characteristics) achieved great success
in various areas such as movie and book recommendation. (Lin-
UCB [7] and LinTS [8]). Ads, unlike movies and products, are cre-
ated when new sales campaigns begin and are removed from dis-
plays when campaigns are over. Therefore, ratios of newly created
ads are higher compared to new movies or products. Traditional
methods such as collaborative filtering can’t perform well for ad-
recommendation because of the sparsity of training data and it
is not suited for long-term profit optimization. RL solved long-
term profit problem and can deal with cold-start cases relatively
well, but it still suffers from this extreme cold-start conditions. In
this scenario, the agent tends to focus on exploration and sacrifice
short-term reward for long-term reward. The e-first policy [9], for
instance, purely explores in cold-start conditions via random rec-
ommendations, which goes overboard with the exploitation and
exploration balancing and results in even worse performance. Here
previous models were mainly created to optimize a specific widget
on a web domain and each model was independent of each other.
Considering that the number of active users in a domain (a business
unit) varies in large companies with multiple business units, it is
natural to transfer model’s knowledge from popular domain to
unpopular/new domains to improve the recommendation perfor-
mance and convergence speed. Thus, in this paper we propose a
model to improve performance of existing RL-based recommend
systems by utilizing knowledge transfer.

We therefore propose multi-domain optimization to allow all
model to communicate and share knowledge with each other. Our
method, dynamic collaborative filtering Thompson Sampling (DCTS),
can accelerate convergence with only a small amount of data by
utilizing information from models in different domains. We here
naturally expanded the concept of similarities among ads [10] [11]
to those in different domains. In addition, we added the concept
of temporal dynamics by incorporating temporal dynamics to re-
flect user’s sudden preference change. Recently collaborative fil-
tering with dynamic terms [12] and a RNN-based model [13] have
improved existing performances. We here added the concept of
temporal dynamics by incorporating discounting rewards [14].

In summary, our proposed model incorporates temporal dynam-
ics in the multi-domains and it enables our model to track the
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Figure 1: Use-case of the dynamic collaborative filtering ban-
dit.

Similar user in
domain A

entire user’s journey among multi-domains. We showed one use-
case of multi-domains optimization in Fig. 1. For example, a user
was interested in earning reward points and clicked point-related
advertisements. Recently this user came to get an interest in eating
delicious food and clicked food-related ads on the e-commerce site
(domain A). Our model will recommend the related restaurant in the
restaurant reservation website (domain B), can recommend related
hotels in the newly created website for lodging reservations (do-
main C), and improve the cold start issue of domain C. Our model
also recommends food-related ads clicked by the user to the similar
user in domain A. These kinds of cross-domain and cross-user rec-
ommendations will be conducted based on similarity function S,
and Syser. To evaluate the performance of our model for this kind of
use-case, in this research, we first compare the performance of our
model with the one of existing bandit models on synthetic dataset,
and show our model leveraged knowledge in other domains and
adapt the sudden change of customer’s preference. Then, we empir-
ically showed our model could also outperformed existing bandits
on the real-world dataset. Here we used our internal dataset of
online ads in our Rakuten Ichiba and Rakuten Travel , and observed
improvement of CTR.
Our contributions are as follows:

(1) We propose a dynamic collaborative filtering Thompson
Sampling (DCTS), which improve the estimation of prior
distribution for Thompson Sampling by utilizing similar-
ity among ads and users, and discounting rewards. DCTS
leverages contextual features of ads and users for similarity
computation. Our model will leverage this similarity and
transfer knowledge across heterogeneous domains. It leads
to track recent crosss-domain behavior of users and gives a
prior estimation of arms. As a result, it accelerates conver-
gence.

(2) We conducted empirical analyses on real-world dataset for
advertisements in multiple domains. We compared our method
with the state-of-the-art algorithms such as Transferrable
LinUCB [15], hybrid LinUCB, and Thompson Sampling. As
a result, DCTS performed better than T-LinUCB by 9.7 %
and better than LinUCB and TS by around 37 % in terms of
click-through rate (CTR).
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(3) We also evaluated the performance of hyper-parameters. Re-
garding the parameter y which adjusts decays of rewards, we
observed the best performance when y = 0.25. It was better
than when using responses in the latest batch (y = 0) and
no decay (y = 1). Regarding the parameter y which adjusts
the importance of global rewards, the best values when g
=1 or g =0.1. We assume this is because real-world dataset
are sparse. This suggests it’s still important to retain global
rewards even when personalized rewards are considered.

2 RELATED WORK

In this section, we discuss the existing bandit models for recom-
mend systems. First of all, Thompson sampling [16] was introduced
to select an arm that maximizes the expected reward in a randomly
drawn belief. It picked the best arm based on the sampled score
from the posterior distribution. Upper-Confidence-Bound methods
deterministically take the action according to an optimistic estima-
teof the reward they will yield. LinUCB [7] proposed the contextual
bandit models to improve the rewards.

To incorporate temporal dynamics with bandit models, UCB
with discounting reward was proposed [14]. It utilized discount to
reflect recent change of user’s behaviour. Then, Rotting Bandit [17]
was proposed. Rotting Bandit handles discount as a function of the
number of times each arm has been pulled. These previous studies
showed that incorporating dynamic change of user’s preference
could increase the accuracy for the Yahoo! new recommendation
and KDD Cup 2012 Online Ads.

To add pre-estimation of rewards by utilizing similarities, contex-
tual zooming algorithms [10] and bandit with collaborative filtering
[11] were proposed. Bandit with collaborative filtering utilized simi-
larities between items in one domain, also dynamically built clusters
of users and items and leveraged them for the calculation of similar-
ities. Our research expanded the concept of bandits with similarities
to the dynamic optimizations across multiple heterogeneous do-
mains. Also, we utilized Locally-sensitive Hashing [18] to calculate
similarities efficiently.

As for bandits with transfer learning, TCB [19] introduced the
translation matrix among domains to utilize similarities of domains.
T-LinUCB [19] utilized this similarities as prior estimation of do-
mains and alleviated cold-start problems. Here we describe the
difference between our model and TCB/T-LinUCB. First, our model
is an expansion of Thompson sampling whereas TCB/T-LinUCB
were expansions of UCB; Second, our model leverages similarity
between users as well as domains; Finally, only our model incor-
porates dynamic behaviour, captures recent change of preference
in the cross-domains. Also, B-kl-UCB [20] is a bandit considering
transfer learning but this models assume the set of actions are same
across domain; on the other hand, our model can handle different
action set in the heterogeneous domains by leveraging similarities.

3 MODEL

In this section, we propose the dynamic collaborative filtering
Thompson sampling (DCTS). First, we assume we have N available
sources. Each source is corresponded to a widget where ads are
displayed. In each source, we have a set of ads. Let a set of ads in
source s be Ag. Also let X be a matrix of m users which have d,
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features where X € R"™*9u and let Y® be a matrix of ks ads which
are in source s and have d, features where Y® € RKs*da_ Then, we
denote i} as user i in source s at time step t. For each time step ¢
and source s, we observe xs €X and Yas € Y® as contexts, and user
will see ad a; € As and we observe reward r;s zs; Where rysgs; is an
7t 7t

implicit reward which indicates whether user i} clicked ad a} € A
or not. We here denote observation as O = (xl-f, Yas» rifaft)~

The objective of DCTS is to pick up an ad aj to display as an

. o . N T .
action to maximize cumulative rewards >'5" >, Tisast where T is
a maximum time step. This can be represented as minimizing total
regret of user i as follows:

T T

N
minimize E[regret;(T)] = Z E[ rsnzi( Z r;}a‘;[ - Z risast] (1)
s=0 9090 =0

where r* indicates a reward from the best action for user i;.
h * indicat d fi the best action f f

3.1 transferring knowledge via similarities of
sources and users

DCTS learns a policy to pick up ads from observations of all ad
sources O = {O°}s— . N. DCTS utilizes connections between
sources and transfers knowledge among sources and users, which
leads a policy to be aware of more generalized user’s behaviors.
DCTS transfers rewards among users and among ads based on
their similarities. Here we utilize cosine similarity as a degree of
transferring:

Xi* Xj

Suser (xi, xj) =

@)

where x; and x; are contextual features of user i and j. In the same
way, we define S,4(yi, y;) by contextual features of ads.

The number of users is huge in the real-world dataset and calcu-
lating similarities among all pairs of users is not scalable. Therefore,
we leveraged Locally-sensitive Hashing [18] to obtain similarities
of users efficiently.
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3.2 Dynamic collaborative filtering Thompson
sampling

Before describing an algorithm of DCTS, we first describe the origi-
nal Thompson sampling. Thompson sampling in the bandit problem
is a method for pulling an arm that maximizes the expected reward.
This is equal to sampling estimated scores from the posterior distri-
butions of the arm in each round and choosing the arm with the
highest score. In Bernoulli Bandit case, the likelihood function is
formulated by Bernoulli distribution whose prior distribution is
Beta distribution as a natural conjugate prior. Beta distribution can
be written as

, _ Tl + i) a1

B0 P = R

where 0y, is a probability that action a; produces rewards, and
and fj are parameters. As a non-informative prior, previous studies
assumed the special case where oy = 1 and f; = 1. However, for
the most practical cases, values of actions can be estimated by utiliz-
ing historical data. With leveraging user-user and ad-ad similarity,
DCTS offers the better estimation of prior distribution. First, we
formulate the pre-estimated parameters for each user i and ad k at
time step ¢ as follows:

(1- )Pt 3)
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e (t) = > Sad (Y Y05 (D) + D, Suser (xix,)5x (1)

1#k J#i
50 =" SadWi YD Fi1(8) + . Suser (xi, X)) e (1)
I+k J#i

where s;;(¢) is a discount-aware cumulative reward
t
t7
st () = Z Y sijr ®)
7=0

and s;j; is a binary variable, which will be 1 if we observed reward
for user i and ad k at 7 and 0 otherwise, and y indicates a discount
ratio. In the same way, fji (t) will be defined as a discount-aware
cumulative negative reward by f;;; and a discount ratio y. f;j; rep-
resent the number of failure of recommnedation; it will be 1 if user
i viewed ad k at 7 but didn’t click the ad. Here we naturally assume
the value of ad k for user i can be estimated by similarity between
them. Therefore, we transferred rewards based on similarities of
users and ads. We also assumed user’s preferences will change with
time, so we discount rewards and put a high value on rewards from
user’s recent behaviors.

Second, we formulate posterior distribution. For the basic Thomp-
son sampling, posterior distribution will be formulated by Beta
distribution. With uniform prior knowledge, the parameters were
ar = s +1and B = fi + 1. In this research, with using prior
knowledge in Eq. 4, we formulate parameters of posterior Beta
distribution as follows:

ik (1) = A(s)ad () + gsye (1) + sy (1) +1
i (D) = AP (D) + gfic(8) + fix (1) + 1
where A is a hyper-parameter which adjusts importance of prior
knowledge and A(s) = Sik(/lm’ AMSf) = Jﬁ g is a hyper-

(6)

parameter that adjusts the importance of global rewards. Like the
original Thompson sampling, we introduce s (t) and fi.(t) as a
mean of rewards among users, since the interactions of users and
ads are sparse so that there are few valid similar users will occur in
real-world cases. 1 at the last term is a pseudo count to avoid errors
when historical reward were unavailable. We present details of the
policy DCTS in Algorithm 1.

Algorithm 1 Dynamic collaborative filtering Thompson sampling

Input: 4,9,y € Rg, Susers Sqq, Source observations O
1. fort=0,..,T do
2:  Observe user if and context Xis, action sets Ag and their
contexts Y®
3:  for k € Ag do

4 Calculate a?s () and ﬂ?s i (£) according to Eq. 4

5 Calculate a,-% x(#) and ﬁlg x(t) according to Eq. 6

6: Sample ;. from the B(6y; aifk(t), ﬁifk(t))

7. end for

8 Play action k = arg max 0 and observe reward r;si,

9:  Add observation Op « (x5, k. risky)
10: end for
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Figure 2: Synthetic simulation of transferring knowledge in

2 different pages

We drew a line plot of the average cumulative reward. The red vertical line

indicates the time step we changed a set of ads. The shaded band indicates
95% confidence interval obtained by three times.

4 EXPERIMENTS
4.1 Synthetic Experiment

In this section, we evaluated the two advantages of DCTS with a
simple synthetic environment. The first advantage is a performance
of transferring knowledge among multi-domains. We prepared 10
ads and displayed 5 of the ads on domain A, and the remaining 5
ads on domain B. In the first 500 steps, there is only domain A and
users were only allowed to visit domain A. In the latter 500 steps,
domain B was created and users were allowed to visit domain B.
We evaluated the performance when users first visited domain B.
This kind of scenario often happens in the real world when users
newly registered domain B, or when domain B or ads in domain
B are newly created. In this synthetic setting, we set A =1,g =1,
and y = 1. As for y, we wanted to investigate the performance of
transferring, so we disabled discounting rewards and set y as 1. We
also prepared the user’s response function as an environment of
reinforcement learning. This function receives contextual attributes
of users and ads and returns rewards with the probability, which
is obtained from the logistic regression with contextual attributes.
Weights of logistic regression were sampled from the standard
normal distribution.

According to Fig. 2, at the very beginning TS and DCTS had
the same performance but over time DCTS outperformed than TS
because DCTS could handle a part of contextual preferences as
personal rewards s;; and f;f. Also, as we assumed, the performance
of DCTS right after the transition to the new set of ads was much
better than that of TS. This is because DCTS was able to leverage
knowledge of previous ad, while TS had to start exploration again.
We assume the average rewards of DCTS decreased until time step
700 because the weight of prior knowledge A(s(t)) decayed. In
this case, higher 1 seems to be better. Later in this paper, we will
investigate the effect of hyper-parameters.

To verify the second advantage of DCTS, namely its fast adap-
tation to user’s preference change, we prepared 50 ads and made
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Figure 3: Synthetic simulation of changing user’s preference
We drew a line plot of the average cumulative reward across time steps.
The red vertical line indicates the time step when the change of user’s
preference occurred. The shaded band indicates 95% confidence interval
obtained by three times executions.

a user’s response function, which is the same as the above one
but its contextual weights will change at the specified time. In this
synthetic setting, we set A = 1 and g = 0 and y = 0.95. We let
the discount of rewards occur at every 10-time step because in the
real-world setting we update models in a batch and the time step
will be a certain duration of time. According to Fig. 3, for both
TS and DCTS rewards decreased right after the change of user’s
preference. The performance of DCTS recovered around time step
250 while TS recovered around time step 300. This indicates that
DCTS could learn the change of the user’s preference more quickly
than TS with the advantage of discounted rewards.

4.2 Offline experiment using real-world data.

In this section, we empirically compare DCTS with the TS, LinUCB
with a hybrid linear model (hLinUCB) [7] and Transferable LinUCB
(T-LinUCB) [15] using real-world dataset. Details of baseline models
are as follows:

e hLinUCB [7]: LinUCB is an expansion of UCB policy and
incorporates contextual features of arms. hybrid LinUCB
incorporates contexts of both arms and users.

e T-LinUCB [15]: This model is an expansion of LinUCB. This
calculates the prior evaluation of arms in the new domain
with contextual feature of arms in different domains.

e Thompson Sampling [16]: This model selects the action that
maximizes the expected reward with respect to a randomly
drawn belief of scores. In practice, this policy will sample
scores from the posterior distribution and pull the arm with
maximum score.

Because there was no public dataset that includes ads among
multi-domains with contextual features of both users and ads,
we leveraged our internal dataset at Rakuten. Rakuten is an e-
commerce company in Japan that serves over 70 services, such
as online shopping, financial services, and e-books. Among them,
Rakuten Ichiba is an e-commerce platform and Rakuten Travel is
an online travel agency platform for lodging reservations. In this
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Table 1: Statistics of Rakuten Ichiba and Rakuten Travel data.

. . unique
impressions | responses ads
users
Rakuten 191202 23394 33750 | 14
Ichiba
Rakuten 16029 801 4552 5
Travel

experiment, we used data from Rakuten Ichiba for pre-training and
let DCTS learn the rewards of Rakuten Ichiba. We then evaluated
performance for Rakuten Travel and compared DCTS with other
baselines.

Regarding evaluation methods, there are various methods for
offline policy evaluation of the bandit algorithm. Replay method
[21] is often leveraged but it requires random assignment of ads.
Most datasets in the real world, however, cannot afford random
assignment because of the counterfactual estimations. In other
words, we can’t know the true responses if we showed other ads to
users. To overcome this issue, corrections such as Doubly Robust
estimation [22] were proposed. However, here we propose another
simple way for the counterfactual estimation. In the real world,
multiple ads are often displayed at the same time in the widget like
a carousel. In this offline simulation, we regarded our model to pick
only one of these ads to users at each step. The advantage of this
method is: in this situation not only we know the user’s response
of that ad, but also we know user’s responses for other ads because
in the real-world these ads were displayed together. Moreover, for
each impression of the carousel, we only have, at most, one clicked
ad because otherwise users will see the landing page after clicking
an ad. In this paper, we leveraged this technique and treated ads
displayed at the same time in the carousel as displayed in the one
slot to obtain counterfactual information.

Utilizing the technique above, we showed one ad at each time
step 7, and if user i clicked ad k within 15 min, we regarded s;;., = 1
and fip, = 0. Otherwise s;;, = 0 and fir, = 1. We discarded
subsequent impressions within 5 min after the first impression
from the same user to avoid the bias of repeated bot traffic. We
summarized the Rakuten Ichiba data and Rakuten Travel data we
used in Table 1. Please note that the sampled data does not represent
the entire dataset. Datasets have a timestamp and we served them
in chronological order to the model.

DCTS also requires similarities among users and ads. To calcu-
late them, we utilized Customer DNAs in Rakuten. Customer DNAs
serves thousands of contextual attributes for each user. They consist
of basic demographics such as gender and age, and users behaviors
such as the preference of purchases and status of earned reward
points. We leveraged 308 attributes among them and calculated
the cosine similarity of users by Eq. 2. We didn’t have contextual
attributes for ads so we regarded median values of contextual at-
tributes of users who clicked the ads as the context of ads. We
visualized the users and ads by t-SNE [23] to check that the above
similarities were reliable. As Fig. 4 and Fig. 5 showed, similarity of
users could be largely explained by ages and point reward status. In
other words, users with similar ages were placed closely. Also Fig.
6 showed similar type of ads were placed closely with each other in
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Figure 4: t-SNE projection of users labeled with age groups.
Users in the same age group were clustered together.
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Figure 5: t-SNE projection of users labeled with reward point

status.

Users with low reward status were mostly placed in the upper part, while
users with high reward status were placed in the lower part.
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Figure 6: t-SNE projection of ads labeled with ad types.
Labels without “travel ” in the prefix means the ads in “E-commerce
service (Ichiba)”. Ads which are specific for travel such as promotions for
sightseeing spots and hotels were clustered together. Also, point related
ads for both Rakuten Ichiba and Travel were clustered together.

the latent structure. This implies that user and ad similarity indeed
exist and can be utilized by DCTS.

In Fig. 7, we empirically verified that knowledge transfer among
multi-domains, users, and temporal dynamics could improve the
bandit model. Total CTRs of all policies were initially worse than
random policy. Performance of hLinUCB improved at the step
around 1000. At the step around 2000, T-LinUCB and DCTS outper-
formed hLinUCB and DCTS became the best, but DCTS had high
variance. We observed improvement of performance at step around
9000 for TS and also observed that CTR of hLinUCB decreased after
step around 11000. We currently assume this was because, at step
11000, customer preferences changed. As a result, DCTS performed
better than T-LinUCB by 9.7 % and better than LinUCB and TS by
around 37 %. We set DCTS’s hyper-parameters as A = 10 and g = 1
and y = 0.5 and discounted values by multiplying y every hour.
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Figure 7: Relative CTR on Rakuten Travel data.

We compared dynamic collaborative filtering bandit (DCTS) with
Transferable LinUCB (T-LinUCB), hybrid LinUCB (hLinUCB), Thompson
Sampling (TS) and random. We initially pre-trained DCTS and T-LinUCB
by Rakuten Ichiba data and then utilized them for Rakuten Travel data.

We also evaluated the performance change with different hyper-
parameters. Fig. 8 shows relative CTRs by various y, and we nor-
malized values by the value of when y = 0.5. According to Fig. 8,
we observed the best performance when y = 0.25. It suggests this
value is the most suitable decay for Rakuten Travel dataset.

5 CONCLUSION

In this paper, we proposed a dynamic collaborative filtering Thomp-
son sampling (DCTS) for a cross-domain and dynamic recommen-
dation. DCTS leveraged the concept of discounting reward and
collaborative filtering. As a result, it improved the prior distribu-
tion of Thompson sampling through leveraging similarity in users
and ads. DCTS can adjust exploration and exploitation by choosing
arm based on posterior probability and accelerate the convergence
of the model, which led to maximizing cumulative rewards. We
evaluated DCTS on the real-world data and showed that DCTS
outperformed TS, hLinUCB, and random. We also plan to build a
model which incorporates the pattern of the user’s behaviour as a
more accurate recommendation in the user’s temporal dynamics.
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