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ABSTRACT
Online advertising opportunities are sold through auctions, billions
of times every day across the web. Advertisers who participate in
those auctions need to decide on a bidding strategy: how much
they are willing to bid for a given impression opportunity. Deciding
on such a strategy is not a straightforward task, because of the
interactive and reactive nature of the repeated auction mechanism.
Indeed, an advertiser does not observe counterfactual outcomes of
bid amounts that were not submitted, and successful advertisers
will adapt their own strategies based on bids placed by competitors.
These characteristics complicate effective learning and evaluation
of bidding strategies based on logged data alone.

The interactive and reactive nature of the bidding problem lends
itself to a bandit or reinforcement learning formulation, where a
bidding strategy can be optimised to maximise cumulative rewards.
Several design choices then need to be made regarding parameteri-
sation, model-based or model-free approaches, and the formulation
of the objective function. This work provides a unified framework
for such “learning to bid” methods, showing how many existing
approaches fall under the value-based paradigm. We then intro-
duce novel policy-based and doubly robust formulations of the
bidding problem. To allow for reliable and reproducible offline vali-
dation of such methods without relying on sensitive proprietary
data, we introduce AuctionGym: a simulation environment that
enables the use of bandit learning for bidding strategies in online
advertising auctions. We present results from a suite of experiments
under varying environmental conditions, unveiling insights that
can guide practitioners who need to decide on a model class. Empir-
ical observations highlight the effectiveness of our newly proposed
methods. AuctionGym is released under an open-source license,
and we expect the research community to benefit from this tool.
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1 INTRODUCTION & MOTIVATION
Ad exchanges run advertising auctions, where the opportunity to
show an ad is sold off in real-time. Advertisers participate in these
auctions, in an attempt to maximise the utility they can obtain
from the ads they show. Auctions are well-studied in the econom-
ics literature, and several Nobel laureates have contributed to our
understanding of them. Indeed, Vickrey showed that the truthful
second-price auction maximises social welfare [38], and Myerson
showed that with a well-chosen reserve price, this auction format
can be revenue-maximising for the auctioneer [26].
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Nevertheless, these strong theoretical results rely on assump-
tions that are seldomly met in present-day advertising scenarios.
Indeed, bidders’ valuations are not symmetrical and repeated auc-
tions are not statistically independent. As a result, the second-price
format will not maximise revenue for the auctioneer, and all major
ad exchanges have moved towards first-price auctions where the
winner pays their bid amount. It is easy to see that truthful bidding
is no longer an optimal strategy here, and that a well-chosen bidding
strategy should be adopted in order to maximise the surplus a bid-
der can obtain from participating in the auction. This is not an easy
problem to solve, as the only feedback a bidder receives from partic-
ipating is whether they win, and if they win, what price they need
to pay. It is natural to frame such a repeated game with limited in-
formation as a bandit or reinforcement learning problem. This opens
up a plethora of design choices that need to be made, regarding
parameterisation, model-based or model-free approaches, and the
formulation of the objective function. We provide an overview of
such design options, and show where existing approaches fit in this
framework. This allows us to propose novel approaches for learning
to bid, under the policy-based and doubly robust paradigms.

Reliable and reproducible offline validation of “learning to bid”
approaches is hard, due to the limitations of logged offline data.
Indeed, observational data can only provide limited signal, and
experimental data with broad interventions is costly to obtain.
Online experiments offer no viable alternative, as they are also
prohibitively expensive. Simulations can provide a way forward
in such settings, as evidenced by recent strong empirical progress
in reinforcement learning [2, 30]. To this end, we propose a novel
open-source simulation environment for real-time bidding in com-
putational advertising: AuctionGym. AuctionGym allows us to
unveil insights that can guide practitioners who need to decide on a
“learning to bid” strategy—insights that are not straightforward to
extract from logged data alone. We use AuctionGym to empirically
illustrate the improvements in bidder surplus that can be attained
from our proposed “learning to bid” approaches, leveraging novel
policy-based and doubly robust estimators.

In summary, the main contributions of our work are:
(1) We formalise the “learning to bid” problem as a bandit or re-

inforcement learning task, showing how existing approaches
fit into the value-based paradigm.

(2) We introduce novel formulations of the problem, leveraging
policy-based and doubly robust estimators.

(3) We present AuctionGym: a simulation environment that
enables reproducible and robust validation of “learning to
bid” methods without relying on sensitive proprietary data.1

(4) We present experimental results that highlight the compet-
itiveness of our newly proposed methods, and uncover in-
sights that can guide practitioners who need to decide which
method to use under particular environmental conditions.

1AuctionGym is publicly available at github.com/amzn/auction-gym.

https://github.com/amzn/auction-gym
https://github.com/amzn/auction-gym
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2 BACKGROUND & RELATEDWORK
Truthful bidding (reporting the expectation of one’s own private
valuation for the good being sold), is a dominant strategy in second-
price auctions under several assumptions [38]. These assumptions
include that (1) the bidder knows their expected valuation given
a context, (2) placed bids do not influence the value of the good,
(3) competitors all have access to the same information, and (4) re-
peated rounds of auctions are statistically independent.

In present day online advertising auctions, many of these as-
sumptions are bound to be violated. As a result, the second-price
mechanism will not maximise revenue for the auctioneer, and all
major ad exchanges have moved away from the second-price for-
mat. Advertisers who wish to participate in such auctions now need
to decide on a bidding strategy, as the previously industry-standard
strategy of truthful bidding has become sub-optimal.

A common violation of the independence assumption occurs
when advertisers have budgets. Wu et al. adopt a model-free rein-
forcement learning approach to learn a single scalar “pacing” param-
eter for budget optimisation in second-price auctions [40], and other
methods have been proposed to incorporate further KPI constraints
into the objective [41]. In contrast, we introduce a bandit-based
learning framework for any auction mechanism, which is crucial
for surplus optimisation in non-second price auctions. Furthermore,
the bidding strategies we deal with are dependent on contextual
covariates per opportunity, allowing high flexibility.

Lowering one’s bid in a first-price auction is often referred to as
bid shading. When the auctioneer reveals the winning bid to all par-
ticipants, this data can be leveraged to learn optimal strategies [10].
Nevertheless, this information is seldom available. Pan et al. pro-
pose a two-step bid shading procedure, consisting of (1) win-rate
estimation, and (2) surplus maximisation. They adopt a logistic re-
gression model paired with a bisection search for fast inference [28].
Other work directly models the distribution of the “minimum bid
to win” [19]—using a range of estimators and an efficient golden
section search at inference time [43]. As we will show, these works
are in line with a value-based (also known as model-based) view
of the “learning to bid” problem. Zhang et al. leverage the flexibil-
ity of non-parametric approaches to bid shading when the size of
the training sample is large, reporting improvements over para-
metric approaches [42]. AuctionGym allows us to reproduce these
insights, whilst providing an additional view on the performance of
parametric approaches under a range of environmental conditions.
This allows us to identify empirically optimal methods in low- or
high-data regimes, with weak or strong competition and frequent
or rare model updates, among other configurable parameters.

We are inspired by the success of simulation environments in the
broader reinforcement learning research community [2]. In particu-
lar, we draw from the RecoGym simulation environment that aims
to enable bandit-based optimisation of the allocation step, dictating
which ad should be shown in a given context [30]. AuctionGym
jointly models this step with the bidding problem, deciding how
much we should bid for a given ad impression opportunity. We
believe this opens up exciting future research directions where both
problems can be solved jointly. Indeed, even though the outcome of
the auction is independent of the allocated ad—the auction outcome
has a strong influence on future training data and exploration.

3 LEARNING TO BID
This section formalises our problem setting and presents a general
framework for bandit-based “learning to bid”. We highlight parallels
with existing approaches, and present novel ways to learn optimal
bidding strategies that maximise alternative estimators of utility.
In what follows, estimated quantities 𝑄 are denoted as 𝑄 .

An advertiser receives a bid request from an ad exchange, de-
scribed by contextual features 𝑥 ∈ X. The advertiser then needs to
make two decisions: (1) Which ad from the inventory do we want
to show, given context 𝑥? (The Ad Allocation Problem), and (2) How
much should we bid for this ad impression? (The Bidding Problem).

3.1 The Ad Allocation Problem
From the full catalogue of ads A, we source a subset of ads that
are eligible to be shown in this context: A𝑥 . Every ad 𝑎 ∈ A𝑥

is tied to a private valuation 𝑣𝑎 ∈ R+, detailing the advertiser’s
willingness-to-pay for a conversion-event after an impression (in
USD). Low-probability conversion events like sales might be valued
highly, whereas higher-probability events such as clicks or views
can be valued lower. We denote with the binary random variable
𝐶 whether such an event has occurred after an impression. For
every eligible ad 𝑎𝑖 ∈ A𝑥 , the advertiser can estimate the expected
welfare 𝜔 they will obtain from an ad impression:

Ê[𝜔 |𝐴 = 𝑎𝑖 ;𝑋 = 𝑥] B 𝑣𝑎𝑖 · P̂(𝐶 |𝐴 = 𝑎𝑖 ;𝑋 = 𝑥) . (1)

The conversion estimator P̂(𝐶 |𝐴;𝑋 ) is a crucial part of any on-
line advertising system, as reflected by a substantial research litera-
ture [13, 17, 25, 39]. This estimator is typically trained in a super-
vised manner on a collected log of impression-outcome pairs. Any
system features related to exploration of allocation are assumed to
be encoded at this level, and general heterogeneous “conversion
events” are considered. We will assume w.l.o.g. that an advertiser
chooses the ad that maximises their estimated expected welfare 𝜔 :

𝑎★ = arg max
𝑎𝑖 ∈A𝑥

Ê[𝜔 |𝐴 = 𝑎𝑖 ;𝑋 = 𝑥] . (2)

3.2 The Bidding Problem
Now we have decided which ad to show, we need to decide how
much we are willing to bid for it. That is, we need to decide on a
dollar amount 𝑏 ∈ R+ to submit to the ad exchange in response to
the bid request. After placing a bid, two things can happen:

(1) We lose the auction to a competing bidder or a reserve price,
and we do not need to provide a payment.

(2) We win the auction, and get charged a price 𝑝 ≤ 𝑏. The auc-
tion rules determine this price. Although first-price auctions
are common (𝑝 B 𝑏), in the general case the price for a given
bid will not be known beforehand.

In the bygone era of second-price auctions, a weakly dominant
strategy is for all bidders to bid truthfully (𝑏 B 𝜔). Note that this
implicitly assumes that the conversion estimator is wholly unbiased
and well-calibrated, which is a strong assumption in real-world
systems. For general auctions, bids can be sampled according to
some policy 𝜋 , where P(𝐵 = 𝑏 |𝐴 = 𝑎;𝑋 = 𝑥 ;Π = 𝜋) is denoted as
𝜋 (𝑏 |𝑎;𝑥). Note that this notation subsumes deterministic bidding
strategies when 𝜋 denotes a degenerate distribution.
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An advertiser wishes to maximise the expectation of their utility
𝑈 , or the surplus in value that they obtain by participating in the
auction. Let 𝑊 be a binary random variable indicating whether
the auction was won, let 𝑉 ≡ 𝜔 be the welfare the advertiser
obtains from an ad impression, and let 𝑃 denote the price paid for
participating in the auction. This notation allows us to factorise
our utility or surplus as follows:

𝑈 =𝑊 (𝑉 − 𝑃) . (3)
Note that, after we have won an auction round, all three com-

ponents are observable. When we have lost,𝑊 = 𝑉 = 𝑃 = 0. As
such, we can write the expected utility obtained from following a
bidding strategy 𝜋 over all possible contexts, values and prices as:

E
𝑏∼𝜋 (𝐵 |𝐴;𝑋 )

[𝑈 ] =
∫

P(𝑊 = 1|𝑋 = 𝑥 ;𝐵 = 𝑏) (𝑣 − 𝑝)

P(𝑉 = 𝑣 |𝐴 = 𝑎;𝑋 = 𝑥)P(𝑃 = 𝑝 |𝑋 = 𝑥 ;𝐵 = 𝑏)d𝑥 d𝑣 d𝑝.
(4)

Here, we assume that (1) the probability of winning and the
resulting price are independent of the allocated ad given the bid
and context, and (2) welfare is independent of the bid given the
allocated ad and context. In some cases, the price 𝑃 will be known
beforehand (for example, when we know that we are participating in
a first-price auction). Nevertheless, we can learn a pricing estimator
P̂(𝑝 |𝑥 ;𝑏) to cover general use-cases with potentially opaque auction
mechanisms. There are several ways to approximate the above
expectation. In what follows, we explore our options.

3.2.1 Value-Based Estimation (Model-Based). By decoupling the
inference and decision-making steps, we can leverage decades of
progress in supervised learning to handle bidding. That is, we first
derive a utility estimator 𝑢 for a context-ad-bid triplet:

𝑢 (𝑥, 𝑎, 𝑏) ≈ E[𝑈 |𝑋 = 𝑥 ;𝐴 = 𝑎;𝐵 = 𝑏] . (5)
Indeed, this regression model can be learned from observed sam-

ples in a supervised manner. Naturally, we can leverage the “hurdle”
structure in Eq. 3 to factorise the estimator into separate winrate,
welfare and pricing estimators [24].2 When we can obtain an esti-
mate of utility for every bid in every impression opportunity, we
can obtain an estimate for the expected utility a bidding policy will
obtain. In the bandit literature, such an approach is often dubbed
the Direct Method (DM). For a given training sample D:

E
𝑏∼𝜋 (𝐵 |𝐴;𝑋 )

[𝑈 ] ≈ 𝑈DM (𝜋,D)

=
∑︁

(𝑥,𝑎,𝑏,𝑢) ∈D

∫
𝑢 (𝑥, 𝑎, 𝑏 ′)𝜋 (𝑏 ′ |𝑎;𝑥)d𝑏 ′.

(6)

This integral is maximised by the degenerate distribution:
𝜋 (𝑏 ′ |𝑎;𝑥) = 1 ⇐⇒ 𝑏 ′ = arg max

𝑏

𝑢 (𝑥, 𝑎, 𝑏). (7)

This optimum is typically attained by doing a discretised search
at inference time [28, 43]. Note that this can complicate adoption of
such methods, due to the latency constraints in real-time bidding
environments. Furthermore, it does not handle exploration.

When we enforce a certain family of non-degenerate distribu-
tions on 𝜋 , we need to explicitly optimise Eq. 6. We can optimise
2Additional structure can be leveraged here to improve predictive performance, such
as the monotonicity between the placed bid, and the winrate and impression cost.

the policy to maximise its expected estimated utility via Monte
Carlo samples. That is, given a utility model 𝑢, we sample from 𝜋

to approximate the integral in 𝑈DM, and backpropagate to perform
gradient ascent (possibly improving variance by leveraging repa-
rameterisation tricks [20]). To avoid for the scale of the bidding
distribution to collapse (as the bandit setting might not incentivise
exploration), we can add an entropy regularisation term to the ob-
jective, balancing exploitation with exploration [12]. This learning
approach for 𝜋 has the added advantage of only needing a single
forward pass at inference time to obtain 𝑏 ∼ 𝜋 (𝑏 |𝑎;𝑥).

3.2.2 Policy-Based Estimation (Model-Free). Modelling the reward
process, as value-based methods do, is essentially a way to decrease
variance when estimating Eq. 4. Reduced variance often comes at
the cost of increased bias, and biases in either the winrate, wel-
fare or pricing estimators can propagate and amplify, leading to
suboptimal solutions. In fact, there is no need to explicitly model
the reward process. In contrast, we can directly optimise a bidding
policy to maximise the integral in Eq. 4 based on observed sam-
ples. For this to work, we make use of importance sampling [27].
We now additionally need information about the policy that was
in production at the time of data collection, often referred to as
the logging policy 𝜋0. Given a training sample D, the optimisation
objective can be written as:

E
𝑏∼𝜋 (𝐵 |𝐴;𝑋 )

[𝑈 ] ≈ 𝑈IPS (𝜋,D) =
∑︁

(𝑥,𝑎,𝑏,𝑢) ∈D
𝑢
𝜋 (𝑏 |𝑎;𝑥)
𝜋0 (𝑏 |𝑎;𝑥) . (8)

This estimator is often referred to as an Inverse Propensity Score
(IPS) estimator, as it effectively weights observed samples by the
ratio of the propensities between the learnt and logging policies.
When a bid𝑏 that was rare under the logging policy leads to positive
utility, the learnt and logging policies will tend to diverge—as in-
creasing 𝜋 (𝑏 |𝑎;𝑥) increases the objective in Eq. 8. The ratio between
the two probability densities (the so-called importance weights)
will be high, and such rare samples can bear disproportional weight
in the final estimator. Indeed, even though the vanilla IPS estimator
is unbiased, its variance is often problematic. In the finite sample
scenarios that are relevant to practitioners, variance-reducing exten-
sions are known to yield empirical improvements. Most often, the
importance weights are clipped to some maximal value [9, 15, 32],
or the learnt policy is disincentivised to deviate from the logging
policy through a regularisation term [8, 31, 33, 37].

3.2.3 Doubly Robust Estimation. The value- and policy-based fam-
ilies tackle the same estimation problem from a different angle, and
can provide complementary advantages. We can combine these
advantages in a doubly robust estimator, that is provably unbiased
when either the utility model or the propensity scores are [4].3

E
𝑏∼𝜋 (𝐵 |𝐴;𝑋 )

[𝑈 ] ≈ 𝑈DR (𝜋,D) =∑︁
(𝑥,𝑎,𝑏,𝑢) ∈D

(∫
𝑢 (𝑥, 𝑎, 𝑏 ′)𝜋 (𝑏 ′ |𝑎;𝑥)d𝑏 ′ + (𝑢 − 𝑢 (𝑥, 𝑎, 𝑏)) 𝜋 (𝑏 |𝑎;𝑥)

𝜋0 (𝑏 |𝑎;𝑥)

)
(9)

3Note that this does not guarantee performance improvements in practice [16].
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Intuitively,𝑈DR uses𝑈DM as a baseline, and corrects for its errors
using the importance weights. As in the Direct Method, we can
approximate the integral in Eq. 9 by sampling from 𝜋 , and subse-
quently updating 𝜋 via backpropagation. Several extensions to the
DR paradigm exist. They either focus on optimising the trade-off be-
tween DM and IPS [36], optimise the reward model to minimise the
overall variance of the estimator [7], or transform the IPS weights
to minimise bounds on the expected error of the estimate [35].
When using DR, we need to make an additional choice. That is, we
need to decide which samples to use to learn the utility model, and
which samples to use for the policy optimisation process. In low
training sample regimes, this could become problematic. Never-
theless, doubly robust learning has led to significant performance
improvements in a range of application domains [35].

4 AUCTION GYM
Validating the performance of a learnt bidding policy is not a
straightforward task. Offline, we can make use of logged data to
generate counterfactual estimates of performance. These are in
fact exactly the counterfactual estimators proposed in Section 3.
This is problematic, as it is reminiscent of Goodhart’s Law: “Any
observed statistical regularity will tend to collapse once pressure is
placed upon it for control purposes” [11].4 Moreover, existing coun-
terfactual estimators tend to make strong stationarity assumptions
about the environment (i.e. the bidding behaviour of competing
advertisers) that do not hold in practice. Indeed, competitor bids
will react to the chosen bidding policy, and this reactive effect is
not sufficiently captured by logged data alone. This renders them
irrevocably biased—although useful when learning bidding policies.

Online experiments, as an alternative, are too expensive to be
used as a first-line validation tool. Indeed, prototypes for new ap-
proaches need to be brought up to standards for production code,
A/B-tests typically span at least several days to obtain statistically
significant performance estimates, and we risk losing business value
by actively exploring suboptimal bidding approaches.

The reinforcement learning research community is well aware
of these shortcomings, and reliable simulation environments are at
the heart of significant advances in recent years [2]. Their success
has led to enthusiasm and advocacy for the use of simulations in
related fields like Recommender Systems [6, 14, 30], where they
have been accepted and adopted as an alternative evaluation mech-
anism [1, 16–18]. It is our belief that simulation can open similar
doors in the computational advertising and real-time bidding re-
search communities, especially with respect to novel approaches
for bandit and reinforcement learning.

To this end, we propose AuctionGym, an open-source environ-
ment that simulates the advertising problem end-to-end:

(1) An impression opportunity arises, with features 𝑥 ∼ P(𝑋 ),
(2) the auctioneer presents this opportunity to some bidders,
(3) bidders internally decide on an ad to show and a bid to place,
(4) the auctioneer decides on the auction winner and price,
(5) the winning ad is shown and possibly leads to a conversion

event that is observable by the winning bidder.

4This insight was later paraphrased and popularised as:
“When a measure becomes a target, it ceases to be a good measure” [34].

This real-time auction process is repeated into rounds, where
Δr rounds are repeated into 𝑁i iterations. To simulate a delayed
batch feedback setting, bidders update their allocation and bidding
policies after every iteration, based on the previously observed Δr
auction rounds. Naturally, bidders end up paying a price for auction
rounds they participate in and win, but only incur utility or reward
when the impressed ad leads to their desired outcome (welfare,
Eq. 1). Bidders simultaneously need to solve both the allocation and
bidding problems, in order to maximise their own utility.

Simulating Advertising Outcomes. AuctionGym not only simu-
lates the auction itself, but also whether an allocation decision leads
to a conversion event for the advertiser. As such, for a given context
𝑥 and an ad 𝑎, the internal system consists of a stochastic process
that simulates this. That is, we draw 𝑐 ∼ Bernoulli(𝜌𝑎,𝑥 ) where:

𝜌𝑎,𝑥 B P(𝐶 = 1|𝐴 = 𝑎;𝑋 = 𝑥) = 𝑓𝜃 (𝑥, 𝑎) . (10)

A design choice needs to be made with respect to the param-
eterisation of 𝑓𝜃 . No restrictions on the functional form of 𝑓𝜃 are
generally necessary, but this can complicate efficient learning and
inference. We can draw on existing work to make reasonable as-
sumptions about how users interact with ads, such as the “latent
factor model” assumption that is at the foundation of modern recom-
mendation research [21]. For a given dimensionality 𝐷 , we have pa-
rameters 𝜃 = {𝜙, 𝛽}, with ad-specific parameters 𝜙𝑎 ∈ R𝐷 , 𝛽𝑎 ∈ R:

𝑓𝜙,𝛽 (𝑥, 𝑎) = 𝜎
(
𝑥𝜙
⊺
𝑎 + 𝛽𝑎

)
. (11)

Here, 𝜎 denotes the logistic sigmoid. This is similar to the pa-
rameterisation adopted by RecoGym [30]. One advantage is that it
allows the use of fast approximate nearest neighbour techniques in
the allocation decision (i.e. the arg max operation in Eq. 2), which
are widespread and crucial in real-world large-scale advertising
systems [23]. For this reason, simulated bidders adopt the same
functional form for P̂(𝐶). Naturally, advertisers do not fully observe
all the contextual information that influences user behaviour. This
confounding effect is simulated by obfuscating the true contextual
vector: 𝑥 B 𝑥 [1:𝑘 ] where 1 ≤ 𝑘 ≤ 𝐷 , and only 𝑥 is observable.

Although the ad allocation problem is not the focal point of our
work, we believe that it is crucial to jointly study the allocation and
bidding problems, rather than in isolation. Indeed, the value esti-
mates that are used in the allocation step are equally important for
bidding, and noisy estimates will propagate and have downstream
effects. The auction, in turn, has a strong influence on future train-
ing data that is available to train allocation models. AuctionGym
includes an implementation of Bayesian logistic regression with
Thompson sampling to handle the allocation of ads [3].

Simulating Bidders. Every bidder 𝑗 has a private ad catalogue
A 𝑗 . Bidders have private valuations 𝑣𝑎 they place on a conversion
event for a given ad. The ad-specific parameters 𝜙𝑎, 𝛽𝑎 that dictate
𝜌𝑎,𝑥 are not observable by the bidder, and are configurable. That is,
they can be fully synthetic and drawn from an arbitrary specified
distribution, or they can be instantiated based on real-world data
to inform semi-synthetic experiments (as also done by Bendada
et al. [1]). AuctionGym includes implementations of all the bidding
strategies introduced in Sec. 3, using PyTorch [29]. We expect that
existing approaches are easily extendable, and that new approaches
can be implemented in the common framework to allow for robust
and reproducible validation under varying configurations.
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Figure 1: Evolution of key metrics (95% C.I., y-axis) in repeated auction rounds (x-axis), when all competing bidders optimise
their bidding strategy according to the same utility estimator. We vary the number of rounds between model updates Δr,
increasing from left to right. We observe that compared to the widespread model-based approach, model-free learning leads to
high variance, whereas our doubly robust estimator improves upon existing methods, increasing bidders’ surplus.

Simulating Auctions. AuctionGym includes implementations of
the most often used auction formats: first-price and second-price
auctions, possibly with hard or soft floors. This is however no restric-
tion, and more complex alternatives can be included to test a range
of hypotheses. In particular, even though we focus on “learning to
bid”, we believe that AuctionGym can provide a common frame-
work for evaluating learnt auction mechanisms as well. Indeed,
this emerging research area can also be framed as a reinforcement
learning problem, where the auctioneer needs to decide (1) who
wins the auction, and (2) how much they will be charged [5, 22].

Metrics of Interest. AuctionGym allows us to track multiple met-
rics of interest, such as the auctioneer’s revenue, and bidders’ wel-
fare and surplus. We also consider Return On Ad Spend (ROAS) —
an industry standard KPI to evaluate advertising efficiency. We
can define multiple notions of bidders’ regret. That is, how much
value bidders are missing out on due to suboptimal allocation or
bidding decisions. Allocation regret is the loss in welfare incurred
due to suboptimal ad allocation. Estimation regret is the loss in
welfare incurred due to biased value estimation. Overbid regret is
the loss in surplus incurred due to overbidding, and underbid regret
is analogously defined as loss in surplus due to underbidding.

5 EXPERIMENTAL RESULTS & DISCUSSION
In what follows, we provide a non-exhaustive list of research ques-
tions that AuctionGym can help answer. We assume 1st price auc-
tions unless explicitly mentioned otherwise. All models are shallow
multi-layer perceptrons, all policies are parametrised Gaussians.
RQ1 What is the effect of moving from 2nd to 1st price auctions?
RQ2 What is the effect of learnt (vs. optimal) ad allocation?
RQ3 How does the choice of estimator affect social measures?
RQ4 How does the choice of estimator affect individual measures?
RQ1-3: Learning to Bid and Social Effects. Fig. 1 shows results from
repeated auction rounds with two out of six competing bidders per
round, all having twelve ads in their catalogue. We repeat this pro-
cess for five different random seeds (whilst keeping the catalogues
fixed), and report 95% C.I.’s for the evolution of relevant measures
per auction round as all bidders continuously learn and update their
allocation and bidding strategies. The aggregated results summarise
more than 37 million simulated auctions, and a combined 36 000

distinct learnt bidding strategies over all bidders and configura-
tions. Social welfare indicates the overall value that is generated
through the advertising auction: either for the auctioneer (auction
revenue) or the bidders (social surplus). This decomposition is at
the heart of what learnt bidding strategies aim to influence: they
aim to maximise surplus, which inevitably leads to a decrease in
revenue for the auctioneer. We include measurements for an or-
acle that knows the true parameters 𝜌𝑎,𝑥 and bids truthfully in a
second-price auction as ΩSP, and the Thompson sampling approach
in similar settings as TSSP. This allows us to quantify the effects of
“learning to bid” approaches on welfare, revenue and surplus.

Focusing on social surplus, we observe that the model-based
approach stabilises quickly but suboptimally, as is expected for a
biased low-variance estimator. The model-free importance sam-
pling estimator has high variance, and is able to improve upon the
model-based estimator when sufficient learning steps are allowed.5
The instability of this approach, however, can lead to significant
reductions in attainable welfare as it impacts training data collec-
tion for subsequent updates to the allocation model. Our novel
doubly robust estimator leads to improved surplus over all bidders
participating in the auction, with much lower variance than IPS.6

RQ4: Individual Effects. Fig. 2 shows results from repeated auc-
tion rounds in the same configuration as Fig. 1, where all bidders
optimise their bidding strategy using 𝑈DM — from prior existing
work, this can be interpreted as an optimistic industry status quo.
The goal here is to get an actionable recommendation: which learn-
ing strategy should a single bidder adopt in order to maximise their
profit, and why? We plot ROAS, overbid and underbid regret respec-
tively over time. This reinforces the observations obtained from
research questions 1–3: the Direct Method has low variance but
high bias, leading to fast convergence with considerable overbid
regret as a result. Importance sampling is promising but entails high
variance, effectively reducing overbid regret for a slight increase
in underbid regret after 1 000 000 auction rounds. Doubly robust
estimation consistently improves ROAS and overbid regret, making
it a strong contender for adoption in real-world systems.

5Because we implement weight-clipped IPS as in PPO [32], this is expected behaviour.
6Note that we clip the importance weights in 𝑈DR as well, resembling the recently
proposed doubly robust estimator with pessimistic shrinkage [35].
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ÛDR

Figure 2: Evolution of key metrics (95% C.I., y-axis) in repeated auction rounds (x-axis), focused on a single bidder where
Δr = 20 000. We observe that compared to the widespread model-based approach, model-free learning leads to high variance,
whereas our doubly robust estimator improves upon existing methods, increasing bidders’ ROAS due to reduced overbidding.

6 CONCLUSIONS & OUTLOOK
We have advocated for the “learning to bid” problem, that is preva-
lent in present-day online advertising, to be cast as a bandit learn-
ing problem. To this end, we have presented a general framework
for bandit-based “learning to bid”, allowing us to frame existing
methods and propose novel approaches that leverage policy-based
and doubly robust estimators. We have presented the AuctionGym
simulation environment that can be used to reliably validate such
approaches in a reproducible manner, without relying on sensitive
proprietary data. AuctionGym can be used to unveil insights that
cannot be straightforwardly extracted from logged data — and we
expect the research community to benefit from this tool.

In future work, we wish to consider full reinforcement learning
instantiations of the bidding problem, where current actions influ-
ence future states and a notion of planning can further improve
bidder surplus. Naturally, we wish to further validate the insights
presented in this work on real-world data, and to better understand
the benefits and limitations of doubly robust “learning to bid”. Fi-
nally, we wish to extend the simulation environment to support
advertiser budgets, multi-item and learnt auction mechanisms.
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