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ABSTRACT
An ads ecosystem needs robust, scalable mechanisms to safeguard
users from bad quality ads. Contemporary ad creatives typically
contain different combinations of modalities like text, images and
video, and as such, any system that flags bad quality ad content
needs a holistic multimodal representation of the ad. In this paper,
we demonstrate that modern Transformer based neural network
models are effective multimodal learners. We report significant
performance gains in YouTube video ads on the task of content
quality prediction by transitioning to Transformer based models
from simpler feed-forward neural networks. We provide ablation
studies to understand the impact of each input modality, and com-
pare various flavors of Transformer architectures. We hope that
our experiments help practitioners looking to incorporate these
powerful multimodal models into other parts of the ads ecosystem.

CCS CONCEPTS
• Computer systems organization → Neural networks; • Infor-
mation systems → Computational advertising; Online ad-
vertising.
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1 INTRODUCTION
Contemporary ad landscape is very diverse with different types
of ads (text, image, video ads etc.) shown in different placements
(e.g. video search page or watch page etc.). Each of these ads has
a different combination of modalities like text, image, audio and
video, and developing a holistic understanding of the ad content
is a prerequisite for ads targeting and policy enforcement systems.
In this work, we look at the ad representation learning problem,
particularly from the standpoint of their application to content
policy enforcement systems.

A responsible ads ecosystem strives to safeguard its end-users
and advertisers from bad quality content. Doing so at scale requires
the deployment of machine learning models that incorporate the
latest advances in Computer Vision and Natural Language Process-
ing to understand ad content and determine quality. Specifically,
this is a multimodal learning problem, and calls for techniques that
can produce a joint representation that is more informative than
the unimodal components.

Deep neural networks, and specifically, Transformer models
with Attention modules are the current state of the art for both text
[4, 11, 13, 16, 42, 43] and visual modalities [6, 9, 14]. In addition, a
number of recent studies have found success applying Attention-
based networks to model interactions between modalities [31, 32].
In this work, we conduct extensive experiments on applying these
techniques to build ad representations for video ads on YouTube,
with particular focus on supervised trainingwith the content quality
prediction objective.

The main contributions of this paper are as follows:
• Wedemonstrate that fusing information frommultiplemodal-
ities like text and video while building ad representation
models yields significant gains on the content quality pre-
diction task.

• We demonstrate that state of the art Transformer models
lend themselves well for such multimodal representation
learning, and

• We conduct extensive experiments to establish best practices
for multimodal fusion using Transformers on a real-world
ads dataset collected from YouTube.

In the following, Section 2 describes related work. We introduce
the problem and data in Section 3 and present our methods for
multimodal fusion using Transformers in Section 4. Our experi-
ments and key results are in Section 5 and Section 6 respectively.
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We conclude with some qualitative observations on model behavior
in Section 7 and avenues for future work in Section 8.

2 RELATEDWORK
2.1 Unimodal Representation Learning
There is rich literature of modern deep neutral networks in learning
single modality representations.

Transformers [13, 35, 36], which use an Attention mechanism
[43], are currently the de-facto standard for text representation.
These models are typically comprised of layers of self-Attention
blocks and capture global dependencies between input and output,
that is, they are able to relate tokens and positions within the same
input sequence.

For supervised image understanding, this includes the family
of CNNs [5]: AlexNet [28], VGG [37], ResNet [25], Inception [40],
etc. In addition, recent studies show that the unsupervised image
representation learning, such as via contrastive learning, presents
promising results (e.g., simCLR [8], MoCo [24]). More recently,
Transformer models have been applied to various vision applica-
tions for their powerful capabilities to learn visual representations
[15, 23, 27].

A similar effort has been devoted to learning video representa-
tions. There have been supervised learning with video captioning
[48], YouTube knowledge graph entities [2], or relational graph
clustering with user clicks [29], etc. Recent works utilize tempo-
ral information and multi-view points for objects [22, 44] or the
similarity between video frames [21, 45] in self-supervised video
representation learning. In addition, the Transformer architecture
has been popularly used to learn the spatio-temporal information
in video classification problems [3, 20, 33, 47].

2.2 Transformer Models for Multimodal
Representation Learning

Various models have been proposed to extend the Transformer
model for multimodal learning [10, 17–19, 30, 32, 38, 39, 41]. Their
goal is to learn representations that can explain relationships be-
tween different modalities. Cross modal Self-Attention [46] encodes
multi-modal dependencies between linguistic and visual features,
by aligning the image regions with the text inputs. The models
can be grouped by the fusion strategies; early fusion [10, 38, 39],
mid-fusion [30, 32, 41], or late fusion.

These models typically rely on a pre-trained language model
such as BERT [13] for text, and pre-trained vision models for visual
features, which are fixed throughout. This learning setup with pre-
trained input features is to help accelerate convergence without
introducing excessive memory requirements in training. A recent
work [30] introduced a memory-efficient approach to train end-
to-end, which can be effectively applied to different modalities or
different distributions from their audio-visual representation.

Transformer models take the pre-training approach on a large-
scale (unlabelled) dataset, with subsequent fine-tuning to various
downstream tasks. The effectiveness of pre-training for large-scale
Transformers has been advocated in both the language and vision
domain, proving significant improvement in the downstream tasks
[14, 34]. However, research shows that data size does not matter as

Figure 1: A video ad contains multimodal signals: video
frames, audio, title, description.

much when the dataset is noisy [26]. In addition, similarity between
the language of pre-training and evaluation datasets is important.

Our dataset is unique because the texts are provided by the ad-
vertisers and they may not always be narrative-oriented or describe
the visual modalities as the public datasets [2, 12] do.We take a prac-
tical approach to directly train with our content quality prediction
task on our YouTube ads dataset.

3 PROBLEM
Given the video and texts associated with an ad, our goal is to learn
multi-modal ad representations that are optimized for a specific
task which, in our case, is the quality of the ad. We describe our
definition of quality and dataset collection methodology below.

3.1 Quality Score
A video ad can be bad quality for a variety of reasons - it may
be fraudulent, offensive, unethical, or it may include depictions of
pornographic imagery, to name a few. For our purposes, we consider
a single measure that captures any and all of these characteristics,
and ask trained human evaluators to assign a badness quality score
ranging from 0 to 100 for ad videos, where 100 means lowest quality.
We ask three evaluators to rate each video, and consider the average
of the provided scores to be the final quality score for a video.

3.2 Data
We use the annotation methodology described above to collect a
labeled set of 600k ad videos from YouTube. Each sample in the
dataset is a multimodal ad video, containing video frames, audio,
titles and description, with its associated ground truth quality score.
Most ad videos tend to be on the shorter side, with an average
length of 30 seconds. Figure 1 shows an example of a video ad.

Among the modalities, we chose the video frames for the visual
modality and the concatenation of the title and description for the
textual modality, in order to learn the embedding that discovers
the relationships between two modalities. We use a 80-20 split for
training and testing respectively.
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4 METHODS
4.1 Unimodal Representations
This section discusses how we model our input modalities - text
and video. We use unimodal encoders, which are pre-trained on
large-scale datasets.

4.1.1 Text Features. The text features associated with ads are typ-
ically free-form text shown in the ad. These may be the title and
description that go with ad videos, or could be complementary
to the video content. To encode the text, we use the pre-trained
Bidirectional Encoder Representation From Transformers (BERT)
model [13]. BERT models tokenize the text and produce dense float
embeddings for each token, obtained by propagating the input to-
kens through a series of self-Attention layers. The outputs of this
BERT model are 1024-dimensional float vectors per text token, and
we consider up to 512 tokens per ad.

𝑓𝑡𝑒𝑥𝑡 = 𝑀𝐵𝐸𝑅𝑇 (𝑡𝑒𝑥𝑡) = [𝑓 1
𝑡𝑜𝑘𝑒𝑛

, 𝑓 2
𝑡𝑜𝑘𝑒𝑛

, ..., 𝑓
|𝑁𝑡𝑜𝑘𝑒𝑛𝑠 |
𝑡𝑜𝑘𝑒𝑛

] (1)

where token features 𝑓 𝑖
𝑡𝑜𝑘𝑒𝑛

∈ R1024 and 𝑁𝑡𝑜𝑘𝑒𝑛𝑠 ∈ [0, 512). We
include the special token 𝐶𝐿𝑆 to learn the ad-level textual repre-
sentation.

4.1.2 Video Features. For ad videos, we limit ourselves to the visual
content of video frames, and use a model from the ResNet family
of networks [25] to encode each frame. We take the penultimate
hidden layer output, averaged over pixels to obtain a 64-dimensional
frame representation.

𝑓𝑣𝑖𝑑𝑒𝑜 = [𝑓 1
𝑓 𝑟𝑎𝑚𝑒

, 𝑓 2
𝑓 𝑟𝑎𝑚𝑒

, ..., 𝑓
|𝑁𝑓 𝑟𝑎𝑚𝑒𝑠 |
𝑓 𝑟𝑎𝑚𝑒

] (2)

where 𝑓𝑓 𝑟𝑎𝑚𝑒 = 𝑀𝑅𝑒𝑠𝑁𝑒𝑡 (𝑓 𝑟𝑎𝑚𝑒) ∈ R64 and 𝑁𝑓 𝑟𝑎𝑚𝑒𝑠 ∈ [0, 60).
We also include the special token 𝑉 𝐼𝐷 to learn the video-level
representation.

We sample one frame per second, and consider up to 60 frames
for each video. If a video has fewer than 60 frames, zero-padding
is applied to provide the fixed number (=60) of the frames. For
models that operate on this sequence, we add a sinusoidal positional
encoding to 𝑓𝑓 𝑟𝑎𝑚𝑒 , following similar work in [43].

Note that our unimodal encoders are fixed pre-trained encoders.
We choose not to fine-tune them, since our focus is mainly on
learning multimodal representations. This also follows from sim-
ilar approaches adopted for task specific fine-tuning, where it is
common to train smaller task specific heads on top of large scale
pre-trained embeddings.

4.2 Quality Score Prediction
The overall architecture for quality score prediction is comprised
of two sub-networks connected to each other in a cascading setup
(Figure 2). The first sub-network𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟 aims to learn an ad rep-
resentation 𝐸𝑎𝑑 that effectively encodes cross-modal relationships
(Eq. 3). 𝐸𝑎𝑑 is then fed to the regression model 𝑀𝑡𝑎𝑠𝑘 to predict
the quality score (Eq. 4). We use a multi-layered dense feed for-
ward neural network for𝑀𝑡𝑎𝑠𝑘 . We focus most of our experiments
on𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟 , experimenting with various flavors of self-Attention
and co-Attention [32] modules and embedding fusion techniques
(Figure 3).

Figure 2: Model Architecture

Figure 3: Multimodal Encoder Architectures

𝐸𝑎𝑑 = 𝑀𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑓𝑡𝑒𝑥𝑡 , 𝑓𝑣𝑖𝑑𝑒𝑜 ) (3)

𝑆𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑀𝑡𝑎𝑠𝑘 (𝐸𝑎𝑑 ) (4)

4.3 Multimodal Transformer Encoders
Transformer models operate on sequential data, and learn repre-
sentations through successive layers of Attention blocks. Given
our two input sequences 𝑓𝑡𝑒𝑥𝑡 and 𝑓𝑣𝑖𝑑𝑒𝑜 , several choices exist for
multimodal learning (Figure 3).

4.3.1 Early Fusion. The first technique is early-fusion, where we
concatenate 𝑓𝑡𝑒𝑥𝑡 and 𝑓𝑣𝑖𝑑𝑒𝑜 into a single input sequence, and train
the model to automatically discover relationships between the two
domains [31, 39]. In this case, the text and video self-Attention
blocks in Figure 3 getmerged into one, and there are no co-Attention
blocks. The average pooled embedding over the non-padded tokens
is used in the second sub-task to predict the score.

4.3.2 Mid Fusion. The second technique is mid fusion, where we
have independent Transformers with self-Attention for each indi-
vidual modality first and later learn the cross-modal representations
using another co-attentional Transformer [32]. We add special to-
kens [𝐶𝐿𝑆] and [𝑉 𝐼𝐷] to the text and visual sequences respectively,
following [32]. The final outputs corresponding to these special
tokens are combined via concatenation or dot-product operation
to get the final ad embedding.
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4.3.3 Late Fusion. The third technique is late-fusion, where we
use the individual self-Attention Transformers that take the se-
quential embeddings for each of the modalities. In this case, there
are no co-Attention blocks, and multimodal fusion happens in the
final pooling block. We use the same approach to obtain the joint
embedding as the mid fusion technique.

4.4 Supervised Learning
Our models are trained directly on the supervised regression task
of quality score prediction. This is in contrast to many state-of-
the-art Transformers that use pre-training with self-supervision
to predict the next word in caption [7], followed by downstream
applications such as Question Answering. The self-supervision
(e.g., contrastive cross-modality matching loss) is useful to train on
large-scale dataset with no labels. However, it is not appropriate
for YouTube ads, where the text modality (title & description) is
not narrative-oriented. It may describe the visual domain, but it is
often entirely complementary, and includes substantial noise (e.g.,
url links, special characters, etc.).

For practicality, we directly learn the multimodal embedding to
predict the quality score without pre-training or self-supervision.
We show in our results that our approach can explain correctly the
relationships of the bad quality content found in both modalities.

5 EXPERIMENTS
5.1 Baseline Models
In addition to the Transformer models mentioned above, we con-
sider the following baseline models.

5.1.1 Baseline with Fixed Prediction Scores. This is a baselinewhose
prediction is the average of the quality score.

5.1.2 Pooled Baseline. In this model, we average pool the sequence
of text token and video frame embeddings, concatenate the two and
pass them through a feed forward network to obtain ourmultimodal
ad embedding.

5.1.3 Text Only Transformer. This is a Transformer model that
takes only the text as input, and calculates the final ad embedding
through a block of self-Attention layers.

5.1.4 Video Only Transformer. Same as the text-only Transformer,
but operates on video frames instead. These unimodal models are
used in ablation studies to understand the impact of each modality.

5.2 Common Parameters
The number of hidden layers and width of each of the model archi-
tectures above is configured to ensure that the trainable parameter
count is comparable (60M parameters in each). Eachmodel produces
a 1024 dimensional ad embedding.𝑀𝑡𝑎𝑠𝑘 is a dense feed-forward
network with a single layer, followed by sigmoid activation to pro-
duce the quality score from the ad embedding. We normalize the
quality score labels to be in the range [0, 1]. All models are trained
end to end with the Mean Square Error (MSE) loss, using the Adam
optimizer, with a constant learning rate of 1𝑒 − 5 for 20 epochs,
and a batch size of 512. For models that use Attention, we use 8
Attention heads, with a hidden layer dimension of 2048. We use a

dropout of 0.2 for each Attention layer in the Transformer models.
Our primary evaluation metric is MSE on our test dataset.

6 RESULTS

Table 1: Summary of Experiment Results

Model % Reduction in MSE
Comparing Transformers to Fixed Prediction Baseline
Mid Fusion (Co-Attention)

Over Fixed Prediction Base-
line

44.67%

Comparing Transformers to Pooled Baseline
Early Fusion

Over Pooled Baseline 3.25%
Comparing Multimodal Fusion Methods

Mid Fusion (Co-Attention)
Over Early Fusion 3.84%
Over Late Fusion 0.52%
Without Self-Attention 3.52%

Ablation of Input Modalities
Mid Fusion (Co-Attention)

Over Text Only Trans-
former

18.94%

Over Video Only Trans-
former

1.80%

We look at our key experimental findings below.

6.1 How well do Transformers fare against
simpler baselines?

We first validate our Transformer model by comparing with the
baseline with the fixed prediction scores as the average of the actual
quality scores. We observe a significant improvement by 44.67%
(Table 1 - first row).

We then compare the performance of our simplest Transformer
model (Early Fusion) with the pooled baselinemodel, and see that the
multimodal representation learned by the Transformer improves
MSE on the task of quality score prediction by 3.25% (Table 1 - sec-
ond row). This demonstrates that Transformers are indeed effective
at condensing multimodal sequential input data into a useful ad
representation.

6.2 Comparison of Multimodal Fusion Methods
We experimented with several different choices for multimodal
fusion within the context of Transformer models, and found that co-
Attention layers from Mid Fusion provide an additional 3.84% boost
in task performance over early fusion models with self-Attention
only (Table 1 - third row).

To better understand the role of co-Attention, we experimented
with the placement of the co-Attention layers at different levels of
the encoder stack. We found that co-Attention was most effective
when placed after a few layers of self-Attention blocks (mid fusion).
While using co-Attention layers, we obtained 3.52% MSE reduc-
tion when we had the self-Attention blocks prior to co-Attention
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layers, compared to having no self-Attention blocks. This shows
that fine-tuning the uni-modal representations using independent
Transformer blocks prior to co-training across modalities is impor-
tant.

6.3 Ablation of Input Modalities
We find that multimodal ad representations are indeed better than
the unimodal components (Table 1 - forth row). In addition, we find
that the video modality is the primary driver of quality in our data,
demonstrated by the 18.94% increase in MSE when we drop the
video modality from the input.

6.4 Special Tokens for Regression Tasks
We compare approaches to provide the joint embeddings from
Transformers into the supervised regression task. We found that
using the special tokens ([𝐶𝐿𝑆] and [𝑉 𝐼𝐷]) was superior to average
pooling the final outputs across all tokens. This confirms that the
special tokens summarize content quality well across modalities.
Further, we looked at the Attention weights leading to these special
tokens in the co-Attention layers, and found that high weights were
placed on tokens that contained bad quality content in the alternate
modality. That is, the [𝐶𝐿𝑆] token focused on video frames that
contained undesirable content, and the [𝑉 𝐼𝐷] token focused on the
undesirable word tokens.

Finally, we experimented with concatenation vs. dot-product of
the special token embeddings into the regression task. The con-
catenation of the special token embeddings showed improvement
of MSE by 1.15% compared to the dot-product of the special token
embeddings.

7 ANALYSIS OF BAD QUALITY ADS
We used Attention Rollout [1] to understand how the content qual-
ity information propagated to the multimodal embeddings. The
Attention weights were averaged across all heads, and the weight
matrices were multiplied recursively from all layers.

Figure 4 shows the Attention rollout maps on the special to-
kens [𝑉 𝐼𝐷] and [𝐶𝐿𝑆] of a low quality ad from our best perform-
ing model (mid-fusion co-Attention). We see that the [𝐶𝐿𝑆] token
places high weight on the visual frame 𝐹4, which, in this case, is a
frame with undesirable imagery. Similarly, the [𝑉 𝐼𝐷] token looks
at 𝑡𝑜𝑘𝑒𝑛3 of the undesirable word.

Interestingly, we have observed that late fusion with unimodal
self-Attention performs well when the text is short. However, late
fusion also amplifies noise in each modality, and we have seen that
model performance deteriorates when the text is long with lots of
noise (e.g., urls, random symbols). The early-fusion Transformer,
on the other hand, predicts the quality of the ad correctly by over-
emphasizing the visual information for such cases. This seems to
be the result of concatenating both modalities together at the very
beginning and treating them as a single modality.

8 CONCLUSION & FUTUREWORK
In this work, we have established that Transformer models are ef-
fective at learning multimodal representations for video ads. Some
promising directions for future work include extension to more
modalities, such as audio signals, or in-video text, via Optical

(a) Attention Rollout Map of the visual special token [𝑉 𝐼𝐷 ] attended
to the texts. High Attention weights (bright colors) were given to the
text tokens with undesirable content.

(b) Attention Rollout Map of the text special token [𝐶𝐿𝑆 ] attended to
the video frames. High Attention weights (bright colors) were given to
the undesirable video frames.

Figure 4: Attention Visualization from Rollout Map. High
Attention weights (bright colors) were propagated onto the
undesirable information in both special tokens.

Character Recognition (OCR). Multi-task learning with tasks such
as Click-Through Rate (CTR) prediction, or using additional con-
trastive learning objectives from user co-click data are other inter-
esting extensions.
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