
Learning Similarity Preserving Binary Codes for
Recommender Systems

Yang Shi
yang.shi@rakuten.com
Rakuten Group, Inc.
San Mateo, CA, USA

Young-joo Chung
youngjoo.chung@rakuten.com

Rakuten Group, Inc.
San Mateo, CA, USA

ABSTRACT
Hashing-based Recommender Systems (RSs) are widely studied to
provide scalable services. The existing methods for the systems
combine three modules to achieve efficiency: feature extraction,
interaction modeling, and binarization. In this paper, we study
an unexplored module combination for the hashing-based recom-
mender systems, namely Compact Cross-Similarity Recommender
(CCSR). Inspired by cross-modal retrieval, CCSR utilizes Maximum
a Posteriori similarity instead of matrix factorization and rating
reconstruction to model interactions between users and items. We
conducted experiments on both public and real-world E-commerce
datasets and confirmed CCSR outperformed the existing matrix
factorization-based methods. On the Movielens1M dataset, the ab-
solute performance improvements are up to 15.69% in NDCG. In
addition, we extensively studied three binarization modules: 𝑠𝑖𝑔𝑛,
scaled 𝑡𝑎𝑛ℎ, and sign-scaled 𝑡𝑎𝑛ℎ. The result demonstrated that
although differentiable scaled 𝑡𝑎𝑛ℎ is popular in recent discrete
feature learning literature, a huge performance drop occurs when
outputs of scaled 𝑡𝑎𝑛ℎ are forced to be binary.

CCS CONCEPTS
• Information systems → Top-k retrieval in databases; Collabo-
rative filtering.

KEYWORDS
recommender systems, binary hashing, cross-modal retrieval
ACM Reference Format:
Yang Shi and Young-joo Chung. 2022. Learning Similarity Preserving Binary
Codes for Recommender Systems. In Proceedings of August 15, 2022 (AdKDD
’22). ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Neural recommender systems have dramatically improved the rec-
ommendation performance in recent years. However, it is difficult
to scale them up due to their high computational cost [13]. To
overcome this issue, hashing-based recommender systems have
been widely studied. The binarized user and item representations

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
AdKDD ’22, Washington, D.C., USA,
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Hashing-based recommendation systems. Prediction is
made by computing Hamming distances between binary codes.

Table 1: Comparison of different hashing-based recommender sys-
tems in terms of feature extraction, interactionmodeling, and bina-
rization

Paper
Loss function

BinarizationFeature extraction User-item interaction
MF AE Other NN Dot product CE MAP

CFCodeReg[27] ✓ ✓ 𝑆𝑖𝑔𝑛

DCF[23] ✓ ✓ 𝑆𝑖𝑔𝑛

NBR[25] ✓ ✓ ✓ LPR
NeuHash[8] ✓ ✓ ✓ STE
HashGNN[19] ✓ ✓ 𝑆𝑖𝑔𝑛, STE
CCSR (ours) ✓ ✓ 𝑆𝑖𝑔𝑛, Scaled 𝑡𝑎𝑛ℎ

not only reduce the memory requirement but also accelerate the
recommendation speed. For example, if items are represented by
256-dim double-precision float vectors, 10 million items’ represen-
tations will take over 20 GB of storage space. With Hashing-based
recommendation, it will only need 0.3GB1.

The existing methods for the hashing-based RSs can be divided
into three modules: feature extraction, interaction modeling, and
binarization. The feature extraction module takes user’s implicit
or explicit feedback on items as inputs and learns representations
by modeling their interactions (i.e., user/item preferences). After
learning these real-valued representations, binarization methods
are applied to convert them into binary codes. These binarizations
can be done after learning real-valued representation [26, 27] (the
two-step approach) or jointly done with feature learning [14, 24]
(the direct approach). The final recommendation will be conducted
by measuring the distances of the codes in Hamming space. Figure 1
1If we use double-precision float vectors for representations, we need 2,048 bytes
(64bits * 256dims / 8) for one representation. If we use binary values, we need 32 bytes
(1bit * 256dims / 8).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

AdKDD ’22, Washington, D.C., USA,
Shi and Chung

shows the general framework for the hashing-based recommender
system.

With the success of Collaborative Filtering (CF) that creates the
user/item representations based on their interactions, earlier works
focused on combining hashing and CF [12, 27]. These approaches
obtain real-valued user/item features using Matrix Factorization
(MF) and then convert them into binary codes using Linear Program-
ming Relaxation (LPR).Recently, several methods have been pro-
posed to integrate neural networks and hashing for recommender
systems [15, 17]. These methods utilize neural networks (e.g., au-
toencoders, graph neural networks) to obtain real-valued user/item
representations and binarize them by a hard threshold (𝑠𝑖𝑔𝑛) opera-
tor or an approximation (scaled 𝑡𝑎𝑛ℎ) function or straight-through-
estimator (STE). Users’ preferences on items are usually modeled
with dot-product similarity, cross-entropy (CE) loss or rank loss.

Table 1 shows that previous works have different design choices
on each module and certain combinations have not been explored.
In this paper, we study an unexplored combination; we learn real-
valued user/item representation through autoencoders and MAP-
based similarity, and obtain binary codes for these user/item repre-
sentations.We call ourmethodCompactCross-SimilarityRecommender
(CCSR). Modeling entities with MAP-based similarity has shown
its effectiveness in cross-modal retrieval (CR), where the goal of the
system is retrieving similar entities from different modalities (e.g.,
image/text, audio/text)[3]. The recommendation task can be consid-
ered as cross-modal retrieval where the user space is one modality
and the item space is the other. From this viewpoint, user/item
representations are created by mapping them to the shared latent
space while preserving the original similarities (i.e., preference). In
the recommendation time, we retrieve the k-most similar items to
users by comparing user/item similarity in this shared space.

Our contributions are as follows:

• We categorize the previous hash-based RS methods based on
their design choices and explore a new design, CCSR, which
is inspired by cross-modal retrieval literature.

• We demonstrate that MAP-based similarity loss is better
than MF-based rating reconstruction loss in the top-k recom-
mendation task. This is because the former loss emphasizes
more on similarity learningwhich is important for the recom-
mendation task. The latter focuses on rating reconstruction
which is an indirect approach to recommendation.

• CCSRmodel outperforms hashing-basedmodels withMatrix-
factorization by up to 15.69%, 1.53% and 1.69% NDCG ab-
solute improvements on Movielens1M, Amazon and Ichiba
datasets respectively.

• We show that different models prefer different binarization
methods. The simple 𝑠𝑖𝑔𝑛 function still performs well com-
pared to other more complicated methods. Even though dif-
ferentiable scaled 𝑡𝑎𝑛ℎ is popular in recent discrete feature
learning literature, a huge performance drop occurred when
scaled 𝑡𝑎𝑛ℎ outputs are forced to be binary.

2 RELATEDWORK
Hashing-based CF Collaborative filtering utilizes observed user-
item interaction (e.g., ratings, clicks, and purchases) to estimate

unobserved interactions. Earlier works on hashing-based CF uti-
lized MF and a two-stage binarization [26, 27]. They first learned
real-valued representations through MF and then converted them
to binary codes. Compositional Coding for Collaborative Filter-
ing (CCCF)[14] and Discrete Collaborative Filtering (DCF) [23]
proposed learning binary codes directly using discrete bit-by-bit
optimization.

Hashing-based neural CF Recent hashing-based CF methods
utilize neural networks to extract user/item features (representa-
tion). Autoencoders (AEs) [22], Variational Autoencoders (VAEs)[1,
8], and Graph neural networks were used for feature extraction[19,
21]. In terms of interaction modeling, cosine similarity loss[22] and
rank loss[15] were studied in addition to traditional rating recon-
struction loss. Several binarization techniques were also introduced.
HashNet [4] used a scaled 𝑡𝑎𝑛ℎfunction which forces real-valued
features close to +1 and −1 during training. Others used straight-
through-estimator (STE) to solve the discrete optimization problem
directly[7, 16, 19].

Hashing-based similarity-preserving cross-modal retrieval
Creating compact codes for cross-modal retrieval has been inten-
sively explored to satisfy the needs from the massive growth of
multi-modal data[2]. The state-of-the-art compact cross-modal re-
trieval methods utilize neural networks to extract real-valued fea-
tures and convert them to binary codes use binarizations such as
𝑠𝑖𝑔𝑛 and scaled 𝑡𝑎𝑛ℎ functions [3, 5, 11, 18]. The main focus of these
methods is defining better objective functions that can express sim-
ilarities between entities from different modalities.

3 NOTATIONS
Assume we have𝑚 users, 𝑛 items, and an implicit feedback matrix
S ∈ R𝑚×𝑛 which contains binary values 0 or 1. S𝑎𝑏 = 1 means
User 𝑎 likes Item 𝑏, S𝑎𝑏 = 0 means User 𝑎 dislikes Item 𝑏 or has an
unknown preference about Item 𝑏. Note that an explicit feedback
matrix R ∈ R𝑚×𝑛 can be converted to S by setting a threshold
(i.e., if R𝑎𝑏 > 3, S𝑎𝑏 = 1, 0 otherwise). Given S, we want to learn
real-valued feature matrices F𝑢 ∈ R𝑚×𝑟 , F𝑖 ∈ R𝑛×𝑟 , and binary
feature matrices H𝑢 ∈ {−1, +1}𝑚×𝑟 , H𝑖 ∈ {−1, +1}𝑛×𝑟 for users
and items. F𝑢𝑎 and F𝑖

𝑏
are User 𝑎’s and Item 𝑏’s continuous features

(i.e., real-valued representations) resepectively. All users and items
are represented by 𝑟 -dimensional vectors.

4 COMPACT CROSS-SIMILARITY
RECOMMENDATION

In this section, we detail themodules and the final objective function
of CCSR.

4.1 Feature Extraction
We use autoencoders to learn continuous features and convert
them into binary codes, following [8, 22]. We do not use multilayer
perceptron as previous literature showed that autoencoders con-
verge faster than multilayer perceptrons [22]. We construct two
autoencoders, one for users and the other for items. The inputs
are user and item low-level features. It can be purchase history,
ratings, and side information such as user’s demographics or item
titles. Here we use a rating matrix as an input: X = R for user, and
Y = R⊤ for items. The autoencoders convert the original input X𝑎

Learning Similarity Preserving Binary Codes for
Recommender Systems

AdKDD ’22, Washington, D.C., USA,

and Y𝑏 into low-dimensional representations F𝑢𝑎 and F𝑖
𝑏
, and pro-

duce reconstructed input X̂𝑎 and Ŷ𝑏 from these low-dimensional
representations. The loss function for the autoencoders is:

L𝑎𝑒 =
∑
𝑎,𝑏

(| |X𝑎 − X̂𝑎 | |2𝐹 + ||Y𝑏 − Ŷ𝑏 | |2𝐹), (1)

4.2 User-item Interaction
The user-item interaction loss function of CCSR consists of two
parts: 1) similarity loss and 2) balance loss. Let’s assume that we
have two data points 𝑎, 𝑏 that come from different modalities (i.e.,
users and items). They have continuous features F𝑢𝑎 , F𝑖𝑏 , as shown
in Figure 1. We define similarity label S𝑎𝑏 . S𝑎𝑏 = 1 implies 𝑎, 𝑏 are
similar, whereas S𝑎𝑏 = 0 implies they are dissimilar.

Similarity loss To measure the similarity between entities from
different modalities, we adopt the Maximum a Posteriori (MAP)
estimation. The logarithm MAP is:

log𝑝 (F𝑢𝑎 , F𝑖𝑏 |S𝑎𝑏) ∝ log𝑝 (S𝑎𝑏 |F𝑢𝑎 , F𝑖𝑏)𝑝 (F
𝑢
𝑎)𝑝 (F𝑖𝑏) (2)

The conditional likelihood for similarity label 𝑆𝑎𝑏 in Equation 2
is: 𝑝 (S𝑎𝑏 |F𝑢𝑎 , F𝑖𝑏) = 𝜎 (⟨F𝑢𝑎 , F𝑖𝑏⟩)

S𝑎𝑏 (1 − 𝜎 (⟨F𝑢𝑎 , F𝑖𝑏⟩))
1−S𝑎𝑏 , where

𝜎 (𝑥) = 1/(1 + 𝑒−𝑥) is the sigmoid function, ⟨⟩ is the inner product
operator. Assuming the priors for F𝑢𝑎 and F𝑖

𝑏
are known and follow

Gaussian distribution, By maximizing Equation 2 , we obtain the
cross-entropy loss for MAP-based similarity:

L𝑠𝑖𝑚 =
∑
𝑎,𝑏

(log(1 + 𝑒 ⟨F
𝑢
𝑎 ,F𝑖𝑏 ⟩) − S𝑎𝑏 ⟨F𝑢𝑎 , F𝑖𝑏⟩). (3)

Note that previous recommender system models estimate the rat-
ings using dot-product similarity between users and items. There-
fore, their loss function is as follows: L′

𝑠𝑖𝑚
=
∑
𝑎,𝑏 (R𝑎𝑏 − ⟨F𝑢𝑎 , F𝑖𝑏⟩)

2.
Balance loss To ensure we use the bit information maximally,

we utilize a balance loss to balances the number of +1 and −1
in the binary code, which is a widely used technique in binary
code learning [6, 20]. Since it is difficult to directly optimize on
binary codes, we apply the balance loss to the continuous features:
L𝑏 =

∑
𝑎,𝑏 (| |F𝑢𝑎⊤1| |2𝐹 + ||F𝑖

𝑏

⊤1| |2
𝐹
) where 1 is a vector of 1s.

As a result, the loss function of CCSR is defined as:

L = L𝑠𝑖𝑚 + 𝜆𝑏L𝑏 + 𝜆𝑎𝑒L𝑎𝑒 (4)

where 𝜆𝑎𝑒 and 𝜆𝑏 are the hyper-parameters to balance between the
losses.

4.3 Binarization
In the previous section, we optimize the model over continuous
features. The binarization can be done by applying a 𝑠𝑖𝑔𝑛 function
to the continuous feature:

ℎ = 𝑠𝑔𝑛(𝑓) =
{
1 𝑓 ≥ 0
−1 𝑓 < 0,

(5)

which is a two-stage binarization. In [4, 18], authors replaced Eq. 5
with a scaled 𝑡𝑎𝑛ℎ function: ℎ = 𝑡𝑎𝑛ℎ(𝛼 𝑓). Starting with 𝛼 = 1,
the method increases 𝛼 exponentially per training epoch so that
eventually 𝑡𝑎𝑛ℎ(𝛼 𝑓) ≈ 𝑠𝑔𝑛(𝑓). This replacement aim to learnining
binary codes by directly optimizing the neural networks (i.e., end-
to-end binarization). However, this approximation still outputs

Table 2: Details of the datasets

Dataset #User #Item #Ratings Density

Movielens1M 6,040 3,952 1,000,209 4.19%
Amazon 35,736 38,121 1,960,674 0.14%
Ichiba 36,314 8,514 1,267,296 0.41%

continuous values. We apply a 𝑠𝑖𝑔𝑛 function to output of 𝑡𝑎𝑛ℎ(𝛼 𝑓)
to get true binary codes. We call this method sign-scaled 𝑡𝑎𝑛ℎ.

5 EXPERIMENTS
In this section, we perform experiments to answer the following
questions: Q1 What is the performance difference when using MF-
based and Cross-modal retrieval-based (CR-based) similarity mea-
surements? Q2 What is the performance difference between differ-
ent binarization methods: sign (S), scaled 𝑡𝑎𝑛ℎ (ST), and sign-scaled
𝑡𝑎𝑛ℎ (SST)? Q3When similarity loss is more effective than rating
reconstruction-based loss?

5.1 Dataset
We use three datasets for the experiments: Movielens1M [9], Ama-
zon (books) dataset [10] and a real-word e-commerce (Ichiba2)
purchase dataset. Movelens1M and Amazon datasets contain ex-
plicit feedback such as movie and book ratings from users. Ichiba
dataset contains purchase histories which are implicit feedback.

Pre-processingWe utilize Movielens1M without any user/item
filtering. Following previous work [8], for Amazon and Ichiba
datasets, we remove users and itemswith insufficient interactions.To
generate the similarity matrix, ratings greater than 3 are converted
to 1, and the rest to 0.

Training/test split For Movielens1M, we followed previous
work [27]. For each user, randomly select 80% ratings for training
and 20% for the test. For Amazon and Ichiba, since they are ex-
tremely sparse, for all ratings, we randomly select 80% for training
and 20% for the test. A detailed datasets summary is listed in Table 2.

5.2 Models
We compared the recommendation performance of the following
models:

(1) Random We randomly select items from all items and rec-
ommend them to each test user.

(2) TopWe select the most frequently rated items from training
data and recommend them to all test users.

(3) CF-S Matrix Factorization method based on Stochastic Gra-
dient Descend with loss function:

∑
𝑎,𝑏 (R𝑎𝑏− < F𝑢𝑎 , F𝑖𝑏 >

)2 + 𝜆 | |F𝑢 | |2
𝐹
+ 𝜆 | |F𝑖 | |2

𝐹
. Continuous features are converted

to binary codes using 𝑠𝑖𝑔𝑛 function.
(4) CFcodeReg [27] This method first solves a relaxed optimiza-

tion problem where features can be continuous and between
-1 and 1. The loss function is:

∑
𝑎,𝑏 (R𝑎𝑏 − 1

2 −
1
2𝑟 < F𝑢𝑎 , F𝑖𝑏 >

)2+𝜆 | |F𝑢 | |2
𝐹
+𝜆 | |F𝑖 | |2

𝐹
,. All features are rounded to the closest

binary code with median threshold.

2https://www.rakuten.co.jp

AdKDD ’22, Washington, D.C., USA,
Shi and Chung

Table 3: NDCG@k of different models on Movielens1M. Binary code lengths are set to 5,10,20, and 40. We highlighted the best results in each
binarization method (ST, SST, and S).

Models @2 @6 @10
5 10 20 40 5 10 20 40 5 10 20 40

Random 0.0094 0.0091 0.0083
Top 0.0 0.3101 0.3196

AECF-C 0.6496 0.7093 0.6750 0.6694 0.7072 0.7358 0.7129 0.7100 0.7420 0.7603 0.7424 0.7393
CCSR-C 0.6861 0.7010 0.6901 0.7246 0.7296 0.7344 0.7255 0.7605 0.7538 0.7605 0.7516 0.7885
AECF-ST 0.6201 0.6862 0.6769 0.6918 0.6762 0.7220 0.7180 0.7246 0.7095 0.7495 0.7458 0.7518
DJSRH-ST 0.5661 0.6020 0.5974 0.5879 0.6274 0.6533 0.6481 0.6409 0.6673 0.6886 0.6845 0.6787
CCSR-ST 0.6820 0.6913 0.6441 0.6610 0.7226 0.7295 0.6841 0.7016 0.7470 0.7542 0.7115 0.7291
AECF-SST 0.5637 0.6798 0.6883 0.5404 0.6233 0.7201 0.7265 0.6032 0.6663 0.7478 0.7526 0.6445
DJSRH-SST 0.5676 0.5825 0.5895 0.5859 0.6319 0.6388 0.6458 0.6446 0.6703 0.6776 0.6835 0.6814
CCSR-SST 0.6492 0.6668 0.6587 0.6609 0.6930 0.7077 0.7108 0.7138 0.7238 0.7384 0.7438 0.7486

CF- S 0.5492 0.5599 0.5672 0.5833 0.6172 0.6198 0.6297 0.6450 0.6593 0.6613 0.6698 0.6840
CFCodeReg 0.5692 0.5690 0.5738 0.5728 0.6314 0.6303 0.6323 0.6317 0.6712 0.6701 0.6724 0.6711
AECF-S 0.4983 0.5555 0.5310 0.4874 0.5817 0.6154 0.5989 0.5689 0.6311 0.6534 0.6423 0.6175
CCSR-S 0.6332 0.6523 0.6912 0.7402 0.6997 0.7128 0.7277 0.7677 0.7371 0.7475 0.7529 0.7897

(5) AECF We use autoencoders introduced in Section 4 with a
rating reconstruction loss.The loss function is:

∑
𝑎,𝑏 ((R𝑎𝑏− <

F𝑢𝑎 , F𝑖𝑏 >)2 + 𝜆𝑎𝑒L𝑎𝑒 . The number of layers and the size of
layers are set after cross-validation. The hidden-layer sizes
are 512, 256 and 128 for the three-layer encoder and 128, 256,
and 512 for the decoder. Depending on the binarization meth-
ods, we have AECF-S with a 𝑠𝑖𝑔𝑛 function, AECF-ST with
a scaled 𝑡𝑎𝑛ℎ function, and AECF-SST with a sign-scaled
𝑡𝑎𝑛ℎ function.

(6) DJSRH [18] Deep joint-semantics reconstructing hashing
(DJSRH) is the state-of-the-art compact cross-modal retrieval
model. It uses semantic loss in both single-modality and
cross-modality for better performance. The features come
from a MLP with two hidden layers whose sizes are 512
and 256. It utilizes an unsupervised similarity loss: | |𝜇M −
F𝑢F𝑖⊤ | |2F, where M is a joint semantics affinity matrix that
includes both single and cross modality similarities (M =

(1 − 𝜂)N + 𝜂NN⊤,N = 𝛽XX⊤ + (1 − 𝛽)YY⊤). 𝜂 and 𝛽 are
parameters to balance between different terms. We have
DJSRH-ST and DJSRH-SST.

(7) CCSR Our proposed method. The loss function is Equa-
tion 4. We choose a one-layer encoder/decoder using cross-
validation. The size of the hidden-layer is 128 for the en-
coder/decoder. We also investigate different binarization
methods: CCSR-S, CCSR-ST, and CCSR-SST.

The first two models are rule-based. The following four methods
are MF-based and the last two are CR-based. Besides binarized
AECF and CCSR, we also performed the AECF and CCSR with
continuous-values, noted as AECF-C and CCSR-C, for reference.

We trained and tuned DJSRH using the code provided by the au-
thors3. We carefully implemented and tuned the rest of the models.
In CF and CFcodeReg, we set 𝜆 = 0.4. In AECF and CCSR models,
we cross-validated the hyper parameters and finally set 𝜆𝑎𝑒 = 0.1,
𝜆𝑏 = 0.0001 for Movielens1M and 𝜆𝑎𝑒 = 10, 𝜆𝑏 = 0.0001 for Amazon
3https://github.com/zzs1994/DJSRH

and Ichiba. We added one dropout layer before last encoder layer
in both AECF and CCSR. We set the dimension of feature vectors
(i.e., the binary code length) to 5, 10, 20, and 40. Dropout rate was
set at 0.6 for code length 5, 10 and 20 experiments, and 0.8 for code
length 40 through cross-validation.

5.3 Evaluation Metrics
We use Normalized Discounted Cumulative Gain (NDCG)@k as
the evaluation matrices. We recommend the top-k items to a query
user. The top-k items are ranked based on the Hamming distance
between binary codes of a query user and the items in the database.

5.4 CR-based Recommender v.s. MF-based
Recommender (Q1)

In Table 3, 4, and 5 we show NDCG results on Movielens1M, Ama-
zon, and Ichiba. CCSR-Smodels achieve the best performance across
different binary code length in all models with 𝑠𝑖𝑔𝑛 binarization on
Movielens1M. It has an average 15.21%NDCG relative improvement
compared to the best MF-based models. On Amazon dataset, CCSR-
S performed as good as the best MF-based model and CCSR-ST
outperforms all MF-based models. On the Ichiba purchase dataset,
the CR-based model DJSRH performs best, followed by the CCSR
model. We conclude that CR-based similarity loss is better than
MF-based loss in the top-k recommendation task. This is because
the former loss emphasizes more on similarity learning which is
more important for the recommendation task. The latter focuses on
rating reconstruction which is an indirect approach to the task and
may cause over-fitting. While performance still increases when we
increase feature size from 20 to 40 in CCSR models, AECF models
suffer from performance drop. We present a further analysis in
Section 5.6.

Among MF-based models, AECF achieves the best performance
because it uses neural feature extractors. Among CR-based models,
CCSR performs better than DJSRH on Movielens1M. This is reason-
able since unsupervised similarity measurements in DJSRH are less

Learning Similarity Preserving Binary Codes for
Recommender Systems

AdKDD ’22, Washington, D.C., USA,

Table 4: NDCG@k of different models on Amazon

Models @2 @6 @10
5 10 20 40 5 10 20 40 5 10 20 40

Random 0.0003 0.0003 0.0001
Top 0.0132 0.0327 0.0485

AECF-C 0.7919 0.7915 0.7944 0.7930 0.8563 0.8558 0.8578 0.8566 0.8822 0.8816 0.8834 0.8824
CCSR-C 0.7875 0.7883 0.7880 0.7895 0.8526 0.8522 0.8526 0.8539 0.8791 0.8791 0.8792 0.8801
AECF-ST 0.7800 0.7716 0.7810 0.7835 0.8471 0.8419 0.8478 0.8489 0.8748 0.8705 0.8752 0.8765
DJSRH-ST 0.7460 0.7653 0.7707 0.7792 0.8263 0.8381 0.8412 0.8469 0.8579 0.8673 0.8701 0.8744
CCSR-ST 0.7833 0.7869 0.7837 0.7870 0.8490 0.8521 0.8503 0.8530 0.8762 0.8786 0.8770 0.8792
AECF-SST 0.7657 0.7500 0.7817 0.7733 0.8377 0.8288 0.8485 0.8432 0.8670 0.8599 0.8759 0.8714
DJSRH-SST 0.7610 0.7617 0.7627 0.7698 0.8356 0.8372 0.8379 0.8421 0.8654 0.8668 0.8676 0.8709
CCSR-SST 0.7632 0.7633 0.7518 0.7530 0.8355 0.8362 0.8285 0.8306 0.8657 0.8658 0.8598 0.8614

CF-S 0.7661 0.7673 0.7680 0.7691 0.8399 0.8409 0.8422 0.8428 0.8692 0.8700 0.8711 0.8716
CFCodeReg 0.7657 0.7650 0.7653 0.7663 0.8398 0.8400 0.8405 0.8413 0.8692 0.8693 0.8698 0.8704
AECF-S 0.7703 0.7755 0.7818 0.7793 0.8411 0.8447 0.8481 0.8477 0.8697 0.8726 0.8756 0.8750
CCSR-S 0.7707 0.7685 0.7648 0.7752 0.8420 0.8408 0.8381 0.8446 0.8705 0.8697 0.8676 0.8725

Table 5: NDCG@k of different models on Ichiba

Models @2 @6 @10
5 10 20 40 5 10 20 40 5 10 20 40

Random 0.0010 0.0013 0.0009
Top 0.0558 0.1113 0.1550

AECF-C 0.9180 0.9233 0.9199 0.9168 0.9508 0.9537 0.9506 0.9479 0.9606 0.9628 0.9604 0.9581
CCSR-C 0.9216 0.9236 0.9196 0.9293 0.9482 0.9567 0.9561 0.9531 0.9593 0.9607 0.9677 0.9625
AECF-ST 0.9062 0.9141 0.8955 0.9108 0.9386 0.9473 0.9387 0.9474 0.9512 0.9574 0.9513 0.9578
DJSRH-ST 0.8730 0.9202 0.9406 0.9656 0.9196 0.9491 0.9593 0.9730 0.9385 0.9597 0.9674 0.9784
CCSR-ST 0.9095 0.9166 0.9124 0.9227 0.9437 0.9487 0.9463 0.9526 0.9551 0.9588 0.9572 0.9617
AECF-SST 0.9020 0.8951 0.9016 0.9072 0.9377 0.9389 0.9365 0.9398 0.9510 0.9511 0.9500 0.9523
DJSRH-SST 0.8954 0.9119 0.9188 0.9434 0.9365 0.9464 0.9497 0.9629 0.9500 0.9577 0.9602 0.9705
CCSR-SST 0.9145 0.9066 0.8965 0.8695 0.9449 0.9384 0.9317 0.9187 0.9562 0.9512 0.9464 0.9369

CF-S 0.8915 0.8921 0.8927 0.8956 0.9329 0.9339 0.9338 0.9352 0.9475 0.9482 0.9483 0.9494
CFCodeReg 0.8913 0.8911 0.8875 0.8856 0.9327 0.9322 0.9307 0.9300 0.9475 0.9470 0.9457 0.9452
AECF-S 0.9150 0.9102 0.9123 0.9123 0.9454 0.9416 0.9430 0.9426 0.9566 0.9532 0.9547 0.9542
CCSR-S 0.9169 0.9104 0.9026 0.9158 0.9467 0.9432 0.9384 0.9478 0.9576 0.9548 0.9513 0.9583

powerful than supervised measurements when data density is rela-
tively high. However, on Ichiba dataset, DJSRH achieves better per-
formances. Besides the effects of low data density, the low diversity
in input features (implicit) in Ichiba also makes autoencoder-based
CCSR less competitive.

5.5 Different Binarization Methods (Q2)
Recent papers prefer the scaled 𝑡𝑎𝑛ℎ (ST) function to 𝑠𝑖𝑔𝑛 (S) func-
tion because ST can be computed in the back-propagation step and
learn binary codes in the end-to-end fashion. However, the output
of ST is not binary code, so it is unfair to compare the performance
of ST with S or SST whose output is binary.We find the performance
drops drastically when we switch from ST to SST. In Table 3, for each
method, NDCG value decreases more than 1% when the output of
ST was forced to be binary (SST). We explain the possible reasons

in Figure 2. In summary, the performance change is because of the
limited representation power of binary codes.

The drop by SST in AECF and CCSR is higher than the drop in
DJSRH. This might be due to the different focuses in the similarity
loss; DJSRH compares the similarities in a batch (rank loss between
different users and items), so it learns robust codes. AECF and
CCSR only consider pair-wise loss (only between one user and one
item). Thus, AECF and CCSR are more likely to be affected by the
precision drop of feature values.

5.6 Similarity loss v.s. Rating reconstruction
loss (Q3)

In this section, we investigate when similarity loss works better
for recommendation tasks. To remove the effect of binary loss, we
investigate the result of AECF-C and CCSR-C models. We separate
test users into two groups: the first group that obtained better results

AdKDD ’22, Washington, D.C., USA,
Shi and Chung

[-1, 1] [1, 1]

[1, -1][-1, -1]

a

b

c

[-1, 1] [1, 1]

[1, -1][-1, -1]

a

b

c

ContinuousBinary

Figure 2: A toy example of converting continuous features to vari-
ous binary features (ST and SST). Left: general limitations of binary
features. Even though 𝑎 is more similar to 𝑏 than to 𝑐 in continuous
space, after being converted to binary codes, 𝑎 is more similar to 𝑐

than to 𝑏 when comparing Hamming distance. Right: limitations of
SST: In ST models, continuous features are close to +1 and -1, 𝑎 is
more similar to 𝑏 than to 𝑐. But 𝑏 and 𝑐 are equally similar to 𝑎 after
converting use SST.

Table 6: Chi-squared statistics of user’s characteristics in Movie-
lens1M.* indicates the value is statistically significant (𝑝 ≤ 0.05)

code length # of ratings avg. ratings std. ratings
5 47.41∗ 0.26 0.02
10 5.93∗ 0.05 0.08
20 2.37 0.33 0.53
40 8.96∗ 0.03 0.11

-25.00% -20.00% -15.00% -10.00% -5.00% 0.00% 5.00%

Avg # ratings per user

Std ratings per user

Avg ratings per user

Figure 3: Relative differences of the three characteristics between
two user groups with code length 40 on Movielens1M.

in NDCG@10 with CCSR-C, and the second group with the better
results with AECF-C. Then, we computed Chi-squared statistics of
user characteristics for classifying these user groups and listed in
Table 6. We can see the number of ratings is the most important
feature for classification. We further compared the ratio of the raw
values of features in both groups in Figure 3 and conclude that
CCSR is helpful for users who rated less items and with higher rating
variances. This makes sense since: (1) AECF benefits more from
more ratings as it tries to reconstruct original ratings to learn the
representations. (2) with higher rating variance, CR-based models
learn better representations using similar and dissimilar pairs.

6 CONCLUSION
In this paper, we proposed a new hashing-based RS, Compact Cross-
Similarity Recommender. To the best of our knowledge, this is the

first work that builds efficient recommender systems from the view-
point of compact neural cross-modal retrieval. From extensive stud-
ies of several large-scale datasets, we observed the performance
changes on different datasets while using the same model. It sug-
gested us using different models based on data sparsity and data
types. We also studied different binarization methods and discov-
ered that scaled 𝑡𝑎𝑛ℎ suffered from the performance drop when its
codes were converted to the binary.

REFERENCES
[1] Jan Van Balen and Mark Levy. 2019. PQ-VAE: Efficient Recommendation Using

Quantized Embeddings. In ACM RecSys 2019 Late-breaking Results.
[2] Michael M. Bronstein, Alexander M. Bronstein, Fabrice Michel, and Nikos Para-

gios. 2010. Data fusion through cross-modality metric learning using similarity-
sensitive hashing. In CVPR’10. 3594–3601.

[3] Yue Cao, Bin Liu, Mingsheng Long, and Jianmin Wang. 2018. Cross-Modal
Hamming Hashing. In The European Conference on Computer Vision (ECCV).

[4] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. 2017. HashNet:
Deep learning to hash by continuation.. In ICCV. 5608–5617.

[5] Yong Chen, Yuqing Hou, Shu Leng, Qing Zhang, Zhouchen Lin, and Dell Zhang.
2021. Long-Tail Hashing. In SIGIR ’21. 1328–1338.

[6] Guiguang Ding, Yuchen Guo, and Jile Zhou. 2014. Collective Matrix Factorization
Hashing for Multimodal Data. In CVPR’14. 2083–2090.

[7] Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, and
Christina Lioma. 2019. Unsupervised Neural Generative Semantic Hashing. In
SIGIR’19.

[8] Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, and
Christina Lioma. 2020. Content-aware Neural Hashing for Cold-start Recom-
mendation. In SIGIR’20. 971–980.

[9] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. In ACM Transactions on Interactive Intelligent Systems (TiiS).

[10] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual
Evolution of Fashion Trends with One-Class Collaborative Filtering. In ACM
Conference on World Wide Web (WWW’16).

[11] Qing-Yuan Jiang and Wu-Jun Li. 2017. Deep Cross-Modal Hashing. In CVPR’17.
3232–3240.

[12] Alexandros Karatzoglou, Alex Smola, and Markus Weimer. 2010. Collaborative
Filtering on a Budget. In AISTATS. 389–396.

[13] Defu Lian, Haoyu Wang, Zheng Liu, Jianxun Lian, Enhong Chen, and Xing Xie.
2020. LightRec: A Memory and Search-Efficient Recommender System.

[14] Chenghao Liu, Tao Lu, Xin Wang, Zhiyong Cheng, Jianling Sun, and Steven C.H.
Hoi. 2019. Compositional Coding for Collaborative Filtering. In SIGIR’19.

[15] Zhi Lu, Yang Hu, Yunchao Jiang, Yan Chen, and Bing Zeng. 2019. Learning Binary
Code for Personalized Fashion Recommendation. In CVPR.

[16] Dinghan Shen, Qinliang Su, Paidamoyo Chapfuwa, Wenlin Wang, Guoyin Wang,
Lawrence Carin, and Ricardo Henao. 2018. NASH: Toward End-to-End Neural
Architecture for Generative Semantic Hashing. In ACL.

[17] Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan,
Yiqun Liu, and Shaoping Ma. 2020. Beyond User Embedding Matrix: Learning to
Hash for Modeling Large-Scale Users in Recommendation. In SIGIR’20. 319–328.

[18] Shupeng Su, Zhisheng Zhong, and Chao Zhang. 2019. Deep Joint-Semantics
Reconstructing Hashing for Large-Scale Unsupervised Cross-Modal Retrieval. In
ICCV’19.

[19] Qiaoyu Tan, Ninghao Liu, Xing Zhao, Hongxia Yang, Jingren Zhou, and Xia Hu.
2020. Learning to Hash with Graph Neural Networks for Recommender Systems.
In WWW’20. 1988–1998.

[20] YairWeiss, Antonio Torralba, and Rob Fergus. 2009. Spectral Hashing. InAdvances
in Neural Information Processing Systems, D. Koller, D. Schuurmans, Y. Bengio,
and L. Bottou (Eds.), Vol. 21. 1753–1760.

[21] Wei Wu, Bin Li, Chuan Luo, and Wolfgang Nejdl. 2021. Hashing-Accelerated
Graph Neural Networks for Link Prediction. In WWW ’21. 2910–2920.

[22] Zhenghua Xu, Thomas Lukasiewicz, Cheng Chen, Yishu Miao, and Xiangwu
Meng. 2017. Tag-Aware Personalized Recommendation Using a Hybrid Deep
Model. In IJCAI.

[23] Hanwang Zhang, Fumin Shen,Wei Liu, XiangnanHe, Huanbo Luan, and Tat-Seng
Chua. 2016. Discrete Collaborative Filtering (SIGIR’16). 325–334.

[24] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete Personalized Ranking
for Fast Collaborative Filtering from Implicit Feedback. In AAAI. 1669–1675.

[25] Y. Zhang, J. Wu, and H. Wang. 2019. Neural Binary Representation Learning for
Large-Scale Collaborative Filtering. IEEE Access 7 (2019), 60752–60763.

[26] Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si. 2014. Preference Preserv-
ing Hashing for Efficient Recommendation (SIGIR’14). 183–192.

[27] Ke Zhou and Hongyuan Zha. 2012. Learning Binary Codes for Collaborative
Filtering (KDD’12). 498–506.

	Abstract
	1 Introduction
	2 Related Work
	3 Notations
	4 Compact Cross-Similarity Recommendation
	4.1 Feature Extraction
	4.2 User-item Interaction
	4.3 Binarization

	5 Experiments
	5.1 Dataset
	5.2 Models
	5.3 Evaluation Metrics
	5.4 CR-based Recommender v.s. MF-based Recommender (Q1)
	5.5 Different Binarization Methods (Q2)
	5.6 Similarity loss v.s. Rating reconstruction loss (Q3)

	6 Conclusion
	References

