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ABSTRACT
When a business sells to another business (B2B), the buying busi-
ness is represented by a group of individuals, termed account, who
collectively decide whether to buy. The seller advertises to each
individual and interacts with them, mostly by digital means. The
sales cycle is long, most often over a few months. There is het-
erogeneity among individuals belonging to an account in seeking
information and hence the seller needs to score the interest of each
individual over a long horizon to decide which individuals must
be reached and when. Moreover, the buy decision rests with the
account and must be scored to project the likelihood of purchase, a
decision that is subject to change all the way up to the actual deci-
sion, emblematic of group decision making. We score decision of
the account and its individuals in a dynamic manner. Dynamic scor-
ing allows opportunity to influence different individual members
at different time points over the long horizon. The dataset contains
behavior logs of each individual’s communication activities with
the seller; but, there are no data on consultations among individuals
which result in the decision. Using neural network architecture,
we propose several ways to aggregate information from individ-
ual members’ activities, to predict the group’s collective decision.
Multiple evaluations find strong model performance.

CCS CONCEPTS
• Applied computing→ Electronic commerce.
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1 INTRODUCTION
In business to business marketing (B2B), a buying organization
procures products and services from a supplying organization. An
example of a product in this setting is an enterprise software system.
The buyer is represented by many individuals, to each of whom the
supplier advertises and interacts digitally, generating the behavior
log data we use. The data also contain the buy/no-buy decision. The
individuals belonging to the buyer, termed an account (or, group),
make a collective decision of whether to procure by consulting
among themselves, but that data of consultations are not available.
B2B’s contribution to the Web’s success is foremost: “[t]he global
B2B eCommerce market valuing USD 12.2 trillion in 2019 is over 6
times that of the B2C [business to consumer] market" 1 , and B2B’s
digital marketing growth is at par with that of the more commonly
studied B2C setting 2. A B2B setting [1, 15] demands consideration
of three research aspects: (a) the group collaboratively decides
whether to buy and the decision is dynamic; (b) differences exist
among the individuals’ interactions with the supplier; (c) over the
long purchase cycle, depending on scoring the group dynamics, the
supplier engages with the individuals, including allocating costly
human salespersons toward some individuals, but not toward all
individuals in the group. The scoring models in machine learning
(ML) are largely geared toward individual user’s action [11–13, 23],
but ignore group decision making or group level action, where
members of a group collaboratively decide.

These research aspects call for a model that jointly scores (i)
prediction of the group decision, (ii) the group dynamics, and (iii)
subject to (i) and (ii), the individuals’ dynamics. A modeling aspect
intrinsic to the problem posed in (i) and (ii) is now noted. The task
is not about predicting whether an account procures (hereafter,
converts) eventually, regardless of the time it takes to convert. Such
a task is easier to predict with high accuracy since for every group
the ground truth outcome is either buy or no-buy. Instead, the task
is to predict purchase probability at every time period so that the
supplier can allocate appropriate resources to the group according
to the probability. For our model to perform well it must predict no-
conversion of the account for prior time periods, and then predict
conversion if and when it is likely to occur. Another modeling
aspect intrinsic to (iii) is that the group-level dynamic scoring
occurs concurrently with scoring every individual in the group
for the supplier to target resources differentially to the individuals
within a group. All this makes our problem more interesting than
previous scoring models.

1https://www.statista.com/study/44442/statista-report-b2b-e-commerce/
2https://cmosurvey.org/wp-content/uploads/2019/08/The_CMO_Survey-Highlights-
and_Insights_Report-Aug-2019-1.pdf, pp. 20
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Our attention-based network predicts both an account’s collec-
tive decision to convert [7, 14] and scores each individual in the
group, for every time period. The ability of the attention network
to assign different decision making weights to different individu-
als in the group makes it appropriate for the joint scoring task at
hand. For group decisions, evaluations on test data of a separate
set of accounts, with known decision outcomes, find strong model
performance.

Our contributions are in Jointly Scoring:
• Collaborative group decision only from activity data of indi-
vidual members of the group, without any data of consulta-
tions among individual members.

• Dynamics of the group’s decision.
• Dynamics of each individual in the group for differently
allocating resources to them at different time periods.

2 RELEVANT LITERATURE
Individual user-level scoring models dot the ML literature. Individ-
ual scoring models include: retargeting users who visit a site but
do not buy, early detection of users who are likely to exit without
buying by modeling clickstream, early prediction of shopping be-
havior from live clickstream, and next-best-action marketing and
personalization from clickstream [4, 11, 19, 23]. These papers lever-
age a variety of models from hand-crafted timing and transition
models, to traditional classifiers to neural networks. In predicting
user behavior for marketing interventions in real-time [13] sug-
gests an ensemble combining neural networks and conventional
classifiers. These papers make valuable contributions in the space of
individual user behaviors. But, they do not address the joint scoring
problem for group decision. A recent work examines outcomes of
team movement [18]. In computer science, group decision making
is less attended; an exception [17] uses survey data and domain
knowledge which provide input for the subjective weights among
attributes. Other scoring models are the mainstay of learning to
rank research across multiple fields [9, 20], with a long-established
literature [16]. The premise of this literature is distinct from that of
our group decision premise. For completeness, we make note of the
literature on multi-agent learning [8] and multi-armed bandit [6],
but it does not examine a group’s collective decision.

The literature on group decision making in the social sciences [3,
5, 14] make strong contributions; however, it restricts to reliance
on human studies, survey data, or subjective judgment. By contrast,
we use ML on actual activity behavior log and jointly score the
group and its individuals dynamically.

Our modeling framework comes from Attention Network [2],
Hierarchical Attention Network (HAN) in Vision [21], and Natural
Language Processing [22]. We modify HAN for group-decision
making and joint dynamic scoring. The attention network is suitable
for this problem since it can assign different weights to different
individuals in the group during the decision making process.

3 BENEFITS OF JOINT, DYNAMIC SCORING
Figure 1 shows two samples: for account 229 (left) the account
level scores stay flat and at a low value, while individuals’ scores
have higher values; for account 282 (right) account scores stay
flat for several weeks, before shooting up, suggesting a higher

likelihood of conversion of account from this point onward. There
is no fixed pattern of these dynamics as observed across all accounts
in our data; instead, the patterns are idiosyncratic to the behavior
of individuals belonging to an account. The group score can be
used to rank among different accounts to determine which account
receives what kind of attention from the supplier. Conditional on
appropriate attention to a group, a supplier can use individual scores
to rank-order individuals belonging to the same group, and can
decide to send communications accordingly. For example, to some
individuals who score high, it can direct salespersons to contact
them by phone, while to individuals scoring low it can stay with
automated communications (e.g., email). Later, as described in the
architecture (Figure 2), the group score is obtained as the output of
the network and the individuals’ scores are recovered before the
aggregation layer.

Figure 1: Scores for two illustrative accounts (groups), 229 on
the left and 282 on the right graph.

4 DATA
The data from a supplier comprise time-stamped activities of indi-
viduals, who communicate back and forth with the supplier. Our
data of logs is confined to activities based on marketing email com-
munications between a supplier and every individual belonging to
the accounts, typical in such organizational setting. The data do not
show any other forms of communications between the supplier and
individuals (e.g., no data on phone or direct email communication
with supplier’s personnel, nor, any consultations among individu-
als). Different individuals belong to different accounts, across many
industries. An individual is uniquely mapped to an account obeying
a many-to-one relationship, both of which are identified through
an encrypted ID. Thus, we identify the set of individuals belonging
to every account; no individual belongs to multiple accounts. The
cardinality of this set varies from 3 to 25, across accounts, reflecting
the different sizes of prospective businesses and the size of the prob-
able purchase. Each individual’s time-stamped activities, stitched
through individual-specific ID, are ordered in time sequence. This
sequence has a maximum (minimum) of 114 (1) activities per week
per individual with 90%-ile occurring at 8. Some individuals have
a short duration of activities (at least a week), while others have
activities over many months (at most 35 weeks with 90%-ile at
27). Even for individuals with a prolonged duration of activities,
there are periods of no activity. The dataset is not unusual, online
suppliers possess this kind of log data.

Description of the data spanning 8 months, is provided in Ta-
ble 1. The data do not include subject line or body of the email.
Individuals who opt-out of emails are not included in the analysis.
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The target label is a conversion or not for each account, along with
the timestamp of when the account converts.

Types of
Information Features / Variables

Dynamic Activities of
Individuals

open email, click email, send email,
unsubscribe email, open sales email, click
sales email, send sales email, forwarded
email received, forwarded email sent

Static Features of
Individuals

source of arrival, opt out of email, opt out of
phone

Static Features of
accounts revenue, number of employees

Table 1: Data Description: Data of 9 activities over 8 months
for each individual. The top 3 activities are italicized. The
second row shows 3 categorical static features, vary by indi-
viduals. The third row shows group level two static features,
they do not vary across individuals within the group; vary
by groups.

Typical of logs of activities in an organizational setting, no data
on individuals’ consultations within the group are available. There
is heterogeneity in time periods at which different individuals,
belonging to an account, onboard onto the supplier’s system. That
is, some individuals have fewer periods of activities and less data
for training. The long purchase cycle (property 2) exacerbates this
heterogeneity in data for training.

5 MODEL ARCHITECTURE FOR SEQUENCE
OF ACTIVITIES

The model architecture satisfies the following criteria necessitated
by dynamic scoring: (a) Scoring of group decision to convert is
obtainable for every time period, where the duration of the time
period can be set to any desired value. Criterion (a) calls for defining
a time period to organize data. (b) For the same account, (b-i) some
individuals establish early contact with the supplier to seek infor-
mation, while other individuals contact the supplier closer to the
decision; and (b-ii) some individuals show no activities in some time
periods. Criteria (b-i) and (b-ii) suggest organizing data into rolling
windows comprising multiple time periods, and compression of
time periods of activities into contiguous periods of activity.

5.1 Data Organization
One, for this implementation, the time period is weekly, Sunday
through Saturday. A reason for the use of a week is that many
suppliers score models on a weekly basis. We emphasize that this is
not a restriction, other time periods can also be selected. Two, for
model training, we seek multiple data samples for each individual
belonging to an account, by organizing data into a rolling window
of four weeks. The choice of 4 weeks is judgmental to balance
the dueling forces of (i) a minimum number of windows to link
individuals’ activities over weeks, which are used for scoring the
account, and (ii) an adequate number of rolling windows from
which to sample for training the network. For example, using week
1 to week 4 data for individuals belonging to the account, we predict
the probability of account converting in the 5-th week, using week

2 to week 5 data we predict the probability of account converting
in the 6-th week, and so on. In unreported results, we use six weeks
as well, with little impact on results. Three, based on a histogram
of number of activities in a week across all individuals in the data,
sequence length of up to 9 activities captures 96 percentile of all
data. We choose a vector of fixed length 9 to represent sequence of
actions.

Figure 2: Network for Sequence of Activities, for an account
with multiple individuals. An individual’s sequence of ac-
tivities for a week is encoded in the activity layer, sequence
of representations across weeks (rolling window) is encoded
in the week layer. Individual-specific representations are
encoded in the personalized layer, then aggregated for the
group’s collective decision to convert.

5.2 Model - Hierarchical Attention Network
In using Hierarchical Attention Network (HAN) [2, 21, 22] our
modification arises in the use of aggregation of information across
individuals in the third, or, top layer of the network; and in the
use of different aggregation functions. See Figure 2. The bottom,
activity layer encodes an individual’s sequence of activities for one
week and outputs that week’s representation after passing through
an attention layer. We do not predict the following week’s sequence
of activities, eliminating the need for a decoder. Representations of
individual’s activities for four weeks, comprising a rolling window,
are obtained and encoded in the middle, week layer. After passing
through the attention layer, it outputs the individual’s representa-
tion for a rolling window. In this manner, a representation vector
is obtained for each individual, which along with the individual’s
static features, are passed through the top, fully connected (FC)
layer, specific to that individual, producing an output for each indi-
vidual. The outputs from different FC layers for different individuals
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belonging to the account are combined along with static character-
istics of the account. This combination occurs through an aggregate
function to give the account’s collective decision to convert in the
subsequent week. Note that each individual has the same static
characteristics since they belong to the same account. The loss is
defined as the cross-entropy between the predicted conversion and
whether the conversion actually occurred in the subsequent week.
We run several experiments with different aggregate functions. The
network’s technical details follow [22], noting that we have one
additional hierarchical level, the third level of personalized layer.

For the activity layer we use a Gated Recurrent Unit (GRU)
[10] for encoding sequence of activities and weeks. Given that an
account has 𝐾 individuals, the activity layer encodes information
of activities performed in a single week by the individual.

The week layer encodes information of activities performed by
an individual in a rolling window of a specified number of weeks.
As explained earlier, given the data at hand, the length of the rolling
window is judgmentally set at four weeks.

The personalized layer encodes information from weekly activi-
ties performed concatenated with static features for 𝑘-th individual.
Static features vary across individuals. This layer computes a value
representing that individual’s likelihood for conversion.

P𝑘 =
−→
𝐹𝐶 (𝑜𝑘 ), 𝑘 ∈ [1, 𝐾] (1)

Finally, aggregation across individuals is performed. For dif-
ferent aggregation methods, different specifications are used as
appropriate and discussed in the next section. After aggregation,
static features of the account are concatenated and passed through
another fully connected layer to yield a probability score denoting
the likelihood of the account to convert. Note that the account static
features are common for all individuals belonging to the account.

𝑃 (account converts), P = −−→
𝑓𝑎𝑔𝑔 (P1, P2, . . . , P𝐾 ) (2)

5.2.1 Objective Function. The objective is tominimize cross-entropy
loss, L in predicting conversion of the account; that is, 𝐿 = −𝑤 ∗
𝑦 log(P) − (1−𝑦) log(1−P) , where P is the predicted probability of
conversion for the account,𝑦 is a binary target for actual conversion
and𝑤 is a weight penalty.

5.3 Hyperparameters
For the activity layer, the hidden sizes are {40, 56}; for the week
layer, it is 20. Weight penalty in loss𝑤 lies in {500, 750} to handle
the severe class imbalance mentioned above. An Adam optimizer is
used for training with a learning rate of 0.01. The number of epochs
run is [20,50], with no perceptible change in convergence.

6 AGGREGATION METHODS
Several aggregation methods are proposed, classified as: network
methods, and statistical functions.

6.1 Neural Network Methods
6.1.1 FNN. Using the individual’s representation vector and ac-
count static features we concatenate and pass them through a neu-
ral network to give a probability of conversion. We used a vanilla
variant with 2 hidden layers followed by a Sigmoid activation to
generate the probability of conversion.

6.1.2 Many-to-One GRU. Representation vector for each individ-
ual is passed through a many-to-one GRU layer in order the individ-
ual arrives in supplier’s data. This output along with the account’s
static features is then passed through an FNN with Sigmoid activa-
tion to get the probability of conversion.

6.1.3 Many-to-Many GRU followed by Attention. Similarly, repre-
sentation vector for each individual is passed through a many-to-
many GRU layer. Its output is then passed through an attention
layer to obtain individual-specific contextual weights. This output
along with the account’s static features is then passed through a
simple FNN with Sigmoid activation to get a probability of conver-
sion. The attention mechanism learns weights for each individual’s
alignment with the group decision and is analogous to the previ-
ously described attention mechanisms, but applied to individuals.

6.2 Statistical Functions
We implement statistical aggregation of information across indi-
viduals by considering the probability of conversion of an account
as a function of probabilities of conversion of individuals belong-
ing to the account. Seeking P𝑘 as a scalar output in the personal-
ized layer, let the probability of conversion of 𝑘-th individual be,
𝑝𝑘 = 1

1+𝑒𝑥𝑝 (−P𝑘 )

6.2.1 Max probability. A direct way to decide the conversion of an
account is by assuming that if an individual converts, the account
converts. Under this assumption we select the maximum probability
among all individuals who belong to the account and use it as the
probability that the account converts, P = max𝑘∈[1,𝐾 ] 𝑝𝑘

6.2.2 Probability at least one individual converts. In this variation,
we assume that if at least one individual converts, the account con-
verts. Under this assumption we define the probability that account
converts as the 1 minus the probability none of the individuals
converts, P = 1 −∏𝐾

𝑘=1 (1 − 𝑝𝑘 )

6.2.3 Geometric Mean. Since we work with the conversion proba-
bility for each individual belonging to the account, another aggre-
gation can be the geometric mean of the probabilities of conver-
sion of individuals, as the probability of conversion of the account,
P = 𝐾

√︃∏𝐾
𝑘=1 𝑝𝑘 . For probabilities, an average is better represented

by the geometric mean rather than the arithmetic mean.

7 EXPERIMENTS AND RESULTS
7.1 Data Split
Our test data is a collection of accounts completely separate from
the set of accounts in the training data. By implication, the set of
individuals in the test data is distinct from those in the training data.
Hence, there is no information leakage across individuals between
train and test datasets. There are a total of 9767 individuals spanning
across 2135 accounts in the train set and 1800 individuals spread
across 381 accounts in the test set.

7.2 Performance Metric
Evaluation is performed for the ability of the proposed and baseline
models to predict conversion / no-conversion of each group per
time period. The test and train data remain the same across all
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experiments. Two important empirical implications emerge from
the joint dynamic scoring of the group and its individuals. One,
within a specific choice of time period and size of the rolling win-
dow, we compare multiple proposed models among themselves and
with baselines. Thus, the comparisons remain valid since all use
the same time period and size of the rolling window. Two, That is,
an eventually converted group (positive sample) appearing in the
data, appears as non-converted (negative sample) in all time periods
prior to the time period in which it converts, rendering very few
positive samples overall. Besides, there is no benchmark threshold
that can be used to judge the predictive performance of the model
for all time periods, since the supplier’s threshold for allocating
resources to individuals in the group changes over time periods. By
contrast, a typical problem in scoring models is whether an account
eventually converts, regardless of time. For this static prediction,
a benchmark threshold is fixed and come from the proportion of
eventual converts (positive samples). Given such benchmark thresh-
old, performance measures such as recall, precision, and f1-score
are relevant. In dynamic scoring, the threshold varies based upon
the long duration of purchase cycle, and the types of product, and
is not discernible from data. The duration can be from 6 months
to 18 months. Averaging thresholds over a long duration is not
meaningful. Hence, we use AUC to show results, which is threshold
independent and can be averaged across time periods.

7.3 Baseline Models
We seek baselines that can do joint scoring, to have a like compari-
son with the proposed models.

7.3.1 Baseline 1. It maintains the sequence of activities similar to
our proposed model. Scoring of individuals, but who are not subject
to a group decision, is the existing standard. Thus, we use individ-
ual scoring, with modification for dynamic scoring of individuals
and their group. To implement baseline 1, we eliminate the group
decision aggregation layer of the architecture (Figure 2) and replace
the group level loss function with a loss function for each individual
within the group. The target label for each individual in a group is
the target label for the group, capturing the idea that when a group
converts it is isomorphic to each individual converting. Consistent
with our goal, the individual scoring is dynamic. The individuals’
scores within a group are added per time period, and normalized
to obtain the group dynamic scores.

7.3.2 Baseline 2. It uses the frequency of activities, not the se-
quence of activities. As compared to our proposed model (Figure 2),
Baseline 2 maintains the aggregation layer. But, due to the use of
frequencies of activities per user, only one attention layer at the
level of week, for each individual, is needed; the activity layer is
eliminated. Aggregation is done through a Many-to-Many GRU fol-
lowed by attention. In the data, we have 9 different types of activity,
so each week is represented by a vector of length 9. Baseline 2 uses
the same rolling windows as in the proposed model.

7.3.3 Results of Baseline Models. Table 2 results show that baseline
2, with its frequency of activities, attention layer, and the aggre-
gation layer (AUC = 0.82) outperforms baseline 1, which uses a
sequence of activities, attention layer, but without the aggregation
layer (AUC = 0.74). This is an indicator of the useful role group

level aggregation plays for joint scoring. Baseline 1 conforms to
current scoring models for individuals, is devoid of aggregation,
and is outperformed.

Model AUC
Baseline 1: Activity Sequence, Individual loss, No Aggregation 0.74
Baseline 2: Activity Frequency, Group loss, Aggregation 0.82

Table 2: BaselineModel Performance: Frequency of Activities
with Aggregation performs appreciably better.

7.4 Our Models: Experiments 1-6
First, we run experiments for the architecture with the sequence
of actions as input and for multiple types of aggregation described
above. We run a set of six experiments for this architecture, the re-
sults of which are shown in Table 3. Experiments 1-3 in Table 3 with
aggregation using FNN and GRUs have AUC of 0.86-0.87, which
are higher than that of experiments 4-6 with statistical aggregation
functions, with AUC lying between 0.67 to 0.83. Among statisti-
cal functions, the ‘Maximum probability’ function of experiment 4
performs much better with AUC 0.83. One intuitive reason is that
the functions ‘Probability at least one individual converts’ (experi-
ment 5) and ‘Geometric Mean’ (experiment 6) are an aggregation
of probabilities, which do not recognize the differences in influence
and engagement among individuals. The function ‘Maximum prob-
ability’ recognizes the individual with the highest influence and
engagement with the supplier.

Experiments 1-6 with different aggregation methods AUC
Neural Network methods

1. FNN Layer 0.86
2. Many-to-One GRU 0.87

3. Many-to-Many GRU and Attention Layer 0.87
Statistical functions

4. Maximum probability converts 0.83
5. Probability at least one individual converts 0.67

6. Geometric Mean 0.69
Table 3: Model Performance: Sequence of Activities. All
proposed models 1-6 appreciably outperform the baseline-
sequence model. Neural network aggregation methods per-
form better than use of statistical functions for aggregation.

7.5 Our Models, time-LSTMs: Experiments 7-9
This set of experiments 7-9 continue to utilize the architecture with
the sequence of actions as input, but with a difference from the
previous experiments 1-6. For dynamic modeling of individuals’
behaviors, the time elapsed between successive actions can poten-
tially signal useful information about their behaviors [24]. In the
bottom, activity layer of the model architecture shown in Figure 2,
we concatenate time between successive actions to the sequence of
actions. In experiments 7-9, we use the three best performing ag-
gregation methods from Table 3, which correspond to Experiments
1-3. The results are shown in Table 4. Comparing results of Experi-
ments 7-9 with those of Experiments 1-3, we find a small decrease
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of AUC, namely, between .01 and .02, across three experiments.
This suggests that the inclusion of time elapsed between successive
activities is not contributing to an improvement in AUC scores as
compared to results in experiments 1-3.

Experiments 7-9 with time-LSTMs AUC
7. FNN Layer 0.85

8. Many-to-One GRU 0.85
9. Many-to-Many GRU and Attention Layer 0.86

Table 4: Model Performance: Sequence of Activities, time-
LSTMs. All proposed neural network models, outperform
Baseline1 strongly, and Baseline 2 as well.

7.6 Insights from Model Comparisons
Extensive experiments run score both group and individuals in the
group. Several insights emerge: (1) Use of neural network aggre-
gation functions which then feed back a group level loss, makes
an appreciable difference to the performance, relative to the use of
individual level loss functions (without aggregation). This is evi-
dent by much higher AUCs, 0.86 - 0.87, of experiments 1-3 (Table 3)
with Baseline 1 AUC of 0.74 (Table 2). (2) The use of statistical
aggregation (Table 3) shows a mixed performance relative to no-
aggregation (Table 2) since maximum probability’s AUC of 0.83 is
higher but than of the other two (experiments 5 and 6, AUC 0.67,
0.69) are lower than baseline 1 AUC of 0.74. (3) Using frequency of
activities, instead of sequence of activities, although maintaining
aggregated group level loss, yields a good Baseline 2 AUC of 0.82
(Table 2); however, the sequence of activities with an identical set
up of Many-to-Many GRUs gives a significant jump in AUC to 0.87,
as in experiment 3 of Table 3. The sequence of activities does in-
form the model more effectively than the frequency of activities. (4)
Addition of time between successive actions as input over the above
sequence does not provide any jump in performance as observed
comparing its AUCs, 0.85 - 0.86, (Table 4) to that of AUCs 0.86-0.87
in experiments 1-3 (Table 3). For deriving additional insight, we
study the Pearson correlation between the weekly sum of each
group’s total activities and the weekly model based group score. A
regression analysis finds no difference (p-value = 0.86), between
the converted versus not converted groups. Thus, the volume of
activities by individuals in a group is not a good indicator of the
tendency for the group to convert.

8 CONCLUSION
Toward joint scoring models in ML, we predict a group and its
individuals dynamically, subject to the group decision. We extend
an attention network to assign differential decision making weights,
akin to differential influences, to different individuals in the group.
Two classes of aggregation methods are proposed - network based
and statistical function based - and within each class, multiple
methods are compared. Performance of several experiments for
predicting the dynamics of the decision, relative to respective base-
lines, finds strong support for our approach for joint scoring of the
group decision dynamically. The dynamic scores predict the time
interval of conversion by examining when the score crosses a de-
sired threshold, resulting in differential resource allocation among

accounts, and among individuals within each account. We hope
future ML research focuses more on group decision making.
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